Normalized defining polynomial
\( x^{16} - 8 x^{15} + 36 x^{14} - 112 x^{13} + 346 x^{12} - 984 x^{11} + 2640 x^{10} - 5896 x^{9} + 13211 x^{8} - 25432 x^{7} + 50016 x^{6} - 77960 x^{5} + 132922 x^{4} - 157696 x^{3} + 233836 x^{2} - 164920 x + 214303 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(988555854433440250854375424=2^{62}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(352=2^{5}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{352}(1,·)$, $\chi_{352}(133,·)$, $\chi_{352}(65,·)$, $\chi_{352}(265,·)$, $\chi_{352}(109,·)$, $\chi_{352}(21,·)$, $\chi_{352}(89,·)$, $\chi_{352}(153,·)$, $\chi_{352}(221,·)$, $\chi_{352}(197,·)$, $\chi_{352}(177,·)$, $\chi_{352}(45,·)$, $\chi_{352}(285,·)$, $\chi_{352}(241,·)$, $\chi_{352}(309,·)$, $\chi_{352}(329,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{17} a^{13} + \frac{2}{17} a^{12} - \frac{6}{17} a^{11} - \frac{6}{17} a^{10} - \frac{3}{17} a^{9} - \frac{2}{17} a^{8} - \frac{5}{17} a^{7} + \frac{6}{17} a^{6} - \frac{4}{17} a^{5} + \frac{8}{17} a^{4} - \frac{4}{17} a^{3} + \frac{6}{17} a^{2} - \frac{8}{17} a - \frac{1}{17}$, $\frac{1}{88490485260817} a^{14} - \frac{7}{88490485260817} a^{13} + \frac{22141174490392}{88490485260817} a^{12} + \frac{44133923579373}{88490485260817} a^{11} + \frac{2146916862594}{5205322662401} a^{10} - \frac{26609159479735}{88490485260817} a^{9} + \frac{8359768326183}{88490485260817} a^{8} - \frac{455550228156}{5205322662401} a^{7} + \frac{11852175622059}{88490485260817} a^{6} + \frac{4901430820452}{88490485260817} a^{5} - \frac{3398143464909}{88490485260817} a^{4} + \frac{5327184690890}{88490485260817} a^{3} - \frac{8029990484848}{88490485260817} a^{2} + \frac{1058888375520}{88490485260817} a - \frac{660762422144}{2854531782607}$, $\frac{1}{560764205097797329} a^{15} + \frac{3161}{560764205097797329} a^{14} - \frac{326615443912651}{560764205097797329} a^{13} - \frac{208104790790803434}{560764205097797329} a^{12} - \frac{88926368849068589}{560764205097797329} a^{11} - \frac{51415032230753356}{560764205097797329} a^{10} + \frac{71615161598098054}{560764205097797329} a^{9} + \frac{192208269951654531}{560764205097797329} a^{8} - \frac{89234832250916709}{560764205097797329} a^{7} - \frac{183376915958782279}{560764205097797329} a^{6} + \frac{202572399246444561}{560764205097797329} a^{5} - \frac{211149297846592119}{560764205097797329} a^{4} + \frac{276921206001146231}{560764205097797329} a^{3} + \frac{143875579272294383}{560764205097797329} a^{2} + \frac{163460210479340458}{560764205097797329} a + \frac{3432910264140689}{18089167906380559}$
Class group and class number
$C_{565}$, which has order $565$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-22}) \), \(\Q(\sqrt{2}, \sqrt{-11})\), \(\Q(\zeta_{16})^+\), 4.0.247808.2, 8.0.61408804864.2, 8.0.31441308090368.8, \(\Q(\zeta_{32})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||