Properties

Label 105.3.v.a.37.9
Level 105
Weight 3
Character 105.37
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.9
Character \(\chi\) \(=\) 105.37
Dual form 105.3.v.a.88.9

$q$-expansion

\(f(q)\) \(=\) \(q+(0.232416 - 0.0622758i) q^{2} +(1.67303 + 0.448288i) q^{3} +(-3.41396 + 1.97105i) q^{4} +(-2.65242 + 4.23847i) q^{5} +0.416757 q^{6} +(-4.06422 + 5.69931i) q^{7} +(-1.35127 + 1.35127i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(0.232416 - 0.0622758i) q^{2} +(1.67303 + 0.448288i) q^{3} +(-3.41396 + 1.97105i) q^{4} +(-2.65242 + 4.23847i) q^{5} +0.416757 q^{6} +(-4.06422 + 5.69931i) q^{7} +(-1.35127 + 1.35127i) q^{8} +(2.59808 + 1.50000i) q^{9} +(-0.352512 + 1.15027i) q^{10} +(2.22825 + 3.85944i) q^{11} +(-6.59527 + 1.76720i) q^{12} +(10.0930 - 10.0930i) q^{13} +(-0.589662 + 1.57771i) q^{14} +(-6.33765 + 5.90205i) q^{15} +(7.65430 - 13.2576i) q^{16} +(-2.55748 + 9.54465i) q^{17} +(0.697249 + 0.186827i) q^{18} +(11.1120 + 6.41554i) q^{19} +(0.701025 - 19.6981i) q^{20} +(-9.35450 + 7.71319i) q^{21} +(0.758230 + 0.758230i) q^{22} +(3.20215 + 11.9506i) q^{23} +(-2.86648 + 1.65497i) q^{24} +(-10.9293 - 22.4844i) q^{25} +(1.71723 - 2.97433i) q^{26} +(3.67423 + 3.67423i) q^{27} +(2.64146 - 27.4680i) q^{28} +36.7743i q^{29} +(-1.10542 + 1.76642i) q^{30} +(-8.59913 - 14.8941i) q^{31} +(2.93176 - 10.9415i) q^{32} +(1.99779 + 7.45586i) q^{33} +2.37760i q^{34} +(-13.3763 - 32.3431i) q^{35} -11.8263 q^{36} +(54.2699 - 14.5416i) q^{37} +(2.98215 + 0.799066i) q^{38} +(21.4105 - 12.3613i) q^{39} +(-2.14319 - 9.31149i) q^{40} -46.8347 q^{41} +(-1.69379 + 2.37523i) q^{42} +(25.0932 - 25.0932i) q^{43} +(-15.2143 - 8.78398i) q^{44} +(-13.2489 + 7.03324i) q^{45} +(1.48846 + 2.57809i) q^{46} +(44.9155 - 12.0351i) q^{47} +(18.7491 - 18.7491i) q^{48} +(-15.9642 - 46.3265i) q^{49} +(-3.94038 - 4.54512i) q^{50} +(-8.55750 + 14.8220i) q^{51} +(-14.5633 + 54.3510i) q^{52} +(58.8689 + 15.7739i) q^{53} +(1.08277 + 0.625136i) q^{54} +(-22.2684 - 0.792499i) q^{55} +(-2.20945 - 13.1932i) q^{56} +(15.7148 + 15.7148i) q^{57} +(2.29015 + 8.54695i) q^{58} +(-99.7443 + 57.5874i) q^{59} +(10.0032 - 32.6412i) q^{60} +(-22.1961 + 38.4447i) q^{61} +(-2.92612 - 2.92612i) q^{62} +(-19.1081 + 8.71091i) q^{63} +58.5089i q^{64} +(16.0080 + 69.5498i) q^{65} +(0.928638 + 1.60845i) q^{66} +(-18.2625 + 68.1567i) q^{67} +(-10.0819 - 37.6260i) q^{68} +21.4292i q^{69} +(-5.12307 - 6.68403i) q^{70} +85.0378 q^{71} +(-5.53762 + 1.48380i) q^{72} +(-11.2757 - 3.02132i) q^{73} +(11.7076 - 6.75940i) q^{74} +(-8.20557 - 42.5167i) q^{75} -50.5815 q^{76} +(-31.0522 - 2.98613i) q^{77} +(4.20633 - 4.20633i) q^{78} +(57.2212 + 33.0366i) q^{79} +(35.8897 + 67.6074i) q^{80} +(4.50000 + 7.79423i) q^{81} +(-10.8851 + 2.91666i) q^{82} +(65.5612 - 65.5612i) q^{83} +(16.7328 - 44.7708i) q^{84} +(-33.6712 - 36.1563i) q^{85} +(4.26937 - 7.39477i) q^{86} +(-16.4855 + 61.5246i) q^{87} +(-8.22613 - 2.20418i) q^{88} +(-10.9662 - 6.33133i) q^{89} +(-2.64126 + 2.45972i) q^{90} +(16.5030 + 98.5433i) q^{91} +(-34.4872 - 34.4872i) q^{92} +(-7.70977 - 28.7732i) q^{93} +(9.68960 - 5.59429i) q^{94} +(-56.6660 + 30.0814i) q^{95} +(9.80985 - 16.9912i) q^{96} +(-125.573 - 125.573i) q^{97} +(-6.59537 - 9.77284i) q^{98} +13.3695i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.232416 0.0622758i 0.116208 0.0311379i −0.200246 0.979746i \(-0.564174\pi\)
0.316454 + 0.948608i \(0.397508\pi\)
\(3\) 1.67303 + 0.448288i 0.557678 + 0.149429i
\(4\) −3.41396 + 1.97105i −0.853491 + 0.492763i
\(5\) −2.65242 + 4.23847i −0.530485 + 0.847694i
\(6\) 0.416757 0.0694596
\(7\) −4.06422 + 5.69931i −0.580603 + 0.814187i
\(8\) −1.35127 + 1.35127i −0.168909 + 0.168909i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) −0.352512 + 1.15027i −0.0352512 + 0.115027i
\(11\) 2.22825 + 3.85944i 0.202568 + 0.350858i 0.949355 0.314205i \(-0.101738\pi\)
−0.746787 + 0.665063i \(0.768405\pi\)
\(12\) −6.59527 + 1.76720i −0.549606 + 0.147266i
\(13\) 10.0930 10.0930i 0.776385 0.776385i −0.202829 0.979214i \(-0.565014\pi\)
0.979214 + 0.202829i \(0.0650137\pi\)
\(14\) −0.589662 + 1.57771i −0.0421187 + 0.112694i
\(15\) −6.33765 + 5.90205i −0.422510 + 0.393470i
\(16\) 7.65430 13.2576i 0.478394 0.828603i
\(17\) −2.55748 + 9.54465i −0.150440 + 0.561450i 0.849013 + 0.528372i \(0.177198\pi\)
−0.999453 + 0.0330776i \(0.989469\pi\)
\(18\) 0.697249 + 0.186827i 0.0387360 + 0.0103793i
\(19\) 11.1120 + 6.41554i 0.584845 + 0.337660i 0.763056 0.646332i \(-0.223698\pi\)
−0.178212 + 0.983992i \(0.557031\pi\)
\(20\) 0.701025 19.6981i 0.0350513 0.984903i
\(21\) −9.35450 + 7.71319i −0.445452 + 0.367295i
\(22\) 0.758230 + 0.758230i 0.0344650 + 0.0344650i
\(23\) 3.20215 + 11.9506i 0.139224 + 0.519590i 0.999945 + 0.0105132i \(0.00334653\pi\)
−0.860721 + 0.509077i \(0.829987\pi\)
\(24\) −2.86648 + 1.65497i −0.119437 + 0.0689569i
\(25\) −10.9293 22.4844i −0.437172 0.899378i
\(26\) 1.71723 2.97433i 0.0660472 0.114397i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) 2.64146 27.4680i 0.0943378 0.981001i
\(29\) 36.7743i 1.26808i 0.773301 + 0.634040i \(0.218604\pi\)
−0.773301 + 0.634040i \(0.781396\pi\)
\(30\) −1.10542 + 1.76642i −0.0368472 + 0.0588805i
\(31\) −8.59913 14.8941i −0.277391 0.480456i 0.693344 0.720606i \(-0.256136\pi\)
−0.970736 + 0.240151i \(0.922803\pi\)
\(32\) 2.93176 10.9415i 0.0916174 0.341921i
\(33\) 1.99779 + 7.45586i 0.0605391 + 0.225935i
\(34\) 2.37760i 0.0699295i
\(35\) −13.3763 32.3431i −0.382181 0.924088i
\(36\) −11.8263 −0.328509
\(37\) 54.2699 14.5416i 1.46675 0.393016i 0.564937 0.825134i \(-0.308900\pi\)
0.901817 + 0.432118i \(0.142234\pi\)
\(38\) 2.98215 + 0.799066i 0.0784777 + 0.0210280i
\(39\) 21.4105 12.3613i 0.548987 0.316958i
\(40\) −2.14319 9.31149i −0.0535796 0.232787i
\(41\) −46.8347 −1.14231 −0.571155 0.820843i \(-0.693504\pi\)
−0.571155 + 0.820843i \(0.693504\pi\)
\(42\) −1.69379 + 2.37523i −0.0403284 + 0.0565531i
\(43\) 25.0932 25.0932i 0.583563 0.583563i −0.352317 0.935881i \(-0.614606\pi\)
0.935881 + 0.352317i \(0.114606\pi\)
\(44\) −15.2143 8.78398i −0.345780 0.199636i
\(45\) −13.2489 + 7.03324i −0.294420 + 0.156294i
\(46\) 1.48846 + 2.57809i 0.0323579 + 0.0560455i
\(47\) 44.9155 12.0351i 0.955649 0.256065i 0.252891 0.967495i \(-0.418618\pi\)
0.702758 + 0.711429i \(0.251952\pi\)
\(48\) 18.7491 18.7491i 0.390607 0.390607i
\(49\) −15.9642 46.3265i −0.325801 0.945438i
\(50\) −3.94038 4.54512i −0.0788076 0.0909024i
\(51\) −8.55750 + 14.8220i −0.167794 + 0.290628i
\(52\) −14.5633 + 54.3510i −0.280063 + 1.04521i
\(53\) 58.8689 + 15.7739i 1.11073 + 0.297620i 0.767128 0.641494i \(-0.221685\pi\)
0.343606 + 0.939114i \(0.388352\pi\)
\(54\) 1.08277 + 0.625136i 0.0200513 + 0.0115766i
\(55\) −22.2684 0.792499i −0.404879 0.0144091i
\(56\) −2.20945 13.1932i −0.0394545 0.235593i
\(57\) 15.7148 + 15.7148i 0.275698 + 0.275698i
\(58\) 2.29015 + 8.54695i 0.0394853 + 0.147361i
\(59\) −99.7443 + 57.5874i −1.69058 + 0.976058i −0.736535 + 0.676399i \(0.763540\pi\)
−0.954046 + 0.299659i \(0.903127\pi\)
\(60\) 10.0032 32.6412i 0.166721 0.544020i
\(61\) −22.1961 + 38.4447i −0.363870 + 0.630241i −0.988594 0.150604i \(-0.951878\pi\)
0.624724 + 0.780845i \(0.285211\pi\)
\(62\) −2.92612 2.92612i −0.0471955 0.0471955i
\(63\) −19.1081 + 8.71091i −0.303303 + 0.138268i
\(64\) 58.5089i 0.914201i
\(65\) 16.0080 + 69.5498i 0.246277 + 1.07000i
\(66\) 0.928638 + 1.60845i 0.0140703 + 0.0243704i
\(67\) −18.2625 + 68.1567i −0.272575 + 1.01726i 0.684874 + 0.728662i \(0.259857\pi\)
−0.957449 + 0.288602i \(0.906809\pi\)
\(68\) −10.0819 37.6260i −0.148263 0.553324i
\(69\) 21.4292i 0.310568i
\(70\) −5.12307 6.68403i −0.0731867 0.0954862i
\(71\) 85.0378 1.19772 0.598858 0.800855i \(-0.295621\pi\)
0.598858 + 0.800855i \(0.295621\pi\)
\(72\) −5.53762 + 1.48380i −0.0769114 + 0.0206084i
\(73\) −11.2757 3.02132i −0.154462 0.0413879i 0.180760 0.983527i \(-0.442144\pi\)
−0.335221 + 0.942139i \(0.608811\pi\)
\(74\) 11.7076 6.75940i 0.158211 0.0913432i
\(75\) −8.20557 42.5167i −0.109408 0.566889i
\(76\) −50.5815 −0.665546
\(77\) −31.0522 2.98613i −0.403275 0.0387809i
\(78\) 4.20633 4.20633i 0.0539273 0.0539273i
\(79\) 57.2212 + 33.0366i 0.724318 + 0.418185i 0.816340 0.577572i \(-0.196000\pi\)
−0.0920217 + 0.995757i \(0.529333\pi\)
\(80\) 35.8897 + 67.6074i 0.448621 + 0.845093i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) −10.8851 + 2.91666i −0.132746 + 0.0355691i
\(83\) 65.5612 65.5612i 0.789894 0.789894i −0.191583 0.981476i \(-0.561362\pi\)
0.981476 + 0.191583i \(0.0613620\pi\)
\(84\) 16.7328 44.7708i 0.199200 0.532985i
\(85\) −33.6712 36.1563i −0.396132 0.425368i
\(86\) 4.26937 7.39477i 0.0496439 0.0859857i
\(87\) −16.4855 + 61.5246i −0.189488 + 0.707179i
\(88\) −8.22613 2.20418i −0.0934787 0.0250475i
\(89\) −10.9662 6.33133i −0.123216 0.0711385i 0.437125 0.899401i \(-0.355997\pi\)
−0.560341 + 0.828262i \(0.689330\pi\)
\(90\) −2.64126 + 2.45972i −0.0293474 + 0.0273303i
\(91\) 16.5030 + 98.5433i 0.181351 + 1.08289i
\(92\) −34.4872 34.4872i −0.374861 0.374861i
\(93\) −7.70977 28.7732i −0.0829007 0.309390i
\(94\) 9.68960 5.59429i 0.103081 0.0595138i
\(95\) −56.6660 + 30.0814i −0.596484 + 0.316646i
\(96\) 9.80985 16.9912i 0.102186 0.176991i
\(97\) −125.573 125.573i −1.29456 1.29456i −0.931932 0.362632i \(-0.881878\pi\)
−0.362632 0.931932i \(-0.618122\pi\)
\(98\) −6.59537 9.77284i −0.0672997 0.0997229i
\(99\) 13.3695i 0.135045i
\(100\) 81.6302 + 55.2189i 0.816302 + 0.552189i
\(101\) −57.5790 99.7297i −0.570089 0.987422i −0.996556 0.0829196i \(-0.973576\pi\)
0.426468 0.904503i \(-0.359758\pi\)
\(102\) −1.06585 + 3.97780i −0.0104495 + 0.0389981i
\(103\) 25.0098 + 93.3379i 0.242814 + 0.906193i 0.974470 + 0.224519i \(0.0720810\pi\)
−0.731656 + 0.681674i \(0.761252\pi\)
\(104\) 27.2768i 0.262277i
\(105\) −7.88004 60.1074i −0.0750480 0.572452i
\(106\) 14.6644 0.138344
\(107\) 119.300 31.9665i 1.11496 0.298752i 0.346116 0.938192i \(-0.387500\pi\)
0.768841 + 0.639440i \(0.220834\pi\)
\(108\) −19.7858 5.30159i −0.183202 0.0490888i
\(109\) 43.0410 24.8497i 0.394871 0.227979i −0.289397 0.957209i \(-0.593455\pi\)
0.684269 + 0.729230i \(0.260122\pi\)
\(110\) −5.22488 + 1.20259i −0.0474990 + 0.0109326i
\(111\) 97.3141 0.876704
\(112\) 44.4506 + 97.5062i 0.396881 + 0.870591i
\(113\) −42.4036 + 42.4036i −0.375253 + 0.375253i −0.869386 0.494133i \(-0.835486\pi\)
0.494133 + 0.869386i \(0.335486\pi\)
\(114\) 4.63103 + 2.67373i 0.0406231 + 0.0234537i
\(115\) −59.1456 18.1258i −0.514310 0.157615i
\(116\) −72.4841 125.546i −0.624863 1.08229i
\(117\) 41.3619 11.0829i 0.353520 0.0947255i
\(118\) −19.5959 + 19.5959i −0.166067 + 0.166067i
\(119\) −44.0038 53.3674i −0.369779 0.448466i
\(120\) 0.588606 16.5392i 0.00490505 0.137827i
\(121\) 50.5698 87.5895i 0.417933 0.723880i
