Newspace parameters
Level: | \( N \) | \(=\) | \( 105 = 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 105.v (of order \(12\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.86104277578\) |
Analytic rank: | \(0\) |
Dimension: | \(64\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 | −3.56483 | + | 0.955194i | −1.67303 | − | 0.448288i | 8.33154 | − | 4.81021i | −1.05941 | + | 4.88648i | 6.39228 | −6.28878 | + | 3.07429i | −14.6673 | + | 14.6673i | 2.59808 | + | 1.50000i | −0.890898 | − | 18.4314i | ||
37.2 | −3.18498 | + | 0.853412i | 1.67303 | + | 0.448288i | 5.95167 | − | 3.43620i | −4.91224 | + | 0.932701i | −5.71115 | 5.00478 | + | 4.89410i | −6.69718 | + | 6.69718i | 2.59808 | + | 1.50000i | 14.8494 | − | 7.16279i | ||
37.3 | −2.87375 | + | 0.770020i | 1.67303 | + | 0.448288i | 4.20143 | − | 2.42570i | 3.78688 | + | 3.26489i | −5.15308 | −1.65502 | − | 6.80154i | −1.79111 | + | 1.79111i | 2.59808 | + | 1.50000i | −13.3966 | − | 6.46653i | ||
37.4 | −2.38023 | + | 0.637781i | −1.67303 | − | 0.448288i | 1.79464 | − | 1.03614i | 2.91424 | − | 4.06291i | 4.26812 | −4.25379 | + | 5.55925i | 3.35897 | − | 3.35897i | 2.59808 | + | 1.50000i | −4.34532 | + | 11.5293i | ||
37.5 | −1.91023 | + | 0.511845i | −1.67303 | − | 0.448288i | −0.0771041 | + | 0.0445161i | −4.99333 | − | 0.258093i | 3.42533 | 6.99587 | + | 0.240410i | 5.71805 | − | 5.71805i | 2.59808 | + | 1.50000i | 9.67053 | − | 2.06280i | ||
37.6 | −1.84280 | + | 0.493776i | 1.67303 | + | 0.448288i | −0.312015 | + | 0.180142i | −1.82066 | − | 4.65674i | −3.30441 | −6.63712 | − | 2.22456i | 5.88211 | − | 5.88211i | 2.59808 | + | 1.50000i | 5.65448 | + | 7.68243i | ||
37.7 | −0.445275 | + | 0.119311i | −1.67303 | − | 0.448288i | −3.28007 | + | 1.89375i | 4.59550 | − | 1.97013i | 0.798445 | −0.171680 | − | 6.99789i | 2.53844 | − | 2.53844i | 2.59808 | + | 1.50000i | −1.81120 | + | 1.42554i | ||
37.8 | −0.435396 | + | 0.116664i | 1.67303 | + | 0.448288i | −3.28814 | + | 1.89841i | 3.62365 | − | 3.44517i | −0.780730 | 6.87993 | + | 1.29096i | 2.48509 | − | 2.48509i | 2.59808 | + | 1.50000i | −1.17579 | + | 1.92276i | ||
37.9 | 0.232416 | − | 0.0622758i | 1.67303 | + | 0.448288i | −3.41396 | + | 1.97105i | −2.65242 | + | 4.23847i | 0.416757 | −4.06422 | + | 5.69931i | −1.35127 | + | 1.35127i | 2.59808 | + | 1.50000i | −0.352512 | + | 1.15027i | ||
37.10 | 0.901161 | − | 0.241465i | −1.67303 | − | 0.448288i | −2.71032 | + | 1.56480i | 2.44472 | + | 4.36158i | −1.61592 | 5.41162 | + | 4.44009i | −4.70337 | + | 4.70337i | 2.59808 | + | 1.50000i | 3.25625 | + | 3.34017i | ||
37.11 | 0.984292 | − | 0.263740i | −1.67303 | − | 0.448288i | −2.56483 | + | 1.48081i | −4.04958 | − | 2.93273i | −1.76498 | −5.81621 | + | 3.89508i | −5.01620 | + | 5.01620i | 2.59808 | + | 1.50000i | −4.75945 | − | 1.81862i | ||
