Properties

Label 105.3.v.a.37.5
Level 105
Weight 3
Character 105.37
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.5
Character \(\chi\) \(=\) 105.37
Dual form 105.3.v.a.88.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.91023 + 0.511845i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(-0.0771041 + 0.0445161i) q^{4} +(-4.99333 - 0.258093i) q^{5} +3.42533 q^{6} +(6.99587 + 0.240410i) q^{7} +(5.71805 - 5.71805i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-1.91023 + 0.511845i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(-0.0771041 + 0.0445161i) q^{4} +(-4.99333 - 0.258093i) q^{5} +3.42533 q^{6} +(6.99587 + 0.240410i) q^{7} +(5.71805 - 5.71805i) q^{8} +(2.59808 + 1.50000i) q^{9} +(9.67053 - 2.06280i) q^{10} +(1.58449 + 2.74441i) q^{11} +(0.148954 - 0.0399120i) q^{12} +(11.0592 - 11.0592i) q^{13} +(-13.4868 + 3.12156i) q^{14} +(8.23831 + 2.67025i) q^{15} +(-7.81797 + 13.5411i) q^{16} +(4.27411 - 15.9512i) q^{17} +(-5.73069 - 1.53553i) q^{18} +(24.9472 + 14.4033i) q^{19} +(0.396496 - 0.202384i) q^{20} +(-11.5965 - 3.53838i) q^{21} +(-4.43145 - 4.43145i) q^{22} +(-2.86298 - 10.6848i) q^{23} +(-12.1298 + 7.00315i) q^{24} +(24.8668 + 2.57749i) q^{25} +(-15.4650 + 26.7862i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(-0.550112 + 0.292892i) q^{28} +20.9038i q^{29} +(-17.1038 - 0.884054i) q^{30} +(-30.4426 - 52.7281i) q^{31} +(-0.368622 + 1.37572i) q^{32} +(-1.42061 - 5.30179i) q^{33} +32.6581i q^{34} +(-34.8707 - 3.00603i) q^{35} -0.267096 q^{36} +(-4.96117 + 1.32934i) q^{37} +(-55.0271 - 14.7445i) q^{38} +(-23.4601 + 13.5447i) q^{39} +(-30.0279 + 27.0763i) q^{40} +0.605481 q^{41} +(23.9632 + 0.823485i) q^{42} +(16.0752 - 16.0752i) q^{43} +(-0.244341 - 0.141070i) q^{44} +(-12.5859 - 8.16055i) q^{45} +(10.9379 + 18.9450i) q^{46} +(34.1202 - 9.14247i) q^{47} +(19.1500 - 19.1500i) q^{48} +(48.8844 + 3.36376i) q^{49} +(-48.8206 + 7.80433i) q^{50} +(-14.3014 + 24.7708i) q^{51} +(-0.360397 + 1.34502i) q^{52} +(60.8242 + 16.2978i) q^{53} +(8.89928 + 5.13800i) q^{54} +(-7.20355 - 14.1127i) q^{55} +(41.3774 - 38.6280i) q^{56} +(-35.2806 - 35.2806i) q^{57} +(-10.6995 - 39.9312i) q^{58} +(88.6860 - 51.2029i) q^{59} +(-0.754076 + 0.160850i) q^{60} +(-16.9814 + 29.4127i) q^{61} +(85.1410 + 85.1410i) q^{62} +(17.8152 + 11.1184i) q^{63} -65.3604i q^{64} +(-58.0765 + 52.3679i) q^{65} +(5.42739 + 9.40052i) q^{66} +(-13.4604 + 50.2349i) q^{67} +(0.380533 + 1.42017i) q^{68} +19.1594i q^{69} +(68.1497 - 12.1062i) q^{70} +25.3750 q^{71} +(23.4330 - 6.27885i) q^{72} +(-86.1585 - 23.0861i) q^{73} +(8.79656 - 5.07870i) q^{74} +(-40.4475 - 15.4597i) q^{75} -2.56471 q^{76} +(10.4251 + 19.5805i) q^{77} +(37.8814 - 37.8814i) q^{78} +(6.66046 + 3.84542i) q^{79} +(42.5326 - 65.5976i) q^{80} +(4.50000 + 7.79423i) q^{81} +(-1.15661 + 0.309913i) q^{82} +(81.1873 - 81.1873i) q^{83} +(1.05166 - 0.243409i) q^{84} +(-25.4589 + 78.5465i) q^{85} +(-22.4793 + 38.9354i) q^{86} +(9.37094 - 34.9728i) q^{87} +(24.7528 + 6.63250i) q^{88} +(-35.6866 - 20.6037i) q^{89} +(28.2190 + 9.14649i) q^{90} +(80.0273 - 74.7098i) q^{91} +(0.696392 + 0.696392i) q^{92} +(27.2941 + 101.863i) q^{93} +(-60.4979 + 34.9285i) q^{94} +(-120.852 - 78.3590i) q^{95} +(1.23343 - 2.13637i) q^{96} +(1.74125 + 1.74125i) q^{97} +(-95.1022 + 18.5957i) q^{98} +9.50691i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.91023 + 0.511845i −0.955116 + 0.255922i −0.702532 0.711653i \(-0.747947\pi\)
−0.252584 + 0.967575i \(0.581280\pi\)
\(3\) −1.67303 0.448288i −0.557678 0.149429i
\(4\) −0.0771041 + 0.0445161i −0.0192760 + 0.0111290i
\(5\) −4.99333 0.258093i −0.998667 0.0516186i
\(6\) 3.42533 0.570889
\(7\) 6.99587 + 0.240410i 0.999410 + 0.0343443i
\(8\) 5.71805 5.71805i 0.714756 0.714756i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) 9.67053 2.06280i 0.967053 0.206280i
\(11\) 1.58449 + 2.74441i 0.144044 + 0.249492i 0.929016 0.370040i \(-0.120656\pi\)
−0.784972 + 0.619532i \(0.787323\pi\)
\(12\) 0.148954 0.0399120i 0.0124128 0.00332600i
\(13\) 11.0592 11.0592i 0.850706 0.850706i −0.139514 0.990220i \(-0.544554\pi\)
0.990220 + 0.139514i \(0.0445541\pi\)
\(14\) −13.4868 + 3.12156i −0.963342 + 0.222969i
\(15\) 8.23831 + 2.67025i 0.549221 + 0.178017i
\(16\) −7.81797 + 13.5411i −0.488623 + 0.846320i
\(17\) 4.27411 15.9512i 0.251418 0.938305i −0.718630 0.695392i \(-0.755231\pi\)
0.970048 0.242912i \(-0.0781027\pi\)
\(18\) −5.73069 1.53553i −0.318372 0.0853075i
\(19\) 24.9472 + 14.4033i 1.31301 + 0.758066i 0.982593 0.185769i \(-0.0594778\pi\)
0.330416 + 0.943836i \(0.392811\pi\)
\(20\) 0.396496 0.202384i 0.0198248 0.0101192i
\(21\) −11.5965 3.53838i −0.552216 0.168494i
\(22\) −4.43145 4.43145i −0.201429 0.201429i
\(23\) −2.86298 10.6848i −0.124477 0.464556i 0.875343 0.483502i \(-0.160635\pi\)
−0.999820 + 0.0189465i \(0.993969\pi\)
\(24\) −12.1298 + 7.00315i −0.505409 + 0.291798i
\(25\) 24.8668 + 2.57749i 0.994671 + 0.103100i
\(26\) −15.4650 + 26.7862i −0.594808 + 1.03024i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) −0.550112 + 0.292892i −0.0196469 + 0.0104604i
\(29\) 20.9038i 0.720822i 0.932794 + 0.360411i \(0.117364\pi\)
−0.932794 + 0.360411i \(0.882636\pi\)
\(30\) −17.1038 0.884054i −0.570128 0.0294685i
\(31\) −30.4426 52.7281i −0.982019 1.70091i −0.654501 0.756061i \(-0.727121\pi\)
−0.327518 0.944845i \(-0.606212\pi\)
\(32\) −0.368622 + 1.37572i −0.0115194 + 0.0429912i
\(33\) −1.42061 5.30179i −0.0430488 0.160660i
\(34\) 32.6581i 0.960533i
\(35\) −34.8707 3.00603i −0.996305 0.0858867i
\(36\) −0.267096 −0.00741934
\(37\) −4.96117 + 1.32934i −0.134086 + 0.0359281i −0.325238 0.945632i \(-0.605444\pi\)
0.191152 + 0.981560i \(0.438778\pi\)
\(38\) −55.0271 14.7445i −1.44808 0.388012i
\(39\) −23.4601 + 13.5447i −0.601540 + 0.347299i
\(40\) −30.0279 + 27.0763i −0.750698 + 0.676908i
\(41\) 0.605481 0.0147678 0.00738392 0.999973i \(-0.497650\pi\)
0.00738392 + 0.999973i \(0.497650\pi\)
\(42\) 23.9632 + 0.823485i 0.570552 + 0.0196068i
\(43\) 16.0752 16.0752i 0.373842 0.373842i −0.495032 0.868874i \(-0.664844\pi\)
0.868874 + 0.495032i \(0.164844\pi\)
\(44\) −0.244341 0.141070i −0.00555320 0.00320614i
\(45\) −12.5859 8.16055i −0.279687 0.181345i
\(46\) 10.9379 + 18.9450i 0.237780 + 0.411848i
\(47\) 34.1202 9.14247i 0.725961 0.194521i 0.123131 0.992390i \(-0.460706\pi\)
0.602830 + 0.797870i \(0.294040\pi\)
\(48\) 19.1500 19.1500i 0.398959 0.398959i
\(49\) 48.8844 + 3.36376i 0.997641 + 0.0686481i
\(50\) −48.8206 + 7.80433i −0.976411 + 0.156087i
\(51\) −14.3014 + 24.7708i −0.280420 + 0.485702i
\(52\) −0.360397 + 1.34502i −0.00693070 + 0.0258657i
\(53\) 60.8242 + 16.2978i 1.14763 + 0.307506i 0.782014 0.623261i \(-0.214193\pi\)
0.365613 + 0.930767i \(0.380859\pi\)
\(54\) 8.89928 + 5.13800i 0.164801 + 0.0951481i
\(55\) −7.20355 14.1127i −0.130974 0.256595i
\(56\) 41.3774 38.6280i 0.738882 0.689786i
\(57\) −35.2806 35.2806i −0.618958 0.618958i
\(58\) −10.6995 39.9312i −0.184475 0.688469i
\(59\) 88.6860 51.2029i 1.50315 0.867845i 0.503159 0.864194i \(-0.332171\pi\)
0.999993 0.00365152i \(-0.00116232\pi\)
\(60\) −0.754076 + 0.160850i −0.0125679 + 0.00268084i
\(61\) −16.9814 + 29.4127i −0.278384 + 0.482175i −0.970983 0.239147i \(-0.923132\pi\)
0.692599 + 0.721322i \(0.256465\pi\)
\(62\) 85.1410 + 85.1410i 1.37324 + 1.37324i
\(63\) 17.8152 + 11.1184i 0.282781 + 0.176483i
\(64\) 65.3604i 1.02126i
\(65\) −58.0765 + 52.3679i −0.893484 + 0.805659i
\(66\) 5.42739 + 9.40052i 0.0822332 + 0.142432i
\(67\) −13.4604 + 50.2349i −0.200902 + 0.749775i 0.789758 + 0.613418i \(0.210206\pi\)
−0.990660 + 0.136357i \(0.956461\pi\)
\(68\) 0.380533 + 1.42017i 0.00559607 + 0.0208848i
\(69\) 19.1594i 0.277673i
\(70\) 68.1497 12.1062i 0.973567 0.172945i
\(71\) 25.3750 0.357395 0.178697 0.983904i \(-0.442812\pi\)
0.178697 + 0.983904i \(0.442812\pi\)
\(72\) 23.4330 6.27885i 0.325458 0.0872063i
\(73\) −86.1585 23.0861i −1.18025 0.316248i −0.385226 0.922822i \(-0.625877\pi\)
−0.795027 + 0.606574i \(0.792543\pi\)
\(74\) 8.79656 5.07870i 0.118872 0.0686310i
\(75\) −40.4475 15.4597i −0.539300 0.206129i
\(76\) −2.56471 −0.0337461
\(77\) 10.4251 + 19.5805i 0.135391 + 0.254292i
\(78\) 37.8814 37.8814i 0.485658 0.485658i
\(79\) 6.66046 + 3.84542i 0.0843096 + 0.0486762i 0.541562 0.840661i \(-0.317833\pi\)
−0.457253 + 0.889337i \(0.651166\pi\)
\(80\) 42.5326 65.5976i 0.531658 0.819970i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) −1.15661 + 0.309913i −0.0141050 + 0.00377942i
\(83\) 81.1873 81.1873i 0.978160 0.978160i −0.0216065 0.999767i \(-0.506878\pi\)
0.999767 + 0.0216065i \(0.00687811\pi\)
\(84\) 1.05166 0.243409i 0.0125197 0.00289773i
\(85\) −25.4589 + 78.5465i −0.299517 + 0.924076i
\(86\) −22.4793 + 38.9354i −0.261388 + 0.452737i
\(87\) 9.37094 34.9728i 0.107712 0.401986i
\(88\) 24.7528 + 6.63250i 0.281282 + 0.0753693i
\(89\) −35.6866 20.6037i −0.400973 0.231502i 0.285931 0.958250i \(-0.407697\pi\)
−0.686904 + 0.726748i \(0.741031\pi\)
\(90\) 28.2190 + 9.14649i 0.313544 + 0.101628i
\(91\) 80.0273 74.7098i 0.879421 0.820987i
\(92\) 0.696392 + 0.696392i 0.00756947 + 0.00756947i
\(93\) 27.2941 + 101.863i 0.293485 + 1.09530i
\(94\) −60.4979 + 34.9285i −0.643594 + 0.371579i
\(95\) −120.852 78.3590i −1.27213 0.824831i
\(96\) 1.23343 2.13637i 0.0128483 0.0222539i
\(97\) 1.74125 + 1.74125i 0.0179511 + 0.0179511i 0.716025 0.698074i \(-0.245959\pi\)
−0.698074 + 0.716025i \(0.745959\pi\)
\(98\) −95.1022 + 18.5957i −0.970431 + 0.189752i
\(99\) 9.50691i 0.0960294i
\(100\) −2.03207 + 0.908236i −0.0203207 + 0.00908236i
\(101\) 75.1492 + 130.162i 0.744051 + 1.28873i 0.950637 + 0.310306i \(0.100431\pi\)
−0.206586 + 0.978429i \(0.566235\pi\)
\(102\) 14.6402 54.6381i 0.143532 0.535668i
\(103\) −38.0137 141.869i −0.369065 1.37737i −0.861825 0.507205i \(-0.830679\pi\)
0.492760 0.870165i \(-0.335988\pi\)
\(104\) 126.474i 1.21609i
\(105\) 56.9922 + 20.6613i 0.542783 + 0.196774i
\(106\) −124.530 −1.17481
\(107\) −98.2349 + 26.3220i −0.918083 + 0.246000i −0.686766 0.726879i \(-0.740970\pi\)
−0.231317 + 0.972878i \(0.574304\pi\)
\(108\) 0.446861 + 0.119736i 0.00413760 + 0.00110867i
\(109\) −104.505 + 60.3357i −0.958757 + 0.553539i −0.895790 0.444477i \(-0.853390\pi\)
−0.0629667 + 0.998016i \(0.520056\pi\)
\(110\) 20.9840 + 23.2714i 0.190763 + 0.211558i
\(111\) 8.89612 0.0801452
\(112\) −57.9489 + 92.8524i −0.517401 + 0.829040i
\(113\) −152.659 + 152.659i −1.35097 + 1.35097i −0.466383 + 0.884583i \(0.654443\pi\)
−0.884583 + 0.466383i \(0.845557\pi\)
\(114\) 85.4524 + 49.3359i 0.749582 + 0.432771i
\(115\) 11.5381 + 54.0916i 0.100332 + 0.470362i
\(116\) −0.930557 1.61177i −0.00802204 0.0138946i
\(117\) 45.3213 12.1438i 0.387362 0.103793i
\(118\) −143.203 + 143.203i −1.21358 + 1.21358i
\(119\) 33.7359 110.565i 0.283495 0.929116i
\(120\) 62.3756 31.8384i 0.519797 0.265320i
\(121\) 55.4788 96.0921i 0.458503 0.794150i
\(122\) 17.3837 64.8769i 0.142489 0.531778i
\(123\) −1.01299 0.271430i −0.00823569 0.00220675i
\(124\) 4.69449 + 2.71037i 0.0378588 + 0.0218578i
\(125\) −123.503 19.2882i −0.988023 0.154306i
\(126\) −39.7220 12.1201i −0.315254 0.0961914i
\(127\) −42.9287 42.9287i −0.338021 0.338021i 0.517601 0.855622i \(-0.326825\pi\)
−0.855622 + 0.517601i \(0.826825\pi\)
\(128\) 31.9799 + 119.351i 0.249843 + 0.932426i
\(129\) −34.1007 + 19.6880i −0.264346 + 0.152620i
\(130\) 84.1352 129.761i 0.647194 0.998160i
\(131\) −0.332730 + 0.576305i −0.00253992 + 0.00439928i −0.867293 0.497799i \(-0.834142\pi\)
0.864753 + 0.502198i \(0.167475\pi\)
\(132\) 0.345550 + 0.345550i 0.00261780 + 0.00261780i
\(133\) 171.064 + 106.761i 1.28620 + 0.802713i
\(134\) 102.850i 0.767537i
\(135\) 17.3984 + 19.2950i 0.128877 + 0.142926i
\(136\) −66.7700 115.649i −0.490956 0.850361i
\(137\) −21.7413 + 81.1397i −0.158696 + 0.592261i 0.840065 + 0.542486i \(0.182517\pi\)
−0.998760 + 0.0497746i \(0.984150\pi\)
\(138\) −9.80665 36.5989i −0.0710627 0.265210i
\(139\) 178.979i 1.28762i 0.765185 + 0.643810i \(0.222647\pi\)
−0.765185 + 0.643810i \(0.777353\pi\)
\(140\) 2.82249 1.32053i 0.0201606 0.00943234i
\(141\) −61.1826 −0.433919
\(142\) −48.4722 + 12.9881i −0.341353 + 0.0914654i
\(143\) 47.8740 + 12.8278i 0.334783 + 0.0897049i
\(144\) −40.6234 + 23.4539i −0.282107 + 0.162874i
\(145\) 5.39513 104.380i 0.0372078 0.719861i
\(146\) 176.399 1.20821
\(147\) −80.2773 27.5420i −0.546104 0.187360i
\(148\) 0.323349 0.323349i 0.00218479 0.00218479i
\(149\) −5.12619 2.95961i −0.0344039 0.0198631i 0.482699 0.875786i \(-0.339656\pi\)
−0.517103 + 0.855923i \(0.672990\pi\)
\(150\) 85.1770 + 8.82876i 0.567847 + 0.0588584i
\(151\) 41.9842 + 72.7188i 0.278041 + 0.481581i 0.970898 0.239494i \(-0.0769815\pi\)
−0.692857 + 0.721075i \(0.743648\pi\)
\(152\) 225.008 60.2906i 1.48031 0.396649i
\(153\) 35.0312 35.0312i 0.228962 0.228962i
\(154\) −29.9365 32.0672i −0.194393 0.208228i
\(155\) 138.401 + 271.146i 0.892911 + 1.74933i
\(156\) 1.20591 2.08870i 0.00773020 0.0133891i
\(157\) 22.8585 85.3089i 0.145595 0.543369i −0.854133 0.520055i \(-0.825912\pi\)
0.999728 0.0233142i \(-0.00742182\pi\)
\(158\) −14.6913 3.93651i −0.0929827 0.0249146i
\(159\) −94.4548 54.5335i −0.594055 0.342978i
\(160\) 2.19572 6.77428i 0.0137232 0.0423392i
\(161\) −17.4603 75.4376i −0.108449 0.468557i
\(162\) −12.5855 12.5855i −0.0776881 0.0776881i
\(163\) −43.7619 163.321i −0.268478 1.00197i −0.960087 0.279701i \(-0.909765\pi\)
0.691610 0.722272i \(-0.256902\pi\)
\(164\) −0.0466851 + 0.0269537i −0.000284665 + 0.000164352i
\(165\) 5.72523 + 26.8403i 0.0346984 + 0.162668i
\(166\) −113.531 + 196.642i −0.683923 + 1.18459i
\(167\) −152.203 152.203i −0.911395 0.911395i 0.0849869 0.996382i \(-0.472915\pi\)
−0.996382 + 0.0849869i \(0.972915\pi\)
\(168\) −86.5422 + 46.0770i −0.515132 + 0.274268i
\(169\) 75.6107i 0.447401i
\(170\) 8.42883 163.073i 0.0495813 0.959252i
\(171\) 43.2098 + 74.8415i 0.252689 + 0.437670i
\(172\) −0.523859 + 1.95507i −0.00304569 + 0.0113667i
\(173\) −5.62237 20.9830i −0.0324993 0.121289i 0.947771 0.318953i \(-0.103331\pi\)
−0.980270 + 0.197664i \(0.936665\pi\)
\(174\) 71.6026i 0.411509i
\(175\) 173.345 + 24.0100i 0.990543 + 0.137200i
\(176\) −49.5499 −0.281533
\(177\) −171.328 + 45.9072i −0.967956 + 0.259363i
\(178\) 78.7155 + 21.0918i 0.442222 + 0.118493i
\(179\) −106.793 + 61.6572i −0.596612 + 0.344454i −0.767707 0.640801i \(-0.778603\pi\)
0.171096 + 0.985254i \(0.445269\pi\)
\(180\) 1.33370 + 0.0689357i 0.00740945 + 0.000382976i
\(181\) −58.5465 −0.323462 −0.161731 0.986835i \(-0.551708\pi\)
−0.161731 + 0.986835i \(0.551708\pi\)
\(182\) −114.631 + 183.675i −0.629839 + 1.00920i
\(183\) 41.5958 41.5958i 0.227299 0.227299i
\(184\) −77.4667 44.7254i −0.421015 0.243073i
\(185\) 25.1159 5.35740i 0.135761 0.0289589i
\(186\) −104.276 180.611i −0.560623 0.971028i
\(187\) 50.5488 13.5445i 0.270315 0.0724306i
\(188\) −2.22382 + 2.22382i −0.0118288 + 0.0118288i
\(189\) −24.8211 26.5878i −0.131329 0.140676i
\(190\) 270.963 + 87.8261i 1.42612 + 0.462243i
\(191\) 138.752 240.325i 0.726449 1.25825i −0.231925 0.972734i \(-0.574502\pi\)
0.958375 0.285514i \(-0.0921642\pi\)
\(192\) −29.3003 + 109.350i −0.152606 + 0.569532i
\(193\) 361.420 + 96.8423i 1.87265 + 0.501774i 0.999908 + 0.0135835i \(0.00432391\pi\)
0.872737 + 0.488190i \(0.162343\pi\)
\(194\) −4.21745 2.43494i −0.0217394 0.0125513i
\(195\) 120.640 61.5782i 0.618665 0.315786i
\(196\) −3.91893 + 1.91678i −0.0199945 + 0.00977950i
\(197\) 96.9859 + 96.9859i 0.492314 + 0.492314i 0.909035 0.416720i \(-0.136821\pi\)
−0.416720 + 0.909035i \(0.636821\pi\)
\(198\) −4.86607 18.1604i −0.0245761 0.0917192i
\(199\) −78.0408 + 45.0569i −0.392165 + 0.226416i −0.683098 0.730327i \(-0.739368\pi\)
0.290933 + 0.956743i \(0.406034\pi\)
\(200\) 156.928 127.451i 0.784638 0.637256i
\(201\) 45.0394 78.0106i 0.224077 0.388112i
\(202\) −210.175 210.175i −1.04047 1.04047i
\(203\) −5.02550 + 146.241i −0.0247562 + 0.720397i
\(204\) 2.54657i 0.0124832i
\(205\) −3.02337 0.156270i −0.0147482 0.000762295i
\(206\) 145.230 + 251.546i 0.705000 + 1.22110i
\(207\) 8.58893 32.0543i 0.0414924 0.154852i
\(208\) 63.2934 + 236.214i 0.304295 + 1.13564i
\(209\) 91.2870i 0.436780i
\(210\) −119.444 10.2967i −0.568779 0.0490317i
\(211\) −3.83967 −0.0181975 −0.00909873 0.999959i \(-0.502896\pi\)
−0.00909873 + 0.999959i \(0.502896\pi\)
\(212\) −5.41531 + 1.45103i −0.0255439 + 0.00684447i
\(213\) −42.4533 11.3753i −0.199311 0.0534052i
\(214\) 174.179 100.562i 0.813919 0.469916i
\(215\) −84.4178 + 76.1200i −0.392641 + 0.354046i
\(216\) −42.0189 −0.194532
\(217\) −200.296 376.198i −0.923023 1.73363i
\(218\) 168.745 168.745i 0.774061 0.774061i
\(219\) 133.797 + 77.2476i 0.610944 + 0.352729i
\(220\) 1.18367 + 0.767473i 0.00538030 + 0.00348851i
\(221\) −129.139 223.675i −0.584338 1.01210i
\(222\) −16.9936 + 4.55343i −0.0765480 + 0.0205110i
\(223\) −68.8218 + 68.8218i −0.308618 + 0.308618i −0.844373 0.535755i \(-0.820027\pi\)
0.535755 + 0.844373i \(0.320027\pi\)
\(224\) −2.90957 + 9.53572i −0.0129892 + 0.0425702i
\(225\) 60.7395 + 43.9967i 0.269954 + 0.195541i
\(226\) 213.476 369.752i 0.944586 1.63607i
\(227\) −36.4264 + 135.945i −0.160469 + 0.598878i 0.838106 + 0.545508i \(0.183663\pi\)
−0.998575 + 0.0533705i \(0.983004\pi\)
\(228\) 4.29084 + 1.14973i 0.0188195 + 0.00504266i
\(229\) 143.125 + 82.6334i 0.625001 + 0.360844i 0.778813 0.627256i \(-0.215822\pi\)
−0.153813 + 0.988100i \(0.549155\pi\)
\(230\) −49.7270 97.4217i −0.216204 0.423573i
\(231\) −8.66381 37.4322i −0.0375056 0.162044i
\(232\) 119.529 + 119.529i 0.515212 + 0.515212i
\(233\) 68.7110 + 256.433i 0.294897 + 1.10057i 0.941299 + 0.337574i \(0.109606\pi\)
−0.646402 + 0.762997i \(0.723727\pi\)
\(234\) −80.3585 + 46.3950i −0.343412 + 0.198269i
\(235\) −172.733 + 36.8452i −0.735034 + 0.156788i
\(236\) −4.55870 + 7.89590i −0.0193165 + 0.0334572i
\(237\) −9.41931 9.41931i −0.0397439 0.0397439i
\(238\) −7.85135 + 228.472i −0.0329889 + 0.959966i
\(239\) 373.238i 1.56167i −0.624739 0.780834i \(-0.714795\pi\)
0.624739 0.780834i \(-0.285205\pi\)
\(240\) −100.565 + 90.6801i −0.419021 + 0.377834i
\(241\) 193.813 + 335.694i 0.804204 + 1.39292i 0.916827 + 0.399284i \(0.130741\pi\)
−0.112624 + 0.993638i \(0.535925\pi\)
\(242\) −56.7931 + 211.955i −0.234682 + 0.875846i
\(243\) −4.03459 15.0573i −0.0166032 0.0619642i
\(244\) 3.02378i 0.0123926i
\(245\) −243.228 29.4131i −0.992767 0.120053i
\(246\) 2.07398 0.00843079
\(247\) 435.183 116.607i 1.76188 0.472093i
\(248\) −475.574 127.430i −1.91764 0.513829i
\(249\) −172.224 + 99.4337i −0.691664 + 0.399332i
\(250\) 245.792 26.3694i 0.983167 0.105478i
\(251\) −24.1190 −0.0960917 −0.0480458 0.998845i \(-0.515299\pi\)
−0.0480458 + 0.998845i \(0.515299\pi\)
\(252\) −1.86857 0.0642127i −0.00741497 0.000254812i
\(253\) 24.7871 24.7871i 0.0979726 0.0979726i
\(254\) 103.977 + 60.0309i 0.409357 + 0.236342i
\(255\) 77.8050 119.998i 0.305118 0.470580i
\(256\) 8.54282 + 14.7966i 0.0333704 + 0.0577992i
\(257\) −194.693 + 52.1677i −0.757558 + 0.202987i −0.616868 0.787067i \(-0.711599\pi\)
−0.140690 + 0.990054i \(0.544932\pi\)
\(258\) 55.0629 55.0629i 0.213422 0.213422i
\(259\) −35.0273 + 8.10718i −0.135240 + 0.0313019i
\(260\) 2.14672 6.62311i 0.00825662 0.0254735i
\(261\) −31.3558 + 54.3098i −0.120137 + 0.208083i
\(262\) 0.340612 1.27118i 0.00130005 0.00485184i
\(263\) −156.656 41.9758i −0.595649 0.159604i −0.0516156 0.998667i \(-0.516437\pi\)
−0.544034 + 0.839063i \(0.683104\pi\)
\(264\) −38.4390 22.1928i −0.145602 0.0840635i
\(265\) −299.509 97.0786i −1.13022 0.366334i
\(266\) −381.418 116.379i −1.43390 0.437517i
\(267\) 50.4685 + 50.4685i 0.189020 + 0.189020i
\(268\) −1.19841 4.47252i −0.00447168 0.0166885i
\(269\) 69.3332 40.0295i 0.257744 0.148809i −0.365561 0.930787i \(-0.619123\pi\)
0.623305 + 0.781979i \(0.285789\pi\)
\(270\) −43.1110 27.9526i −0.159670 0.103528i
\(271\) −230.600 + 399.411i −0.850923 + 1.47384i 0.0294543 + 0.999566i \(0.490623\pi\)
−0.880377 + 0.474275i \(0.842710\pi\)
\(272\) 182.582 + 182.582i 0.671258 + 0.671258i
\(273\) −167.380 + 89.1167i −0.613113 + 0.326435i
\(274\) 166.124i 0.606291i
\(275\) 32.3274 + 72.3286i 0.117554 + 0.263013i
\(276\) −0.852902 1.47727i −0.00309022 0.00535243i
\(277\) 44.5632 166.312i 0.160878 0.600405i −0.837652 0.546204i \(-0.816072\pi\)
0.998530 0.0542008i \(-0.0172611\pi\)
\(278\) −91.6096 341.892i −0.329531 1.22983i
\(279\) 182.655i 0.654679i
\(280\) −216.581 + 182.203i −0.773503 + 0.650727i
\(281\) 40.4440 0.143929 0.0719644 0.997407i \(-0.477073\pi\)
0.0719644 + 0.997407i \(0.477073\pi\)
\(282\) 116.873 31.3160i 0.414443 0.111050i
\(283\) −147.124 39.4218i −0.519874 0.139300i −0.0106656 0.999943i \(-0.503395\pi\)
−0.509208 + 0.860643i \(0.670062\pi\)
\(284\) −1.95652 + 1.12960i −0.00688915 + 0.00397745i
\(285\) 167.062 + 185.274i 0.586183 + 0.650083i
\(286\) −98.0163 −0.342714
\(287\) 4.23587 + 0.145564i 0.0147591 + 0.000507192i
\(288\) −3.02129 + 3.02129i −0.0104906 + 0.0104906i
\(289\) 14.1092 + 8.14597i 0.0488209 + 0.0281867i
\(290\) 43.1204 + 202.151i 0.148691 + 0.697073i
\(291\) −2.13259 3.69375i −0.00732849 0.0126933i
\(292\) 7.67087 2.05540i 0.0262701 0.00703906i
\(293\) −106.571 + 106.571i −0.363722 + 0.363722i −0.865181 0.501459i \(-0.832797\pi\)
0.501459 + 0.865181i \(0.332797\pi\)
\(294\) 167.445 + 11.5220i 0.569542 + 0.0391904i
\(295\) −456.054 + 232.784i −1.54595 + 0.789098i
\(296\) −20.7670 + 35.9694i −0.0701586 + 0.121518i
\(297\) 4.26183 15.9054i 0.0143496 0.0535535i
\(298\) 11.3071 + 3.02972i 0.0379432 + 0.0101668i
\(299\) −149.827 86.5027i −0.501094 0.289307i
\(300\) 3.80687 0.608557i 0.0126896 0.00202852i
\(301\) 116.325 108.595i 0.386461 0.360782i
\(302\) −117.420 117.420i −0.388809 0.388809i
\(303\) −67.3769 251.454i −0.222366 0.829881i
\(304\) −390.073 + 225.209i −1.28313 + 0.740817i
\(305\) 92.3851 142.485i 0.302902 0.467162i
\(306\) −48.9872 + 84.8483i −0.160089 + 0.277282i
\(307\) 196.397 + 196.397i 0.639729 + 0.639729i 0.950489 0.310759i \(-0.100583\pi\)
−0.310759 + 0.950489i \(0.600583\pi\)
\(308\) −1.67546 1.04565i −0.00543981 0.00339497i
\(309\) 254.393i 0.823277i
\(310\) −403.163 447.112i −1.30053 1.44230i
\(311\) 92.9088 + 160.923i 0.298742 + 0.517437i 0.975848 0.218449i \(-0.0700996\pi\)
−0.677106 + 0.735885i \(0.736766\pi\)
\(312\) −56.6966 + 211.595i −0.181720 + 0.678188i
\(313\) −141.985 529.896i −0.453627 1.69296i −0.692094 0.721807i \(-0.743312\pi\)
0.238468 0.971150i \(-0.423355\pi\)
\(314\) 174.660i 0.556241i
\(315\) −86.0876 60.1159i −0.273294 0.190844i
\(316\) −0.684731 −0.00216687
\(317\) −47.1593 + 12.6363i −0.148768 + 0.0398622i −0.332434 0.943126i \(-0.607870\pi\)
0.183667 + 0.982989i \(0.441203\pi\)
\(318\) 208.343 + 55.8254i 0.655167 + 0.175551i
\(319\) −57.3687 + 33.1218i −0.179839 + 0.103830i
\(320\) −16.8691 + 326.366i −0.0527158 + 1.01989i
\(321\) 176.150 0.548754
\(322\) 71.9655 + 135.166i 0.223495 + 0.419771i
\(323\) 336.376 336.376i 1.04141 1.04141i
\(324\) −0.693937 0.400645i −0.00214178 0.00123656i
\(325\) 303.511 246.501i 0.933880 0.758465i
\(326\) 167.191 + 289.583i 0.512854 + 0.888290i
\(327\) 201.887 54.0955i 0.617392 0.165430i
\(328\) 3.46217 3.46217i 0.0105554 0.0105554i
\(329\) 240.898 55.7567i 0.732213 0.169473i
\(330\) −24.6746 48.3407i −0.0747714 0.146487i
\(331\) −11.1043 + 19.2332i −0.0335477 + 0.0581063i −0.882312 0.470665i \(-0.844014\pi\)
0.848764 + 0.528772i \(0.177347\pi\)
\(332\) −2.64573 + 9.87401i −0.00796908 + 0.0297410i
\(333\) −14.8835 3.98802i −0.0446952 0.0119760i
\(334\) 368.647 + 212.839i 1.10373 + 0.637241i
\(335\) 80.1776 247.366i 0.239336 0.738405i
\(336\) 138.575 129.367i 0.412426 0.385022i
\(337\) 229.038 + 229.038i 0.679638 + 0.679638i 0.959918 0.280280i \(-0.0904275\pi\)
−0.280280 + 0.959918i \(0.590427\pi\)
\(338\) 38.7010 + 144.434i 0.114500 + 0.427319i
\(339\) 323.839 186.968i 0.955277 0.551529i
\(340\) −1.53359 7.18958i −0.00451056 0.0211458i
\(341\) 96.4717 167.094i 0.282908 0.490011i
\(342\) −120.848 120.848i −0.353356 0.353356i
\(343\) 341.180 + 35.2847i 0.994695 + 0.102871i
\(344\) 183.838i 0.534412i
\(345\) 4.94491 95.6694i 0.0143331 0.277303i
\(346\) 21.4801 + 37.2045i 0.0620811 + 0.107528i
\(347\) 161.490 602.689i 0.465389 1.73686i −0.190206 0.981744i \(-0.560916\pi\)
0.655595 0.755112i \(-0.272418\pi\)
\(348\) 0.834315 + 3.11370i 0.00239746 + 0.00894743i
\(349\) 121.709i 0.348736i −0.984681 0.174368i \(-0.944212\pi\)
0.984681 0.174368i \(-0.0557882\pi\)
\(350\) −343.419 + 42.8611i −0.981196 + 0.122460i
\(351\) −81.2680 −0.231533
\(352\) −4.35961 + 1.16815i −0.0123853 + 0.00331862i
\(353\) −47.2091 12.6496i −0.133737 0.0358347i 0.191330 0.981526i \(-0.438720\pi\)
−0.325067 + 0.945691i \(0.605387\pi\)
\(354\) 303.779 175.387i 0.858133 0.495443i
\(355\) −126.706 6.54912i −0.356918 0.0184482i
\(356\) 3.66878 0.0103056
\(357\) −106.006 + 169.855i −0.296936 + 0.475785i
\(358\) 172.441 172.441i 0.481680 0.481680i
\(359\) 439.021 + 253.469i 1.22290 + 0.706042i 0.965535 0.260273i \(-0.0838125\pi\)
0.257365 + 0.966314i \(0.417146\pi\)
\(360\) −118.629 + 25.3045i −0.329526 + 0.0702903i
\(361\) 234.408 + 406.006i 0.649328 + 1.12467i
\(362\) 111.837 29.9667i 0.308943 0.0827811i
\(363\) −135.895 + 135.895i −0.374366 + 0.374366i
\(364\) −2.84464 + 9.32293i −0.00781496 + 0.0256125i
\(365\) 424.260 + 137.514i 1.16236 + 0.376749i
\(366\) −58.1670 + 100.748i −0.158926 + 0.275268i
\(367\) 85.7047 319.854i 0.233528 0.871538i −0.745279 0.666753i \(-0.767684\pi\)
0.978807 0.204785i \(-0.0656496\pi\)
\(368\) 167.067 + 44.7654i 0.453985 + 0.121645i
\(369\) 1.57309 + 0.908222i 0.00426311 + 0.00246131i
\(370\) −45.2349 + 23.0893i −0.122257 + 0.0624035i
\(371\) 421.600 + 128.640i 1.13639 + 0.346739i
\(372\) −6.63902 6.63902i −0.0178468 0.0178468i
\(373\) −55.0306 205.377i −0.147535 0.550608i −0.999629 0.0272202i \(-0.991334\pi\)
0.852094 0.523388i \(-0.175332\pi\)
\(374\) −89.6272 + 51.7463i −0.239645 + 0.138359i
\(375\) 197.978 + 87.6346i 0.527941 + 0.233692i
\(376\) 142.824 247.378i 0.379850 0.657919i
\(377\) 231.179 + 231.179i 0.613208 + 0.613208i
\(378\) 61.0229 + 38.0843i 0.161436 + 0.100752i
\(379\) 147.615i 0.389487i −0.980854 0.194743i \(-0.937613\pi\)
0.980854 0.194743i \(-0.0623874\pi\)
\(380\) 12.8064 + 0.661932i 0.0337011 + 0.00174193i
\(381\) 52.5767 + 91.0655i 0.137997 + 0.239017i
\(382\) −142.039 + 530.096i −0.371829 + 1.38769i
\(383\) 12.2398 + 45.6796i 0.0319578 + 0.119268i 0.980062 0.198691i \(-0.0636691\pi\)
−0.948104 + 0.317959i \(0.897002\pi\)
\(384\) 214.014i 0.557327i
\(385\) −47.0023 100.462i −0.122084 0.260941i
\(386\) −739.965 −1.91701
\(387\) 65.8774 17.6518i 0.170226 0.0456119i
\(388\) −0.211771 0.0567440i −0.000545803 0.000146247i
\(389\) −289.878 + 167.361i −0.745187 + 0.430234i −0.823952 0.566659i \(-0.808236\pi\)
0.0787651 + 0.996893i \(0.474902\pi\)
\(390\) −198.931 + 179.377i −0.510080 + 0.459942i
\(391\) −182.671 −0.467190
\(392\) 298.757 260.289i 0.762136 0.664003i
\(393\) 0.815018 0.815018i 0.00207384 0.00207384i
\(394\) −234.907 135.624i −0.596211 0.344223i
\(395\) −32.2654 20.9205i −0.0816846 0.0529632i
\(396\) −0.423210 0.733022i −0.00106871 0.00185107i
\(397\) −450.996 + 120.844i −1.13601 + 0.304393i −0.777346 0.629073i \(-0.783434\pi\)
−0.358665 + 0.933466i \(0.616768\pi\)
\(398\) 126.014 126.014i 0.316618 0.316618i
\(399\) −238.337 255.301i −0.597336 0.639851i
\(400\) −229.310 + 316.573i −0.573275 + 0.791433i
\(401\) −13.7234 + 23.7697i −0.0342230 + 0.0592759i −0.882630 0.470069i \(-0.844229\pi\)
0.848407 + 0.529345i \(0.177562\pi\)
\(402\) −46.1064 + 172.071i −0.114693 + 0.428038i
\(403\) −919.799 246.459i −2.28238 0.611562i
\(404\) −11.5886 6.69069i −0.0286847 0.0165611i
\(405\) −20.4584 40.0806i −0.0505145 0.0989645i
\(406\) −65.2526 281.926i −0.160721 0.694398i
\(407\) −11.5092 11.5092i −0.0282780 0.0282780i
\(408\) 59.8644 + 223.417i 0.146726 + 0.547590i
\(409\) −418.429 + 241.580i −1.02305 + 0.590660i −0.914987 0.403484i \(-0.867799\pi\)
−0.108066 + 0.994144i \(0.534466\pi\)
\(410\) 5.85532 1.24898i 0.0142813 0.00304630i
\(411\) 72.7479 126.003i 0.177002 0.306577i
\(412\) 9.24647 + 9.24647i 0.0224429 + 0.0224429i
\(413\) 632.745 336.888i 1.53207 0.815709i
\(414\) 65.6274i 0.158520i
\(415\) −426.349 + 384.441i −1.02735 + 0.926365i
\(416\) 11.1376 + 19.2910i 0.0267732 + 0.0463725i
\(417\) 80.2342 299.438i 0.192408 0.718077i
\(418\) −46.7248 174.379i −0.111782 0.417175i
\(419\) 666.615i 1.59097i 0.605975 + 0.795484i \(0.292783\pi\)
−0.605975 + 0.795484i \(0.707217\pi\)
\(420\) −5.31409 + 0.943999i −0.0126526 + 0.00224762i
\(421\) −468.859 −1.11368 −0.556840 0.830620i \(-0.687986\pi\)
−0.556840 + 0.830620i \(0.687986\pi\)
\(422\) 7.33465 1.96531i 0.0173807 0.00465714i
\(423\) 102.360 + 27.4274i 0.241987 + 0.0648402i
\(424\) 440.987 254.604i 1.04006 0.600481i
\(425\) 147.397 385.638i 0.346817 0.907383i
\(426\) 86.9179 0.204033
\(427\) −125.871 + 201.685i −0.294780 + 0.472330i
\(428\) 6.40256 6.40256i 0.0149593 0.0149593i
\(429\) −74.3442 42.9227i −0.173297 0.100053i
\(430\) 122.296 188.616i 0.284409 0.438641i
\(431\) −128.770 223.036i −0.298769 0.517484i 0.677085 0.735905i \(-0.263243\pi\)
−0.975855 + 0.218421i \(0.929910\pi\)
\(432\) 78.4783 21.0282i 0.181663 0.0486764i
\(433\) 25.8365 25.8365i 0.0596685 0.0596685i −0.676643 0.736311i \(-0.736566\pi\)
0.736311 + 0.676643i \(0.236566\pi\)
\(434\) 575.166 + 616.104i 1.32527 + 1.41959i
\(435\) −55.8185 + 172.212i −0.128318 + 0.395891i
\(436\) 5.37182 9.30426i 0.0123207 0.0213400i
\(437\) 82.4724 307.791i 0.188724 0.704328i
\(438\) −295.122 79.0776i −0.673793 0.180542i
\(439\) −65.8274 38.0054i −0.149948 0.0865728i 0.423149 0.906060i \(-0.360925\pi\)
−0.573097 + 0.819488i \(0.694258\pi\)
\(440\) −121.887 39.5068i −0.277017 0.0897882i
\(441\) 121.960 + 82.0659i 0.276553 + 0.186090i
\(442\) 361.172 + 361.172i 0.817131 + 0.817131i
\(443\) 69.5026 + 259.387i 0.156891 + 0.585524i 0.998936 + 0.0461173i \(0.0146848\pi\)
−0.842045 + 0.539407i \(0.818649\pi\)
\(444\) −0.685927 + 0.396020i −0.00154488 + 0.000891938i
\(445\) 172.877 + 112.091i 0.388489 + 0.251891i
\(446\) 96.2394 166.692i 0.215783 0.373748i
\(447\) 7.24953 + 7.24953i 0.0162182 + 0.0162182i
\(448\) 15.7133 457.253i 0.0350744 1.02065i
\(449\) 458.330i 1.02078i 0.859943 + 0.510390i \(0.170499\pi\)
−0.859943 + 0.510390i \(0.829501\pi\)
\(450\) −138.546 52.9546i −0.307880 0.117677i
\(451\) 0.959377 + 1.66169i 0.00212722 + 0.00368446i
\(452\) 4.97486 18.5664i 0.0110063 0.0410762i
\(453\) −37.6420 140.482i −0.0830949 0.310115i
\(454\) 278.332i 0.613065i
\(455\) −418.885 + 352.397i −0.920627 + 0.774498i
\(456\) −403.473 −0.884808
\(457\) −569.001 + 152.463i −1.24508 + 0.333618i −0.820433 0.571742i \(-0.806268\pi\)
−0.424645 + 0.905360i \(0.639601\pi\)
\(458\) −315.698 84.5909i −0.689296 0.184696i
\(459\) −74.3124 + 42.9043i −0.161901 + 0.0934734i
\(460\) −3.29758 3.65705i −0.00716866 0.00795011i
\(461\) −520.350 −1.12874 −0.564371 0.825521i \(-0.690881\pi\)
−0.564371 + 0.825521i \(0.690881\pi\)
\(462\) 35.7093 + 67.0696i 0.0772929 + 0.145172i
\(463\) −457.986 + 457.986i −0.989171 + 0.989171i −0.999942 0.0107714i \(-0.996571\pi\)
0.0107714 + 0.999942i \(0.496571\pi\)
\(464\) −283.062 163.426i −0.610047 0.352211i
\(465\) −109.998 515.680i −0.236556 1.10899i
\(466\) −262.508 454.677i −0.563322 0.975702i
\(467\) −137.951 + 36.9638i −0.295398 + 0.0791516i −0.403474 0.914991i \(-0.632198\pi\)
0.108077 + 0.994143i \(0.465531\pi\)
\(468\) −2.95387 + 2.95387i −0.00631168 + 0.00631168i
\(469\) −106.244 + 348.201i −0.226534 + 0.742433i
\(470\) 311.101 158.795i 0.661917 0.337863i
\(471\) −76.4859 + 132.477i −0.162390 + 0.281269i
\(472\) 214.330 799.891i 0.454089 1.69468i
\(473\) 69.5879 + 18.6460i 0.147120 + 0.0394208i
\(474\) 22.8143 + 13.1718i 0.0481314 + 0.0277887i
\(475\) 583.231 + 422.464i 1.22786 + 0.889397i
\(476\) 2.32073 + 10.0268i 0.00487549 + 0.0210647i
\(477\) 133.579 + 133.579i 0.280040 + 0.280040i
\(478\) 191.040 + 712.972i 0.399666 + 1.49157i
\(479\) 220.224 127.146i 0.459758 0.265441i −0.252185 0.967679i \(-0.581149\pi\)
0.711942 + 0.702238i \(0.247816\pi\)
\(480\) −6.71033 + 10.3493i −0.0139799 + 0.0215610i
\(481\) −40.1650 + 69.5678i −0.0835031 + 0.144632i
\(482\) −542.051 542.051i −1.12459 1.12459i
\(483\) −4.60612 + 134.037i −0.00953648 + 0.277509i
\(484\) 9.87879i 0.0204107i
\(485\) −8.24525 9.14406i −0.0170005 0.0188537i
\(486\) 15.4140 + 26.6978i 0.0317160 + 0.0549338i
\(487\) 50.6027 188.852i 0.103907 0.387786i −0.894312 0.447444i \(-0.852334\pi\)
0.998219 + 0.0596581i \(0.0190011\pi\)
\(488\) 71.0825 + 265.284i 0.145661 + 0.543614i
\(489\) 292.860i 0.598896i
\(490\) 479.677 68.3092i 0.978932 0.139407i
\(491\) −627.569 −1.27814 −0.639072 0.769147i \(-0.720681\pi\)
−0.639072 + 0.769147i \(0.720681\pi\)
\(492\) 0.0901887 0.0241660i 0.000183310 4.91179e-5i
\(493\) 333.441 + 89.3452i 0.676351 + 0.181228i
\(494\) −771.616 + 445.493i −1.56198 + 0.901807i
\(495\) 2.45367 47.4712i 0.00495690 0.0959014i
\(496\) 951.997 1.91935
\(497\) 177.520 + 6.10042i 0.357184 + 0.0122745i
\(498\) 278.093 278.093i 0.558421 0.558421i
\(499\) 796.995 + 460.145i 1.59718 + 0.922135i 0.992027 + 0.126029i \(0.0402231\pi\)
0.605157 + 0.796106i \(0.293110\pi\)
\(500\) 10.3812 4.01066i 0.0207624 0.00802133i
\(501\) 186.410 + 322.871i 0.372076 + 0.644454i
\(502\) 46.0729 12.3452i 0.0917787 0.0245920i
\(503\) 414.553 414.553i 0.824162 0.824162i −0.162540 0.986702i \(-0.551969\pi\)
0.986702 + 0.162540i \(0.0519686\pi\)
\(504\) 165.444 38.2925i 0.328261 0.0759772i
\(505\) −341.651 669.339i −0.676537 1.32542i
\(506\) −34.6619 + 60.0361i −0.0685018 + 0.118649i
\(507\) −33.8954 + 126.499i −0.0668547 + 0.249505i
\(508\) 5.22100 + 1.39896i 0.0102775 + 0.00275386i
\(509\) −722.536 417.156i −1.41952 0.819561i −0.423264 0.906006i \(-0.639116\pi\)
−0.996257 + 0.0864459i \(0.972449\pi\)
\(510\) −87.2053 + 269.048i −0.170991 + 0.527545i
\(511\) −597.204 182.221i −1.16870 0.356596i
\(512\) −373.375 373.375i −0.729248 0.729248i
\(513\) −38.7408 144.583i −0.0755182 0.281838i
\(514\) 345.206 199.305i 0.671607 0.387752i
\(515\) 153.200 + 718.211i 0.297475 + 1.39458i
\(516\) 1.75287 3.03606i 0.00339703 0.00588383i
\(517\) 79.1536 + 79.1536i 0.153102 + 0.153102i
\(518\) 62.7606 33.4151i 0.121159 0.0645079i
\(519\) 37.6256i 0.0724964i
\(520\) −32.6420 + 631.526i −0.0627730 + 1.21447i
\(521\) −222.489 385.363i −0.427043 0.739660i 0.569566 0.821946i \(-0.307111\pi\)
−0.996609 + 0.0822856i \(0.973778\pi\)
\(522\) 32.0986 119.794i 0.0614915 0.229490i
\(523\) 69.1669 + 258.134i 0.132250 + 0.493565i 0.999994 0.00344695i \(-0.00109720\pi\)
−0.867744 + 0.497012i \(0.834431\pi\)
\(524\) 0.0592473i 0.000113067i
\(525\) −279.249 117.878i −0.531902 0.224530i
\(526\) 320.734 0.609760
\(527\) −971.190 + 260.230i −1.84287 + 0.493794i
\(528\) 82.8985 + 22.2126i 0.157005 + 0.0420693i
\(529\) 352.160 203.319i 0.665708 0.384347i
\(530\) 621.821 + 32.1404i 1.17325 + 0.0606422i
\(531\) 307.217 0.578564
\(532\) −17.9423 0.616582i −0.0337262 0.00115899i
\(533\) 6.69613 6.69613i 0.0125631 0.0125631i
\(534\) −122.238 70.5744i −0.228911 0.132162i
\(535\) 497.313 106.081i 0.929558 0.198282i
\(536\) 210.278 + 364.213i 0.392311 + 0.679502i
\(537\) 206.309 55.2804i 0.384188 0.102943i
\(538\) −111.953 + 111.953i −0.208092 + 0.208092i
\(539\) 68.2251 + 139.489i 0.126577 + 0.258792i
\(540\) −2.20042 0.713214i −0.00407486 0.00132077i
\(541\) 97.3418 168.601i 0.179929 0.311647i −0.761927 0.647663i \(-0.775746\pi\)
0.941856 + 0.336016i \(0.109080\pi\)
\(542\) 236.063 880.999i 0.435540 1.62546i
\(543\) 97.9503 + 26.2457i 0.180387 + 0.0483346i
\(544\) 20.3688 + 11.7599i 0.0374426 + 0.0216175i
\(545\) 537.398 274.304i 0.986052 0.503311i
\(546\) 274.120 255.906i 0.502051 0.468692i
\(547\) 256.595 + 256.595i 0.469095 + 0.469095i 0.901621 0.432526i \(-0.142378\pi\)
−0.432526 + 0.901621i \(0.642378\pi\)
\(548\) −1.93568 7.22404i −0.00353226 0.0131826i
\(549\) −88.2380 + 50.9442i −0.160725 + 0.0927946i
\(550\) −98.7738 121.618i −0.179589 0.221123i
\(551\) −301.083 + 521.492i −0.546431 + 0.946446i
\(552\) 109.554 + 109.554i 0.198468 + 0.198468i
\(553\) 45.6712 + 28.5033i 0.0825881 + 0.0515430i