\(122\) −2.76455 + 10.3174i −0.0226603 + 0.0845693i
\(123\) −78.3559 20.9954i −0.637040 0.170694i
\(124\) 58.7142 + 33.8987i 0.473502 + 0.273376i
\(125\) 124.289 + 13.3148i 0.994311 + 0.106518i
\(126\) −3.89856 + 3.21453i −0.0309409 + 0.0255121i
\(127\) −62.2747 62.2747i −0.490352 0.490352i 0.418065 0.908417i \(-0.362708\pi\)
−0.908417 + 0.418065i \(0.862708\pi\)
\(128\) 15.3707 + 57.3643i 0.120084 + 0.448158i
\(129\) 53.2308 30.7328i 0.412642 0.238239i
\(130\) 8.05178 + 15.1676i 0.0619368 + 0.116674i
\(131\) 7.67305 13.2901i 0.0585729 0.101451i −0.835252 0.549867i \(-0.814678\pi\)
0.893825 + 0.448416i \(0.148012\pi\)
\(132\) −21.5163 21.5163i −0.163002 0.163002i
\(133\) −81.7260 + 37.2568i −0.614481 + 0.280126i
\(134\) 16.9780i 0.126702i
\(135\) −25.3188 + 5.82751i −0.187546 + 0.0431668i
\(136\) −9.44158 16.3533i −0.0694234 0.120245i
\(137\) 58.8789 219.739i 0.429773 1.60394i −0.323500 0.946228i \(-0.604860\pi\)
0.753273 0.657708i \(-0.228474\pi\)
\(138\) 1.33452 + 4.98049i 0.00967043 + 0.0360905i
\(139\) 102.047i 0.734151i −0.930191 0.367076i \(-0.880359\pi\)
0.930191 0.367076i \(-0.119641\pi\)
\(140\) 109.416 + 84.0526i 0.781544 + 0.600375i
\(141\) 80.5403 0.571208
\(142\) 19.7642 5.29579i 0.139184 0.0372943i
\(143\) 61.4430 + 16.4636i 0.429671 + 0.115130i
\(144\) 39.7729 22.9629i 0.276201 0.159465i
\(145\) −155.867 97.5410i −1.07494 0.672697i
\(146\) −2.80881 −0.0192384
\(147\) −5.94110 84.6623i −0.0404157 0.575934i
\(148\) −156.613 + 156.613i −1.05820 + 1.05820i
\(149\) −253.568 146.397i −1.70180 0.982532i −0.943944 0.330104i \(-0.892916\pi\)
−0.757851 0.652428i \(-0.773751\pi\)
\(150\) −4.55487 9.37056i −0.0303658 0.0624704i
\(151\) 103.721 + 179.651i 0.686897 + 1.18974i 0.972837 + 0.231492i \(0.0743608\pi\)
−0.285940 + 0.958247i \(0.592306\pi\)
\(152\) −23.6846 + 6.34626i −0.155820 + 0.0417517i
\(153\) −20.9615 + 20.9615i −0.137003 + 0.137003i
\(154\) −7.40300 + 1.23977i −0.0480714 + 0.00805048i
\(155\) 85.9369 + 3.05837i 0.554431 + 0.0197314i
\(156\) −48.7297 + 84.4024i −0.312370 + 0.541041i
\(157\) 19.6048 73.1661i 0.124871 0.466026i −0.874964 0.484188i \(-0.839115\pi\)
0.999835 + 0.0181625i \(0.00578162\pi\)
\(158\) 15.3565 + 4.11476i 0.0971931 + 0.0260428i
\(159\) 91.4184 + 52.7804i 0.574958 + 0.331952i
\(160\) 38.5988 + 41.4476i 0.241243 + 0.259047i
\(161\) −81.1243 30.3197i −0.503877 0.188321i
\(162\) 1.53126 + 1.53126i 0.00945225 + 0.00945225i
\(163\) −50.8403 189.738i −0.311903 1.16404i −0.926838 0.375461i \(-0.877484\pi\)
0.614935 0.788578i \(-0.289182\pi\)
\(164\) 159.892 92.3136i 0.974950 0.562888i
\(165\) −36.9004 11.3085i −0.223639 0.0685364i
\(166\) 11.1546 19.3204i 0.0671965 0.116388i
\(167\) 189.235 + 189.235i 1.13314 + 1.13314i 0.989652 + 0.143492i \(0.0458330\pi\)
0.143492 + 0.989652i \(0.454167\pi\)
\(168\) 2.21786 23.0631i 0.0132016 0.137281i
\(169\) 34.7373i 0.205546i
\(170\) −10.0774 6.30641i −0.0592788 0.0370965i
\(171\) 19.2466 + 33.3361i 0.112553 + 0.194948i
\(172\) −36.2073 + 135.127i −0.210507 + 0.785624i
\(173\) 49.4475 + 184.540i 0.285823 + 1.06671i 0.948236 + 0.317568i \(0.102866\pi\)
−0.662412 + 0.749140i \(0.730467\pi\)
\(174\) 15.3260i 0.0880803i
\(175\) 172.565 + 29.0923i 0.986085 + 0.166242i
\(176\) 68.2227 0.387629
\(177\) −192.691 + 51.6315i −1.08865 + 0.291703i
\(178\) −2.94301 0.788577i −0.0165338 0.00443021i
\(179\) −158.096 + 91.2766i −0.883216 + 0.509925i −0.871718 0.490009i \(-0.836994\pi\)
−0.0114988 + 0.999934i \(0.503660\pi\)
\(180\) 31.3684 50.1255i 0.174269 0.278475i
\(181\) −103.223 −0.570290 −0.285145 0.958484i \(-0.592042\pi\)
−0.285145 + 0.958484i \(0.592042\pi\)
\(182\) 9.97241 + 21.8753i 0.0547935 + 0.120194i
\(183\) −54.3690 + 54.3690i −0.297098 + 0.297098i
\(184\) −20.4755 11.8215i −0.111280 0.0642474i
\(185\) −82.3127 + 268.592i −0.444934 + 1.45185i
\(186\) −3.58375 6.20724i −0.0192675 0.0333722i
\(187\) −42.5357 + 11.3974i −0.227463 + 0.0609487i
\(188\) −129.618 + 129.618i −0.689458 + 0.689458i
\(189\) −35.8735 + 6.00770i −0.189807 + 0.0317868i
\(190\) −11.2968 + 10.5203i −0.0594566 + 0.0553701i
\(191\) −129.306 + 223.965i −0.676996 + 1.17259i 0.298885 + 0.954289i \(0.403385\pi\)
−0.975881 + 0.218302i \(0.929948\pi\)
\(192\) −26.2288 + 97.8872i −0.136608 + 0.509829i
\(193\) 88.4965 + 23.7126i 0.458531 + 0.122863i 0.480688 0.876891i \(-0.340387\pi\)
−0.0221573 + 0.999754i \(0.507053\pi\)
\(194\) −37.0053 21.3650i −0.190749 0.110129i
\(195\) −4.39644 + 123.535i −0.0225459 + 0.633514i
\(196\) 145.813 + 126.691i 0.743945 + 0.646380i
\(197\) −186.124 186.124i −0.944793 0.944793i 0.0537607 0.998554i \(-0.482879\pi\)
−0.998554 + 0.0537607i \(0.982879\pi\)
\(198\) 0.832594 + 3.10728i 0.00420502 + 0.0156934i
\(199\) 234.511 135.395i 1.17844 0.680375i 0.222791 0.974866i \(-0.428483\pi\)
0.955654 + 0.294491i \(0.0951500\pi\)
\(200\) 45.1511 + 15.6142i 0.225756 + 0.0780709i
\(201\) −61.1076 + 105.842i −0.304018 + 0.526575i
\(202\) −19.5930 19.5930i −0.0969952 0.0969952i
\(203\) −209.588 149.459i −1.03245 0.736250i
\(204\) 67.4691i 0.330731i
\(205\) 124.225 198.507i 0.605978 0.968329i
\(206\) 11.6254 + 20.1357i 0.0564338 + 0.0977463i
\(207\) −9.60644 + 35.8517i −0.0464079 + 0.173197i
\(208\) −56.5545 211.064i −0.271897 1.01473i
\(209\) 57.1817i 0.273596i
\(210\) −5.57469 13.4792i −0.0265461 0.0641867i
\(211\) 294.597 1.39619 0.698096 0.716004i \(-0.254031\pi\)
0.698096 + 0.716004i \(0.254031\pi\)
\(212\) −232.067 + 62.1823i −1.09466 + 0.293313i
\(213\) 142.271 + 38.1214i 0.667939 + 0.178974i
\(214\) 25.7366 14.8590i 0.120265 0.0694348i
\(215\) 39.7991 + 172.915i 0.185112 + 0.804255i
\(216\) −9.92979 −0.0459713
\(217\) 119.835 + 11.5239i 0.552235 + 0.0531056i
\(218\) 8.45589 8.45589i 0.0387885 0.0387885i
\(219\) −17.5102 10.1095i −0.0799553 0.0461622i
\(220\) 77.5854 41.1866i 0.352661 0.187212i
\(221\) 70.5215 + 122.147i 0.319102 + 0.552701i
\(222\) 22.6174 6.06031i 0.101880 0.0272987i
\(223\) 8.97417 8.97417i 0.0402429 0.0402429i −0.686699 0.726942i \(-0.740941\pi\)
0.726942 + 0.686699i \(0.240941\pi\)
\(224\) 50.4435 + 61.1775i 0.225194 + 0.273114i
\(225\) 5.33153 74.8103i 0.0236957 0.332490i
\(226\) −7.21458 + 12.4960i −0.0319229 + 0.0552921i
\(227\) 93.1104 347.493i 0.410178 1.53080i −0.384124 0.923281i \(-0.625497\pi\)
0.794302 0.607523i \(-0.207837\pi\)
\(228\) −84.6245 22.6751i −0.371160 0.0994520i
\(229\) −201.351 116.250i −0.879261 0.507642i −0.00884639 0.999961i \(-0.502816\pi\)
−0.870415 + 0.492319i \(0.836149\pi\)
\(230\) −14.8752 0.529387i −0.0646748 0.00230168i
\(231\) −50.6127 18.9162i −0.219103 0.0818884i
\(232\) −49.6921 49.6921i −0.214190 0.214190i
\(233\) 8.52601 + 31.8195i 0.0365923 + 0.136564i 0.981805 0.189889i \(-0.0608129\pi\)
−0.945213 + 0.326454i \(0.894146\pi\)
\(234\) 8.92298 5.15168i 0.0381324 0.0220157i
\(235\) −68.1246 + 222.295i −0.289892 + 0.945937i
\(236\) 227.016 393.203i 0.961931 1.66611i
\(237\) 80.9229 + 80.9229i 0.341447 + 0.341447i
\(238\) −13.5507 9.66309i −0.0569357 0.0406012i
\(239\) 133.557i 0.558817i 0.960172 + 0.279408i \(0.0901383\pi\)
−0.960172 + 0.279408i \(0.909862\pi\)
\(240\) 29.7370 + 129.198i 0.123904 + 0.538326i
\(241\) −230.800 399.758i −0.957678 1.65875i −0.728117 0.685453i \(-0.759604\pi\)