37.12 | 2.13226 | − | 0.571337i | 1.67303 | + | 0.448288i | 0.756006 | − | 0.436480i | 2.78563 | + | 4.15214i | 3.82346 | 2.73668 | − | 6.44287i | −4.88107 | + | 4.88107i | 2.59808 | + | 1.50000i | 8.31195 | + | 7.26192i | ||
37.13 | 2.56059 | − | 0.686107i | 1.67303 | + | 0.448288i | 2.62176 | − | 1.51367i | 1.32982 | − | 4.81992i | 4.59152 | 0.158915 | + | 6.99820i | −1.82323 | + | 1.82323i | 2.59808 | + | 1.50000i | 0.0981374 | − | 13.2542i | ||
37.14 | 2.88660 | − | 0.773463i | −1.67303 | − | 0.448288i | 4.27013 | − | 2.46536i | 0.160937 | − | 4.99741i | −5.17611 | 5.19830 | − | 4.68804i | 1.96674 | − | 1.96674i | 2.59808 | + | 1.50000i | −3.40075 | − | 14.5500i | ||
37.15 | 3.41166 | − | 0.914152i | 1.67303 | + | 0.448288i | 7.33966 | − | 4.23756i | −4.98672 | + | 0.364163i | 6.11763 | −6.35750 | − | 2.92953i | 11.1766 | − | 11.1766i | 2.59808 | + | 1.50000i | −16.6801 | + | 5.80102i | ||
37.16 | 3.52852 | − | 0.945463i | −1.67303 | − | 0.448288i | 8.09242 | − | 4.67216i | 3.83301 | + | 3.21062i | −6.32716 | −6.80203 | + | 1.65300i | 13.8047 | − | 13.8047i | 2.59808 | + | 1.50000i | 16.5603 | + | 7.70474i | ||
58.1 | −0.945463 | − | 3.52852i | 0.448288 | − | 1.67303i | −8.09242 | + | 4.67216i | −4.69698 | − | 1.71417i | −6.32716 | 1.65300 | + | 6.80203i | 13.8047 | + | 13.8047i | −2.59808 | − | 1.50000i | −1.60767 | + | 18.1940i | ||
58.2 | −0.914152 | − | 3.41166i | −0.448288 | + | 1.67303i | −7.33966 | + | 4.23756i | 2.17799 | + | 4.50071i | 6.11763 | −2.92953 | + | 6.35750i | 11.1766 | + | 11.1766i | −2.59808 | − | 1.50000i | 13.3639 | − | 11.5449i | ||
58.3 | −0.773463 | − | 2.88660i | 0.448288 | − | 1.67303i | −4.27013 | + | 2.46536i | 4.24741 | − | 2.63808i | −5.17611 | −4.68804 | − | 5.19830i | 1.96674 | + | 1.96674i | −2.59808 | − | 1.50000i | −10.9003 | − | 10.2201i | ||
58.4 | −0.686107 | − | 2.56059i | −0.448288 | + | 1.67303i | −2.62176 | + | 1.51367i | 3.50926 | − | 3.56161i | 4.59152 | 6.99820 | − | 0.158915i | −1.82323 | − | 1.82323i | −2.59808 | − | 1.50000i | −11.5275 | − | 6.54211i | ||
See all 64 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
7.c | even | 3 | 1 | inner |
35.l | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 105.3.v.a | ✓ | 64 |
3.b | odd | 2 | 1 | 315.3.ca.b | 64 | ||
5.c | odd | 4 | 1 | inner | 105.3.v.a | ✓ | 64 |
7.c | even | 3 | 1 | inner | 105.3.v.a | ✓ | 64 |
15.e | even | 4 | 1 | 315.3.ca.b | 64 | ||
21.h | odd | 6 | 1 | 315.3.ca.b | 64 | ||
35.l | odd | 12 | 1 | inner | 105.3.v.a | ✓ | 64 |
105.x | even | 12 | 1 | 315.3.ca.b | 64 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
105.3.v.a | ✓ | 64 | 1.a | even | 1 | 1 | trivial |
105.3.v.a | ✓ | 64 | 5.c | odd | 4 | 1 | inner |
105.3.v.a | ✓ | 64 | 7.c | even | 3 | 1 | inner |
105.3.v.a | ✓ | 64 | 35.l | odd | 12 | 1 | inner |
315.3.ca.b | 64 | 3.b | odd | 2 | 1 | ||
315.3.ca.b | 64 | 15.e | even | 4 | 1 | ||
315.3.ca.b | 64 | 21.h | odd | 6 | 1 | ||
315.3.ca.b | 64 | 105.x | even | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(105, [\chi])\).