\(554\) 340.504i 0.614629i
\(555\) −44.4213 2.29603i −0.0800384 0.00413698i
\(556\) −7.96745 13.8000i −0.0143300 0.0248202i
\(557\) −150.923 + 563.251i −0.270957 + 1.01122i 0.687546 + 0.726141i \(0.258688\pi\)
−0.958503 + 0.285083i \(0.907979\pi\)
\(558\) 93.4913 + 348.914i 0.167547 + 0.625294i
\(559\) 355.557i 0.636059i
\(560\) 313.323 448.687i 0.559505 0.801227i
\(561\) −90.6417 −0.161572
\(562\) −77.2574 + 20.7010i −0.137469 + 0.0368346i
\(563\) −799.735 214.288i −1.42049 0.380619i −0.534831 0.844959i \(-0.679625\pi\)
−0.885657 + 0.464340i \(0.846292\pi\)
\(564\) 4.71743 2.72361i 0.00836423 0.00482909i
\(565\) 801.678 722.878i 1.41890 1.27943i
\(566\) 301.219 0.532189
\(567\) 29.6076 + 55.6093i 0.0522180 + 0.0980763i
\(568\) 145.096 145.096i 0.255450 0.255450i
\(569\) −683.193 394.442i −1.20069 0.693219i −0.239982 0.970777i \(-0.577141\pi\)
−0.960709 + 0.277558i \(0.910475\pi\)
\(570\) −413.959 268.406i −0.726244 0.470887i
\(571\) 272.727 + 472.377i 0.477631 + 0.827281i 0.999671 0.0256398i \(-0.00816230\pi\)
−0.522040 + 0.852921i \(0.674829\pi\)
\(572\) −4.26233 + 1.14209i −0.00745162 + 0.00199666i
\(573\) −339.871 + 339.871i −0.593144 + 0.593144i
\(574\) −8.16600 + 1.89005i −0.0142265 + 0.00329277i
\(575\) −43.6531 273.075i −0.0759185 0.474914i
\(576\) 98.0406 169.811i 0.170209 0.294811i
\(577\) −285.030 + 1063.75i −0.493987 + 1.84358i 0.0416465 + 0.999132i \(0.486740\pi\)
−0.535633 + 0.844451i \(0.679927\pi\)
\(578\) −31.1214 8.33894i −0.0538432 0.0144272i
\(579\) −561.255 324.041i −0.969352 0.559656i
\(580\) 4.23060 + 8.28829i 0.00729413 + 0.0142901i
\(581\) 587.494 548.457i 1.01118 0.943989i
\(582\) 5.96437 + 5.96437i 0.0102481 + 0.0102481i
\(583\) 51.6472 + 192.750i 0.0885888 + 0.330618i
\(584\) −624.666 + 360.651i −1.06963 + 0.617553i
\(585\) −229.439 + 48.9410i −0.392203 + 0.0836599i
\(586\) 149.027 258.122i 0.254312 0.440482i
\(587\) 161.386 + 161.386i 0.274934 + 0.274934i 0.831083 0.556149i \(-0.187722\pi\)
−0.556149 + 0.831083i \(0.687722\pi\)
\(588\) 7.41577 1.45003i 0.0126118 0.00246604i
\(589\) 1753.89i 2.97774i
\(590\) 752.019 678.100i 1.27461 1.14932i
\(591\) −118.783 205.738i −0.200987 0.348119i
\(592\) 20.7855 77.5725i 0.0351106 0.131035i
\(593\) 261.697 + 976.667i 0.441310 + 1.64699i 0.725498 + 0.688224i \(0.241609\pi\)
−0.284188 + 0.958769i \(0.591724\pi\)
\(594\) 32.5643i 0.0548221i
\(595\) −196.991 + 543.380i −0.331077 + 0.913244i
\(596\) 0.527000 0.000884228
\(597\) 150.763 40.3969i 0.252535 0.0676665i
\(598\) 330.480 + 88.5519i 0.552642 + 0.148080i
\(599\) 999.469 577.044i 1.66856 0.963345i 0.700149 0.713996i \(-0.253117\pi\)
0.968414 0.249349i \(-0.0802166\pi\)
\(600\) −319.680 + 142.881i −0.532800 + 0.238135i
\(601\) 586.294 0.975531 0.487766 0.872975i \(-0.337812\pi\)
0.487766 + 0.872975i \(0.337812\pi\)
\(602\) −166.623 + 266.983i −0.276783 + 0.443493i
\(603\) −110.324 + 110.324i −0.182958 + 0.182958i
\(604\) −6.47431 3.73794i −0.0107191 0.00618865i
\(605\) −301.825 + 465.501i −0.498884 + 0.769424i
\(606\) 257.411 + 445.849i 0.424770 + 0.735724i
\(607\) −743.260 + 199.156i −1.22448 + 0.328099i −0.812428 0.583061i \(-0.801855\pi\)
−0.412053 + 0.911160i \(0.635188\pi\)
\(608\) −29.0109 + 29.0109i −0.0477153 + 0.0477153i
\(609\) 73.9657 242.412i 0.121454 0.398050i
\(610\) −103.547 + 319.465i −0.169749 + 0.523714i
\(611\) 276.233 478.449i 0.452099 0.783059i
\(612\) −1.14160 + 4.26050i −0.00186536 + 0.00696161i
\(613\) −182.550 48.9141i −0.297797 0.0797946i 0.106827 0.994278i \(-0.465931\pi\)
−0.404624 + 0.914483i \(0.632598\pi\)
\(614\) −475.688 274.639i −0.774736 0.447294i
\(615\) 4.98814 + 1.61679i 0.00811080 + 0.00262892i
\(616\) 171.573 + 52.3509i 0.278528 + 0.0849853i
\(617\) 362.020 + 362.020i 0.586742 + 0.586742i 0.936748 0.350006i \(-0.113820\pi\)
−0.350006 + 0.936748i \(0.613820\pi\)
\(618\) −130.210 485.949i −0.210695 0.786325i
\(619\) −608.882 + 351.538i −0.983654 + 0.567913i −0.903371 0.428859i \(-0.858916\pi\)
−0.0802824 + 0.996772i \(0.525582\pi\)
\(620\) −22.7417 14.7454i −0.0366801 0.0237829i
\(621\) −28.7391 + 49.7776i −0.0462788 + 0.0801572i
\(622\) −259.845 259.845i −0.417757 0.417757i
\(623\) −244.705 152.720i −0.392786 0.245136i
\(624\) 423.567i 0.678794i
\(625\) 611.713 + 128.188i 0.978741 + 0.205100i
\(626\) 542.449 + 939.549i 0.866532 + 1.50088i
\(627\) 40.9228 152.726i 0.0652677 0.243582i
\(628\) 2.03514 + 7.59524i 0.00324066 + 0.0120943i
\(629\) 84.8182i 0.134846i
\(630\) 195.217 + 70.7718i 0.309869 + 0.112336i
\(631\) 259.497 0.411247 0.205623 0.978631i \(-0.434078\pi\)
0.205623 + 0.978631i \(0.434078\pi\)
\(632\) 60.0731 16.0965i 0.0950523 0.0254692i
\(633\) 6.42389 + 1.72128i 0.0101483 + 0.00271923i
\(634\) 83.6174 48.2765i 0.131889 0.0761459i
\(635\) 203.278 + 225.437i 0.320122 + 0.355019i
\(636\) 9.71046 0.0152680
\(637\) 577.822 503.421i 0.907098 0.790300i
\(638\) 92.6343 92.6343i 0.145195 0.145195i
\(639\) 65.9263 + 38.0626i 0.103171 + 0.0595658i
\(640\) −128.883 604.211i −0.201379 0.944080i
\(641\) −451.476 781.979i −0.704330 1.21994i −0.966933 0.255032i \(-0.917914\pi\)
0.262602 0.964904i \(-0.415419\pi\)
\(642\) −336.487 + 90.1615i −0.524124 + 0.140438i
\(643\) −359.258 + 359.258i −0.558722 + 0.558722i −0.928944 0.370222i \(-0.879282\pi\)
0.370222 + 0.928944i \(0.379282\pi\)
\(644\) 4.70445 + 5.03929i 0.00730504 + 0.00782498i
\(645\) 175.357 89.5078i 0.271872 0.138772i
\(646\) −470.383 + 814.728i −0.728147 + 1.26119i
\(647\) 184.661 689.165i 0.285411 1.06517i −0.663127 0.748507i \(-0.730771\pi\)
0.948538 0.316663i \(-0.102562\pi\)
\(648\) 70.2990 + 18.8366i 0.108486 + 0.0290688i
\(649\) 281.043 + 162.260i 0.433041 + 0.250016i
\(650\) −453.606 + 626.225i −0.697855 + 0.963423i
\(651\) 166.457 + 719.181i 0.255694 + 1.10473i
\(652\) 10.6446 + 10.6446i 0.0163261 + 0.0163261i
\(653\) 127.162 + 474.577i 0.194736 + 0.726764i 0.992335 + 0.123576i \(0.0394364\pi\)
−0.797599 + 0.603188i \(0.793897\pi\)
\(654\) −357.963 + 206.670i −0.547344 + 0.316009i
