Normalized defining polynomial
\( x^{16} - 2 x^{15} - 37 x^{14} + 68 x^{13} + 508 x^{12} - 836 x^{11} - 3189 x^{10} + 4518 x^{9} + 9089 x^{8} - 10408 x^{7} - 10057 x^{6} + 8378 x^{5} + 2786 x^{4} - 1462 x^{3} - 37 x^{2} + 32 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(72399383432805056195395584=2^{16}\cdot 3^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(204=2^{2}\cdot 3\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{204}(1,·)$, $\chi_{204}(203,·)$, $\chi_{204}(13,·)$, $\chi_{204}(145,·)$, $\chi_{204}(83,·)$, $\chi_{204}(25,·)$, $\chi_{204}(155,·)$, $\chi_{204}(157,·)$, $\chi_{204}(35,·)$, $\chi_{204}(169,·)$, $\chi_{204}(47,·)$, $\chi_{204}(49,·)$, $\chi_{204}(179,·)$, $\chi_{204}(121,·)$, $\chi_{204}(59,·)$, $\chi_{204}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{10955225117925458020169} a^{15} + \frac{4652946872370541319086}{10955225117925458020169} a^{14} + \frac{4746011941838571860625}{10955225117925458020169} a^{13} - \frac{12741520321447474976}{10955225117925458020169} a^{12} - \frac{3971764327011371527103}{10955225117925458020169} a^{11} + \frac{3766795003889841545527}{10955225117925458020169} a^{10} + \frac{3327557517835396243479}{10955225117925458020169} a^{9} + \frac{5465282589418834356798}{10955225117925458020169} a^{8} + \frac{21499877853345527492}{45837761999688108871} a^{7} - \frac{3155769326276617197388}{10955225117925458020169} a^{6} - \frac{2335420128166277154353}{10955225117925458020169} a^{5} - \frac{158363107599695937821}{10955225117925458020169} a^{4} - \frac{1921427682484847306897}{10955225117925458020169} a^{3} + \frac{4550490621041256618990}{10955225117925458020169} a^{2} - \frac{3041461810171910634149}{10955225117925458020169} a - \frac{1229316343428775214162}{10955225117925458020169}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33588984.3311 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{51}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{3}, \sqrt{17})\), 4.4.4913.1, 4.4.707472.1, 8.8.500516630784.1, 8.8.8508782723328.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 3 | Data not computed | ||||||
| 17 | Data not computed | ||||||