Properties

Label 16.16.7239938343...5584.1
Degree $16$
Signature $[16, 0]$
Discriminant $2^{16}\cdot 3^{8}\cdot 17^{14}$
Root discriminant $41.33$
Ramified primes $2, 3, 17$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_8\times C_2$ (as 16T5)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 32, -37, -1462, 2786, 8378, -10057, -10408, 9089, 4518, -3189, -836, 508, 68, -37, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 37*x^14 + 68*x^13 + 508*x^12 - 836*x^11 - 3189*x^10 + 4518*x^9 + 9089*x^8 - 10408*x^7 - 10057*x^6 + 8378*x^5 + 2786*x^4 - 1462*x^3 - 37*x^2 + 32*x + 1)
 
gp: K = bnfinit(x^16 - 2*x^15 - 37*x^14 + 68*x^13 + 508*x^12 - 836*x^11 - 3189*x^10 + 4518*x^9 + 9089*x^8 - 10408*x^7 - 10057*x^6 + 8378*x^5 + 2786*x^4 - 1462*x^3 - 37*x^2 + 32*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} - 37 x^{14} + 68 x^{13} + 508 x^{12} - 836 x^{11} - 3189 x^{10} + 4518 x^{9} + 9089 x^{8} - 10408 x^{7} - 10057 x^{6} + 8378 x^{5} + 2786 x^{4} - 1462 x^{3} - 37 x^{2} + 32 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[16, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(72399383432805056195395584=2^{16}\cdot 3^{8}\cdot 17^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $41.33$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(204=2^{2}\cdot 3\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{204}(1,·)$, $\chi_{204}(203,·)$, $\chi_{204}(13,·)$, $\chi_{204}(145,·)$, $\chi_{204}(83,·)$, $\chi_{204}(25,·)$, $\chi_{204}(155,·)$, $\chi_{204}(157,·)$, $\chi_{204}(35,·)$, $\chi_{204}(169,·)$, $\chi_{204}(47,·)$, $\chi_{204}(49,·)$, $\chi_{204}(179,·)$, $\chi_{204}(121,·)$, $\chi_{204}(59,·)$, $\chi_{204}(191,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{10955225117925458020169} a^{15} + \frac{4652946872370541319086}{10955225117925458020169} a^{14} + \frac{4746011941838571860625}{10955225117925458020169} a^{13} - \frac{12741520321447474976}{10955225117925458020169} a^{12} - \frac{3971764327011371527103}{10955225117925458020169} a^{11} + \frac{3766795003889841545527}{10955225117925458020169} a^{10} + \frac{3327557517835396243479}{10955225117925458020169} a^{9} + \frac{5465282589418834356798}{10955225117925458020169} a^{8} + \frac{21499877853345527492}{45837761999688108871} a^{7} - \frac{3155769326276617197388}{10955225117925458020169} a^{6} - \frac{2335420128166277154353}{10955225117925458020169} a^{5} - \frac{158363107599695937821}{10955225117925458020169} a^{4} - \frac{1921427682484847306897}{10955225117925458020169} a^{3} + \frac{4550490621041256618990}{10955225117925458020169} a^{2} - \frac{3041461810171910634149}{10955225117925458020169} a - \frac{1229316343428775214162}{10955225117925458020169}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 33588984.3311 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_8$ (as 16T5):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_8\times C_2$
Character table for $C_8\times C_2$

Intermediate fields

\(\Q(\sqrt{51}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{3}, \sqrt{17})\), 4.4.4913.1, 4.4.707472.1, 8.8.500516630784.1, 8.8.8508782723328.1, \(\Q(\zeta_{17})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
3Data not computed
17Data not computed