Normalized defining polynomial
\( x^{16} - 5 x^{14} + 75 x^{12} - 555 x^{10} + 4458 x^{8} - 14529 x^{6} + 11641 x^{4} + 7546 x^{2} + 3481 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2485729833445986061658423296=2^{16}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(164=2^{2}\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{164}(1,·)$, $\chi_{164}(3,·)$, $\chi_{164}(73,·)$, $\chi_{164}(55,·)$, $\chi_{164}(79,·)$, $\chi_{164}(81,·)$, $\chi_{164}(83,·)$, $\chi_{164}(85,·)$, $\chi_{164}(137,·)$, $\chi_{164}(27,·)$, $\chi_{164}(161,·)$, $\chi_{164}(163,·)$, $\chi_{164}(109,·)$, $\chi_{164}(91,·)$, $\chi_{164}(155,·)$, $\chi_{164}(9,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{37} a^{8} - \frac{15}{37} a^{6} - \frac{9}{37} a^{4} + \frac{2}{37} a^{2} - \frac{11}{37}$, $\frac{1}{37} a^{9} - \frac{15}{37} a^{7} - \frac{9}{37} a^{5} + \frac{2}{37} a^{3} - \frac{11}{37} a$, $\frac{1}{37} a^{10} - \frac{12}{37} a^{6} + \frac{15}{37} a^{4} - \frac{18}{37} a^{2} - \frac{17}{37}$, $\frac{1}{37} a^{11} - \frac{12}{37} a^{7} + \frac{15}{37} a^{5} - \frac{18}{37} a^{3} - \frac{17}{37} a$, $\frac{1}{148} a^{12} - \frac{1}{74} a^{8} - \frac{61}{148} a^{6} + \frac{3}{148} a^{4} + \frac{3}{148} a^{2} + \frac{1}{148}$, $\frac{1}{148} a^{13} - \frac{1}{74} a^{9} - \frac{61}{148} a^{7} + \frac{3}{148} a^{5} + \frac{3}{148} a^{3} + \frac{1}{148} a$, $\frac{1}{70947335276} a^{14} - \frac{26106966}{17736833819} a^{12} - \frac{13126457}{35473667638} a^{10} + \frac{176768667}{70947335276} a^{8} + \frac{17189079275}{70947335276} a^{6} + \frac{15007561027}{70947335276} a^{4} - \frac{23306913371}{70947335276} a^{2} + \frac{4432778936}{17736833819}$, $\frac{1}{4185892781284} a^{15} + \frac{2370762469}{1046473195321} a^{13} - \frac{1930622005}{2092946390642} a^{11} - \frac{22833177909}{4185892781284} a^{9} - \frac{464102303273}{4185892781284} a^{7} - \frac{1043449981469}{4185892781284} a^{5} + \frac{1982393429837}{4185892781284} a^{3} - \frac{143693752147}{1046473195321} a$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{16057}{90705833} a^{15} - \frac{131483}{181411666} a^{13} + \frac{1162326}{90705833} a^{11} - \frac{7897189}{90705833} a^{9} + \frac{131174055}{181411666} a^{7} - \frac{359188081}{181411666} a^{5} + \frac{165678755}{181411666} a^{3} + \frac{275836633}{181411666} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1737529.057604532 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{41}) \), \(\Q(\sqrt{-41}) \), \(\Q(i, \sqrt{41})\), 4.4.68921.1, 4.0.1102736.1, 8.0.1216026685696.1, 8.8.49857094113536.1, 8.0.194754273881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |