Normalized defining polynomial
\( x^{16} - x^{15} + 19 x^{14} - 4 x^{13} + 187 x^{12} + 24 x^{11} + 1146 x^{10} + 1455 x^{9} + 4962 x^{8} + 6399 x^{7} + 25490 x^{6} - 5124 x^{5} + 27353 x^{4} - 11794 x^{3} + 25043 x^{2} - 63579 x + 41719 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(431533953146964646550390625=3^{8}\cdot 5^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(255=3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{255}(1,·)$, $\chi_{255}(206,·)$, $\chi_{255}(16,·)$, $\chi_{255}(19,·)$, $\chi_{255}(149,·)$, $\chi_{255}(89,·)$, $\chi_{255}(26,·)$, $\chi_{255}(94,·)$, $\chi_{255}(161,·)$, $\chi_{255}(229,·)$, $\chi_{255}(166,·)$, $\chi_{255}(106,·)$, $\chi_{255}(236,·)$, $\chi_{255}(239,·)$, $\chi_{255}(49,·)$, $\chi_{255}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{94} a^{12} + \frac{17}{94} a^{10} + \frac{3}{47} a^{9} + \frac{17}{47} a^{8} + \frac{21}{94} a^{7} - \frac{17}{47} a^{6} + \frac{15}{94} a^{5} - \frac{5}{47} a^{4} + \frac{12}{47} a^{3} - \frac{25}{94} a^{2} - \frac{23}{47} a - \frac{43}{94}$, $\frac{1}{94} a^{13} + \frac{17}{94} a^{11} + \frac{3}{47} a^{10} + \frac{17}{47} a^{9} + \frac{21}{94} a^{8} - \frac{17}{47} a^{7} + \frac{15}{94} a^{6} - \frac{5}{47} a^{5} + \frac{12}{47} a^{4} - \frac{25}{94} a^{3} - \frac{23}{47} a^{2} - \frac{43}{94} a$, $\frac{1}{188} a^{14} - \frac{1}{188} a^{13} - \frac{11}{188} a^{11} + \frac{21}{188} a^{10} - \frac{21}{188} a^{9} + \frac{25}{188} a^{8} - \frac{13}{94} a^{7} - \frac{11}{188} a^{6} - \frac{33}{188} a^{5} - \frac{67}{188} a^{4} + \frac{41}{188} a^{3} - \frac{21}{94} a^{2} + \frac{73}{188} a - \frac{21}{188}$, $\frac{1}{1146519250275775439815488304270216} a^{15} - \frac{1218950322279795510814914009437}{573259625137887719907744152135108} a^{14} + \frac{3791520069616748222532766188429}{1146519250275775439815488304270216} a^{13} - \frac{4440201844713770831554193688825}{1146519250275775439815488304270216} a^{12} + \frac{3452386687855736618042936123550}{143314906284471929976936038033777} a^{11} + \frac{51789847887790798270248308095997}{143314906284471929976936038033777} a^{10} + \frac{665459989727479698381533632203}{1623964943733392974242901280836} a^{9} - \frac{241220390638702963959834408008463}{1146519250275775439815488304270216} a^{8} + \frac{161698661180152672785521894631641}{1146519250275775439815488304270216} a^{7} + \frac{271641161496064384931815431220433}{573259625137887719907744152135108} a^{6} - \frac{2705882881148086820329472010349}{143314906284471929976936038033777} a^{5} + \frac{67449056347953714392923938084276}{143314906284471929976936038033777} a^{4} - \frac{480670699569945359248930531694279}{1146519250275775439815488304270216} a^{3} + \frac{246937650863701611483985039569253}{1146519250275775439815488304270216} a^{2} + \frac{223381111155048881721780219913081}{573259625137887719907744152135108} a + \frac{397765140971566249402957875926787}{1146519250275775439815488304270216}$
Class group and class number
$C_{48}$, which has order $48$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 81485.0410293661 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-255}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-15}, \sqrt{17})\), 4.4.4913.1, 4.0.1105425.1, 8.0.1221964430625.2, 8.8.256461670625.1, 8.0.33237432513.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $17$ | 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |