Normalized defining polynomial
\( x^{16} - x^{15} - 2 x^{14} + 19 x^{13} - 46 x^{12} + 108 x^{11} + 348 x^{10} - 795 x^{9} + 1681 x^{8} + 6119 x^{7} - 1809 x^{6} - 6620 x^{5} + 12333 x^{4} + 18226 x^{3} + 16573 x^{2} + 9440 x + 3481 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(248853659625840981300978321=3^{8}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(123=3\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{123}(1,·)$, $\chi_{123}(68,·)$, $\chi_{123}(73,·)$, $\chi_{123}(14,·)$, $\chi_{123}(79,·)$, $\chi_{123}(83,·)$, $\chi_{123}(85,·)$, $\chi_{123}(91,·)$, $\chi_{123}(32,·)$, $\chi_{123}(38,·)$, $\chi_{123}(40,·)$, $\chi_{123}(44,·)$, $\chi_{123}(109,·)$, $\chi_{123}(50,·)$, $\chi_{123}(55,·)$, $\chi_{123}(122,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{1707476} a^{14} + \frac{192153}{1707476} a^{13} + \frac{234713}{1707476} a^{12} - \frac{71661}{853738} a^{11} + \frac{287449}{1707476} a^{10} - \frac{55570}{426869} a^{9} - \frac{626399}{1707476} a^{8} + \frac{102131}{1707476} a^{7} + \frac{77553}{853738} a^{6} - \frac{76351}{426869} a^{5} + \frac{113511}{1707476} a^{4} - \frac{127560}{426869} a^{3} - \frac{118616}{426869} a^{2} - \frac{50739}{426869} a - \frac{595647}{1707476}$, $\frac{1}{2186323211829147079065695608} a^{15} - \frac{72631527650803483524}{273290401478643384883211951} a^{14} - \frac{54737472532448640844023789}{1093161605914573539532847804} a^{13} - \frac{544205082222286913692202411}{2186323211829147079065695608} a^{12} + \frac{287567327684082199995096215}{2186323211829147079065695608} a^{11} + \frac{44247369540234300850023171}{2186323211829147079065695608} a^{10} + \frac{357310628646521741507869183}{2186323211829147079065695608} a^{9} - \frac{110444051752657555586851427}{273290401478643384883211951} a^{8} - \frac{613573665333642643488797675}{2186323211829147079065695608} a^{7} + \frac{63129577163923251512075274}{273290401478643384883211951} a^{6} + \frac{528075951947141227110669675}{2186323211829147079065695608} a^{5} + \frac{283081699311411067849803623}{2186323211829147079065695608} a^{4} - \frac{64717484780665901203806235}{273290401478643384883211951} a^{3} + \frac{306431900315269144488003341}{1093161605914573539532847804} a^{2} - \frac{115716435589861295522562189}{2186323211829147079065695608} a + \frac{3373884461101995363724165}{37056325624222831848571112}$
Class group and class number
$C_{17}$, which has order $17$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{894639924229478243}{5121766190164071598232} a^{15} - \frac{152751242075448640}{640220773770508949779} a^{14} - \frac{646766157832868129}{2560883095082035799116} a^{13} + \frac{17717945834192457955}{5121766190164071598232} a^{12} - \frac{48644474209507293499}{5121766190164071598232} a^{11} + \frac{117092762148898392873}{5121766190164071598232} a^{10} + \frac{268523192070573139009}{5121766190164071598232} a^{9} - \frac{102907042458411954437}{640220773770508949779} a^{8} + \frac{1898943894331130006287}{5121766190164071598232} a^{7} + \frac{585523487795936891095}{640220773770508949779} a^{6} - \frac{3376211972516412704827}{5121766190164071598232} a^{5} - \frac{3488266906956270639015}{5121766190164071598232} a^{4} + \frac{3026771679843962481695}{1280441547541017899558} a^{3} + \frac{5618592613120417020773}{2560883095082035799116} a^{2} + \frac{14235277675575053691593}{5121766190164071598232} a + \frac{133453547170422699571}{86809596443458840648} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 541284.897174 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-123}) \), \(\Q(\sqrt{41}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{41})\), 4.4.68921.1, 4.0.620289.1, 8.0.384758443521.1, 8.8.15775096184361.1, 8.0.194754273881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 41 | Data not computed | ||||||