−0.229561 0.973294i \(-0.573729\pi\)
\(242\) 6.29855 23.5065i 0.0260271 0.0971343i
\(243\) 4.03459 + 15.0573i 0.0166032 + 0.0619642i
\(244\) 174.998i 0.717206i
\(245\) 238.697 + 55.2135i 0.974275 + 0.225361i
\(246\) −19.5187 −0.0793443
\(247\) 176.906 47.4018i 0.716219 0.191910i
\(248\) 31.7458 + 8.50627i 0.128007 + 0.0342995i
\(249\) 139.076 80.2957i 0.558539 0.322473i
\(250\) 29.7159 4.64561i 0.118864 0.0185824i
\(251\) −125.961 −0.501837 −0.250919 0.968008i \(-0.580733\pi\)
−0.250919 + 0.968008i \(0.580733\pi\)
\(252\) 48.0647 67.4018i 0.190733 0.267468i
\(253\) −38.9873 + 38.9873i −0.154100 + 0.154100i
\(254\) −18.3519 10.5955i −0.0722515 0.0417144i
\(255\) −40.1246 75.5850i −0.157351 0.296412i
\(256\) −109.873 190.305i −0.429191 0.743381i
\(257\) −236.058 + 63.2516i −0.918515 + 0.246115i −0.686950 0.726704i \(-0.741051\pi\)
−0.231564 + 0.972820i \(0.574384\pi\)
\(258\) 10.4578 10.4578i 0.0405341 0.0405341i
\(259\) −137.688 + 368.401i −0.531613 + 1.42240i
\(260\) −191.737 205.888i −0.737450 0.791876i
\(261\) −55.1614 + 95.5424i −0.211347 + 0.366063i
\(262\) 0.955690 3.56669i 0.00364767 0.0136133i
\(263\) 116.745 + 31.2818i 0.443898 + 0.118942i 0.473843 0.880609i \(-0.342866\pi\)
−0.0299446 + 0.999552i \(0.509533\pi\)
\(264\) −12.7745 7.37534i −0.0483881 0.0279369i
\(265\) −223.002 + 207.675i −0.841519 + 0.783680i
\(266\) −16.6742 + 13.7486i −0.0626851 + 0.0516866i
\(267\) −15.5085 15.5085i −0.0580844 0.0580844i
\(268\) −71.9928 268.681i −0.268630 1.00254i
\(269\) 221.456 127.858i 0.823258 0.475308i −0.0282806 0.999600i \(-0.509003\pi\)
0.851539 + 0.524292i \(0.175670\pi\)
\(270\) −5.52158 + 2.93115i −0.0204503 + 0.0108561i
\(271\) −24.1359 + 41.8046i −0.0890625 + 0.154261i −0.907115 0.420883i \(-0.861720\pi\)
0.818053 + 0.575143i \(0.195054\pi\)
\(272\) 106.964 + 106.964i 0.393249 + 0.393249i
\(273\) −16.5658 + 172.264i −0.0606805 + 0.631004i
\(274\) 54.7377i 0.199773i
\(275\) 62.4241 92.2818i 0.226997 0.335570i
\(276\) −42.2381 73.1585i −0.153036 0.265067i
\(277\) −26.8253 + 100.113i −0.0968423 + 0.361420i −0.997292 0.0735390i \(-0.976571\pi\)
0.900450 + 0.434960i \(0.143237\pi\)
\(278\) −6.35506 23.7174i −0.0228599 0.0853143i
\(279\) 51.5948i 0.184927i
\(280\) 61.7794 + 25.6293i 0.220641 + 0.0915330i
\(281\) 357.942 1.27382 0.636908 0.770940i \(-0.280213\pi\)
0.636908 + 0.770940i \(0.280213\pi\)
\(282\) 18.7189 5.01571i 0.0663790 0.0177862i
\(283\) 174.344 + 46.7152i 0.616055 + 0.165072i 0.553334 0.832960i \(-0.313355\pi\)
0.0627214 + 0.998031i \(0.480022\pi\)
\(284\) −290.316 + 167.614i −1.02224 + 0.590190i
\(285\) −108.289 + 24.9245i −0.379962 + 0.0874542i
\(286\) 15.3056 0.0535162
\(287\) 190.346 266.925i 0.663228 0.930053i
\(288\) 24.0291 24.0291i 0.0834345 0.0834345i
\(289\) 165.722 + 95.6795i 0.573431 + 0.331071i
\(290\) −42.3004 12.9634i −0.145864 0.0447014i
\(291\) −153.795 266.380i −0.528504 0.915395i
\(292\) 44.4500 11.9103i 0.152226 0.0407889i
\(293\) 116.627 116.627i 0.398046 0.398046i −0.479497 0.877543i \(-0.659181\pi\)
0.877543 + 0.479497i \(0.159181\pi\)
\(294\) −6.65322 19.3069i −0.0226300 0.0656698i
\(295\) 20.4816 575.510i 0.0694290 1.95088i
\(296\) −53.6838 + 92.9832i −0.181364 + 0.314132i
\(297\) −5.99337 + 22.3676i −0.0201797 + 0.0753117i
\(298\) −68.0502 18.2340i −0.228356 0.0611879i
\(299\) 152.936 + 88.2979i 0.511493 + 0.295311i
\(300\) 111.816 + 128.977i 0.372720 + 0.429923i
\(301\) 41.0297 + 244.998i 0.136311 + 0.813948i
\(302\) 35.2944 + 35.2944i 0.116869 + 0.116869i
\(303\) −51.6239 192.663i −0.170376 0.635851i
\(304\) 170.110 98.2130i 0.559572 0.323069i
\(305\) −104.073 196.049i −0.341224 0.642784i
\(306\) −3.56640 + 6.17719i −0.0116549 + 0.0201869i
\(307\) 102.316 + 102.316i 0.333276 + 0.333276i 0.853829 0.520553i \(-0.174274\pi\)
−0.520553 + 0.853829i \(0.674274\pi\)
\(308\) 111.897 51.0110i 0.363302 0.165620i
\(309\) 167.369i 0.541647i
\(310\) 20.1636 4.64097i 0.0650438 0.0149709i
\(311\) −5.34944 9.26551i −0.0172008 0.0297926i 0.857297 0.514822i \(-0.172142\pi\)
−0.874498 + 0.485030i \(0.838809\pi\)
\(312\) −12.2279 + 45.6350i −0.0391919 + 0.146266i
\(313\) 123.581 + 461.210i 0.394827 + 1.47351i 0.822075 + 0.569380i \(0.192816\pi\)
−0.427248 + 0.904135i \(0.640517\pi\)
\(314\) 18.2259i 0.0580442i
\(315\) 13.7619 104.094i 0.0436885 0.330458i
\(316\) −260.468 −0.824265
\(317\) −71.5544 + 19.1729i −0.225724 + 0.0604825i −0.369908 0.929068i \(-0.620611\pi\)
0.144184 + 0.989551i \(0.453944\pi\)
\(318\) 24.5341 + 6.57388i 0.0771511 + 0.0206726i
\(319\) −141.928 + 81.9422i −0.444916 + 0.256872i
\(320\) −247.988 155.190i −0.774963 0.484970i
\(321\) 213.924 0.666429
\(322\) −20.7428 1.99473i −0.0644186 0.00619480i
\(323\) −89.6530 + 89.6530i −0.277563 + 0.277563i
\(324\) −30.7257 17.7395i −0.0948323 0.0547515i
\(325\) −337.245 116.626i −1.03768 0.358850i
\(326\) −23.6322 40.9322i −0.0724914 0.125559i
\(327\) 83.1487 22.2796i 0.254278 0.0681335i
\(328\) 63.2865 63.2865i 0.192947 0.192947i
\(329\) −113.955 + 304.900i −0.346367 + 0.926749i
\(330\) −9.28051 0.330280i −0.0281228 0.00100085i
\(331\) −186.461 + 322.960i −0.563327 + 0.975711i 0.433876 + 0.900972i \(0.357145\pi\)
−0.997203 + 0.0747382i \(0.976188\pi\)
\(332\) −94.5989 + 353.048i −0.284937 + 1.06340i
\(333\) 162.810 + 43.6247i 0.488918 + 0.131005i
\(334\) 55.7660 + 32.1965i 0.166964 + 0.0963968i
\(335\) −240.440 258.186i −0.717732 0.770703i
\(336\) 30.6565 + 183.058i 0.0912396 + 0.544815i
\(337\) −1.52001 1.52001i −0.00451041 0.00451041i 0.704848 0.709358i \(-0.251015\pi\)
−0.709358 + 0.704848i \(0.751015\pi\)
\(338\) −2.16329 8.07351i −0.00640027 0.0238861i
\(339\) −89.9517 + 51.9336i −0.265344 + 0.153197i
\(340\) 186.218 + 57.0684i 0.547701 + 0.167848i
\(341\) 38.3220 66.3756i 0.112381 0.194650i
\(342\) 6.54926 + 6.54926i 0.0191499 + 0.0191499i
\(343\) 328.911 + 97.2959i 0.958925 + 0.283661i
\(344\) 67.8156i 0.197138i
\(345\) −90.8270 56.8393i −0.263267 0.164752i
\(346\) 22.9848 + 39.8108i 0.0664300 + 0.115060i
\(347\) −54.2716 + 202.544i −0.156402 + 0.583701i 0.842579 + 0.538573i \(0.181036\pi\)
−0.998981 + 0.0451282i \(0.985630\pi\)
\(348\) −64.9874 242.536i −0.186745 0.696944i
\(349\) 256.040i 0.733639i 0.930292 + 0.366820i \(0.119553\pi\)
−0.930292 + 0.366820i \(0.880447\pi\)
\(350\) 41.9186 3.98508i 0.119768 0.0113860i
\(351\) 74.1681 0.211305
\(352\) 48.7606 13.0654i 0.138524 0.0371175i
\(353\) −3.09864 0.830277i −0.00877800 0.00235206i 0.254427 0.967092i \(-0.418113\pi\)
−0.263205 + 0.964740i \(0.584780\pi\)
\(354\) −41.5692 + 24.0000i −0.117427 + 0.0677966i
\(355\) −225.556 + 360.430i −0.635370 + 1.01530i
\(356\) 49.9175 0.140218
\(357\) −49.6957 109.012i −0.139204 0.305355i
\(358\) −31.0597 + 31.0597i −0.0867589 + 0.0867589i
\(359\) −268.238 154.867i −0.747181 0.431385i 0.0774934 0.996993i \(-0.475308\pi\)
−0.824674 + 0.565608i \(0.808642\pi\)
\(360\) 8.39907 27.4067i 0.0233308 0.0761298i
\(361\) −98.1816 170.055i −0.271971 0.471068i
\(362\) −23.9906 + 6.42826i −0.0662724 + 0.0177576i
\(363\) 123.870 123.870i 0.341240 0.341240i
\(364\) −250.574 303.895i −0.688391 0.834876i
\(365\) 42.7137 39.7780i 0.117024 0.108981i
