Normalized defining polynomial
\( x^{16} - x^{15} + 8 x^{14} - 5 x^{13} + 40 x^{12} - 22 x^{11} + 111 x^{10} - 36 x^{9} + 206 x^{8} - 59 x^{7} + 212 x^{6} - 14 x^{5} + 125 x^{4} - 20 x^{3} + 26 x^{2} + 4 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1104726920056229495169=3^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(51=3\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{51}(1,·)$, $\chi_{51}(2,·)$, $\chi_{51}(4,·)$, $\chi_{51}(8,·)$, $\chi_{51}(13,·)$, $\chi_{51}(16,·)$, $\chi_{51}(19,·)$, $\chi_{51}(25,·)$, $\chi_{51}(26,·)$, $\chi_{51}(32,·)$, $\chi_{51}(35,·)$, $\chi_{51}(38,·)$, $\chi_{51}(43,·)$, $\chi_{51}(47,·)$, $\chi_{51}(49,·)$, $\chi_{51}(50,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{175848618214} a^{15} - \frac{14062920235}{87924309107} a^{14} + \frac{26932135941}{175848618214} a^{13} - \frac{30304037477}{175848618214} a^{12} + \frac{3755248}{1312303121} a^{11} - \frac{10113708245}{175848618214} a^{10} - \frac{45695586599}{175848618214} a^{9} - \frac{38378407638}{87924309107} a^{8} - \frac{25838862707}{175848618214} a^{7} + \frac{54676905473}{175848618214} a^{6} + \frac{212605009}{853634069} a^{5} + \frac{55432699327}{175848618214} a^{4} - \frac{26642787345}{175848618214} a^{3} - \frac{5139250882}{87924309107} a^{2} + \frac{24003914841}{175848618214} a + \frac{35857162949}{87924309107}$
Class group and class number
$C_{5}$, which has order $5$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{34167011117}{175848618214} a^{15} + \frac{19411801175}{87924309107} a^{14} - \frac{274127455459}{175848618214} a^{13} + \frac{102130431142}{87924309107} a^{12} - \frac{10155045990}{1312303121} a^{11} + \frac{921272081641}{175848618214} a^{10} - \frac{1876615237234}{87924309107} a^{9} + \frac{837457938480}{87924309107} a^{8} - \frac{6837951005309}{175848618214} a^{7} + \frac{1447475152558}{87924309107} a^{6} - \frac{33373112776}{853634069} a^{5} + \frac{1336584065627}{175848618214} a^{4} - \frac{1885269351946}{87924309107} a^{3} + \frac{719148246400}{87924309107} a^{2} - \frac{703590766513}{175848618214} a + \frac{71091820205}{175848618214} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-51}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{17})\), 4.4.4913.1, 4.0.44217.1, 8.0.1955143089.1, \(\Q(\zeta_{17})^+\), 8.0.33237432513.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 17 | Data not computed | ||||||