Normalized defining polynomial
\( x^{16} - 40 x^{14} + 620 x^{12} - 4800 x^{10} + 19950 x^{8} - 44000 x^{6} + 47000 x^{4} - 20000 x^{2} + 2500 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1125899906842624000000000000=2^{62}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(160=2^{5}\cdot 5\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{160}(1,·)$, $\chi_{160}(3,·)$, $\chi_{160}(129,·)$, $\chi_{160}(9,·)$, $\chi_{160}(81,·)$, $\chi_{160}(83,·)$, $\chi_{160}(43,·)$, $\chi_{160}(89,·)$, $\chi_{160}(27,·)$, $\chi_{160}(67,·)$, $\chi_{160}(41,·)$, $\chi_{160}(107,·)$, $\chi_{160}(49,·)$, $\chi_{160}(147,·)$, $\chi_{160}(121,·)$, $\chi_{160}(123,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{50} a^{8}$, $\frac{1}{50} a^{9}$, $\frac{1}{50} a^{10}$, $\frac{1}{50} a^{11}$, $\frac{1}{250} a^{12}$, $\frac{1}{250} a^{13}$, $\frac{1}{54250} a^{14} + \frac{38}{27125} a^{12} + \frac{3}{1550} a^{10} - \frac{43}{10850} a^{8} - \frac{13}{1085} a^{6} - \frac{1}{1085} a^{4} + \frac{78}{217} a^{2} + \frac{71}{217}$, $\frac{1}{54250} a^{15} + \frac{38}{27125} a^{13} + \frac{3}{1550} a^{11} - \frac{43}{10850} a^{9} - \frac{13}{1085} a^{7} - \frac{1}{1085} a^{5} + \frac{78}{217} a^{3} + \frac{71}{217} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 162380335.1718013 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 4.4.51200.1, \(\Q(\zeta_{16})^+\), 8.8.2621440000.1, 8.8.33554432000000.2, 8.8.33554432000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||