\(655\) 1.81017 2.79181i 0.00276362 0.00426230i
\(656\) −4.73364 + 8.19890i −0.00721591 + 0.0124983i
\(657\) −189.217 189.217i −0.288002 0.288002i
\(658\) −431.632 + 229.811i −0.655976 + 0.349256i
\(659\) 379.448i 0.575793i 0.957662 + 0.287897i \(0.0929559\pi\)
−0.957662 + 0.287897i \(0.907044\pi\)
\(660\) −1.63626 1.81463i −0.00247918 0.00274944i
\(661\) −404.533 700.672i −0.612002 1.06002i −0.990903 0.134581i \(-0.957031\pi\)
0.378900 0.925437i \(-0.376302\pi\)
\(662\) 11.3673 42.4235i 0.0171712 0.0640838i
\(663\) 115.783 + 432.107i 0.174635 + 0.651745i
\(664\) 928.465i 1.39829i
\(665\) −826.628 577.243i −1.24305 0.868035i
\(666\) 30.4722 0.0457540
\(667\) 223.353 59.8472i 0.334862 0.0897260i
\(668\) 18.5110 + 4.95999i 0.0277110 + 0.00742514i
\(669\) 145.993 84.2891i 0.218226 0.125993i
\(670\) −26.5449 + 513.564i −0.0396192 + 0.766514i
\(671\) −107.627 −0.160398
\(672\) 9.14255 14.6492i 0.0136050 0.0217995i
\(673\) 536.016 536.016i 0.796458 0.796458i −0.186077 0.982535i \(-0.559577\pi\)
0.982535 + 0.186077i \(0.0595775\pi\)
\(674\) −554.747 320.283i −0.823067 0.475198i
\(675\) −81.8961 100.837i −0.121328 0.149388i
\(676\) 3.36589 + 5.82989i 0.00497913 + 0.00862410i
\(677\) −121.106 + 32.4502i −0.178886 + 0.0479323i −0.347150 0.937810i \(-0.612851\pi\)
0.168264 + 0.985742i \(0.446184\pi\)
\(678\) −522.908 + 522.908i −0.771251 + 0.771251i
\(679\) 11.7630 + 12.6002i 0.0173240 + 0.0185570i
\(680\) 303.557 + 594.708i 0.446407 + 0.874570i
\(681\) 121.885 211.111i 0.178980 0.310002i
\(682\) −98.7570 + 368.566i −0.144805 + 0.540420i
\(683\) 671.930 + 180.043i 0.983792 + 0.263606i 0.714641 0.699492i \(-0.246590\pi\)
0.269151 + 0.963098i \(0.413257\pi\)
\(684\) −6.66330 3.84706i −0.00974167 0.00562435i
\(685\) 129.503 399.547i 0.189056 0.583280i
\(686\) −669.793 + 107.229i −0.976375 + 0.156311i
\(687\) −202.410 202.410i −0.294628 0.294628i
\(688\) 92.0009 + 343.352i 0.133722 + 0.499058i
\(689\) 852.906 492.425i 1.23789 0.714696i
\(690\) 39.5220 + 185.282i 0.0572782 + 0.268524i
\(691\) −320.368 + 554.894i −0.463630 + 0.803030i −0.999139 0.0414993i \(-0.986787\pi\)
0.535509 + 0.844530i \(0.320120\pi\)
\(692\) 1.36759 + 1.36759i 0.00197628 + 0.00197628i
\(693\) −2.28556 + 66.5091i −0.00329807 + 0.0959728i
\(694\) 1233.93i 1.77800i
\(695\) 46.1933 893.703i 0.0664652 1.28590i
\(696\) −146.393 253.560i −0.210334 0.364310i
\(697\) 2.58789 9.65814i 0.00371290 0.0138567i
\(698\) 62.2960 + 232.492i 0.0892493 + 0.333083i
\(699\) 459.823i 0.657830i
\(700\) −14.4344 + 5.86537i −0.0206206 + 0.00837910i
\(701\) 271.882 0.387849 0.193924 0.981016i \(-0.437878\pi\)
0.193924 + 0.981016i \(0.437878\pi\)
\(702\) 155.241 41.5966i 0.221141 0.0592544i
\(703\) −142.914 38.2937i −0.203291 0.0544718i
\(704\) 179.376 103.563i 0.254795 0.147106i
\(705\) 305.505 + 15.7908i 0.433341 + 0.0223983i
\(706\) 96.6549 0.136905
\(707\) 494.441 + 928.664i 0.699351 + 1.31353i
\(708\) 11.1665 11.1665i 0.0157719 0.0157719i
\(709\) −208.885 120.600i −0.294619 0.170099i 0.345404 0.938454i \(-0.387742\pi\)
−0.640023 + 0.768356i \(0.721075\pi\)
\(710\) 245.390 52.3435i 0.345620 0.0737233i
\(711\) 11.5363 + 19.9814i 0.0162254 + 0.0281032i
\(712\) −321.870 + 86.2449i −0.452065 + 0.121130i
\(713\) −476.232 + 476.232i −0.667926 + 0.667926i
\(714\) 115.557 378.721i 0.161844 0.530422i
\(715\) −235.740 76.4095i −0.329707 0.106866i
\(716\) 5.48948 9.50805i 0.00766687 0.0132794i
\(717\) −167.318 + 624.440i −0.233359 + 0.870907i
\(718\) −968.368 259.474i −1.34870 0.361384i
\(719\) 1158.13 + 668.644i 1.61075 + 0.929964i 0.989198 + 0.146589i \(0.0468293\pi\)
0.621548 + 0.783376i \(0.286504\pi\)
\(720\) 208.899 106.629i 0.290138 0.148095i
\(721\) −231.832 1001.64i −0.321543 1.38923i
\(722\) −655.585 655.585i −0.908012 0.908012i
\(723\) −173.768 648.511i −0.240343 0.896973i
\(724\) 4.51418 2.60626i 0.00623505 0.00359981i
\(725\) −53.8794 + 519.811i −0.0743164 + 0.716981i
\(726\) 190.033 329.147i 0.261754 0.453371i
\(727\) 711.809 + 711.809i 0.979105 + 0.979105i 0.999786 0.0206810i \(-0.00658344\pi\)
−0.0206810 + 0.999786i \(0.506583\pi\)
\(728\) 30.4056 884.794i 0.0417659 1.21538i
\(729\) 27.0000i 0.0370370i
\(730\) −880.820 45.5274i −1.20660 0.0623663i
\(731\) −187.711 325.126i −0.256787 0.444768i
\(732\) −1.35553 + 5.05889i −0.00185181 + 0.00691105i
\(733\) 77.9360 + 290.861i 0.106325 + 0.396809i 0.998492 0.0548957i \(-0.0174826\pi\)
−0.892167 + 0.451705i \(0.850816\pi\)
\(734\) 654.863i 0.892184i
\(735\) 393.743 + 158.245i 0.535705 + 0.215300i
\(736\) 15.7546 0.0214057
\(737\) −159.193 + 42.6557i −0.216001 + 0.0578774i
\(738\) −3.46983 0.929738i −0.00470166 0.00125981i
\(739\) −233.165 + 134.618i −0.315514 + 0.182162i −0.649391 0.760454i \(-0.724976\pi\)
0.333877 + 0.942617i \(0.391643\pi\)
\(740\) −1.69805 + 1.53114i −0.00229466 + 0.00206910i
\(741\) −780.349 −1.05310
\(742\) −871.197 29.9383i −1.17412 0.0403482i
\(743\) −490.075 + 490.075i −0.659589 + 0.659589i −0.955283 0.295694i \(-0.904449\pi\)
0.295694 + 0.955283i \(0.404449\pi\)
\(744\) 738.525 + 426.388i 0.992641 + 0.573102i
\(745\) 24.8329 + 16.1013i 0.0333328 + 0.0216125i
\(746\) 210.242 + 364.150i 0.281826 + 0.488137i
\(747\) 332.712 89.1498i 0.445397 0.119344i
\(748\) −3.29457 + 3.29457i −0.00440451 + 0.00440451i
\(749\) −693.567 + 160.528i −0.925991 + 0.214324i
\(750\) −423.038 66.0685i −0.564051 0.0880913i
\(751\) 497.864 862.326i 0.662935 1.14824i −0.316906 0.948457i \(-0.602644\pi\)
0.979841 0.199780i \(-0.0640227\pi\)
\(752\) −142.951 + 533.501i −0.190095 + 0.709443i
\(753\) 40.3519 + 10.8123i 0.0535882 + 0.0143589i
\(754\) −559.934 323.278i −0.742618 0.428751i
\(755\) −190.873 373.945i −0.252812 0.495291i
\(756\) 3.09740 + 0.945088i 0.00409708 + 0.00125012i
\(757\) −111.675 111.675i −0.147523 0.147523i 0.629488 0.777010i \(-0.283265\pi\)
−0.777010 + 0.629488i \(0.783265\pi\)
\(758\) 75.5562 + 281.980i 0.0996784 + 0.372005i
\(759\) −52.5813 + 30.3578i −0.0692771 + 0.0399971i
\(760\) −1139.10 + 242.978i −1.49881 + 0.319708i
\(761\) 290.882