\(366\) −9.25037 + 16.0221i −0.0252742 + 0.0437763i
\(367\) −90.8527 + 339.067i −0.247555 + 0.923888i 0.724527 + 0.689247i \(0.242058\pi\)
−0.972082 + 0.234642i \(0.924608\pi\)
\(368\) 182.947 + 49.0204i 0.497138 + 0.133208i
\(369\) −121.680 70.2520i −0.329756 0.190385i
\(370\) −2.40405 + 67.5512i −0.00649743 + 0.182571i
\(371\) −329.156 + 271.404i −0.887214 + 0.731546i
\(372\) 83.0344 + 83.0344i 0.223211 + 0.223211i
\(373\) −25.6741 95.8169i −0.0688313 0.256882i 0.922933 0.384962i \(-0.125785\pi\)
−0.991764 + 0.128080i \(0.959119\pi\)
\(374\) −9.17620 + 5.29788i −0.0245353 + 0.0141655i
\(375\) 201.970 + 77.9932i 0.538588 + 0.207982i
\(376\) −44.4305 + 76.9558i −0.118166 + 0.204670i
\(377\) 371.163 + 371.163i 0.984517 + 0.984517i
\(378\) −7.96345 + 3.63034i −0.0210673 + 0.00960406i
\(379\) 466.795i 1.23165i 0.787884 + 0.615824i \(0.211177\pi\)
−0.787884 + 0.615824i \(0.788823\pi\)
\(380\) 134.164 214.388i 0.353062 0.564180i
\(381\) −76.2707 132.105i −0.200186 0.346731i
\(382\) −16.1053 + 60.1057i −0.0421604 + 0.157345i
\(383\) −59.3027 221.321i −0.154837 0.577861i −0.999119 0.0419615i \(-0.986639\pi\)
0.844282 0.535899i \(-0.180027\pi\)
\(384\) 102.863i 0.267872i
\(385\) 95.0202 123.693i 0.246806 0.321282i
\(386\) 22.0448 0.0571108
\(387\) 102.834 27.5543i 0.265721 0.0711997i
\(388\) 676.211 + 181.190i 1.74281 + 0.466985i
\(389\) 465.749 268.900i 1.19730 0.691260i 0.237346 0.971425i \(-0.423723\pi\)
0.959952 + 0.280165i \(0.0903893\pi\)
\(390\) 6.67145 + 28.9854i 0.0171063 + 0.0743215i
\(391\) −122.254 −0.312669
\(392\) 84.1718 + 41.0277i 0.214724 + 0.104663i
\(393\) 18.7951 18.7951i 0.0478246 0.0478246i
\(394\) −54.8493 31.6673i −0.139211 0.0803738i
\(395\) −291.800 + 154.903i −0.738733 + 0.392160i
\(396\) −26.3519 45.6429i −0.0665453 0.115260i
\(397\) −79.7937 + 21.3807i −0.200992 + 0.0538555i −0.357910 0.933756i \(-0.616511\pi\)
0.156919 + 0.987612i \(0.449844\pi\)
\(398\) 46.0723 46.0723i 0.115759 0.115759i
\(399\) −153.432 + 25.6951i −0.384541 + 0.0643988i
\(400\) −381.747 27.2061i −0.954367 0.0680152i
\(401\) −72.9306 + 126.319i −0.181872 + 0.315011i −0.942518 0.334156i \(-0.891549\pi\)
0.760646 + 0.649167i \(0.224882\pi\)
\(402\) −7.61105 + 28.4048i −0.0189330 + 0.0706587i
\(403\) −237.117 63.5354i −0.588381 0.157656i
\(404\) 393.145 + 226.982i 0.973131 + 0.561837i
\(405\) −44.9715 1.60047i −0.111041 0.00395178i
\(406\) −58.0193 21.6844i −0.142905 0.0534099i
\(407\) 177.049 + 177.049i 0.435010 + 0.435010i
\(408\) −8.46509 31.5921i −0.0207478 0.0774317i
\(409\) −350.103 + 202.132i −0.855998 + 0.494211i −0.862670 0.505767i \(-0.831209\pi\)
0.00667227 + 0.999978i \(0.497876\pi\)
\(410\) 16.5098 53.8726i 0.0402678 0.131397i
\(411\) 197.013 341.236i 0.479350 0.830258i
\(412\) −269.356 269.356i −0.653777 0.653777i
\(413\) 77.1744 802.522i 0.186863 1.94315i
\(414\) 8.93078i 0.0215719i
\(415\) 103.983 + 451.775i 0.250562 + 1.08862i
\(416\) −80.8420 140.022i −0.194332 0.336592i
\(417\) 45.7464 170.728i 0.109704 0.409420i
\(418\) 3.56103 + 13.2899i 0.00851921 + 0.0317941i
\(419\) 404.689i 0.965844i −0.875663 0.482922i \(-0.839575\pi\)
0.875663 0.482922i \(-0.160425\pi\)
\(420\) 145.377 + 189.673i 0.346136 + 0.451601i
\(421\) 430.807 1.02329 0.511647 0.859196i \(-0.329035\pi\)
0.511647 + 0.859196i \(0.329035\pi\)
\(422\) 68.4691 18.3462i 0.162249 0.0434745i
\(423\) 134.747 + 36.1052i 0.318550 + 0.0853551i
\(424\) −100.863 + 58.2332i −0.237884 + 0.137342i
\(425\) 242.558 46.8128i 0.570724 0.110148i
\(426\) 35.4401 0.0831928
\(427\) −128.899 282.750i −0.301870 0.662178i
\(428\) −344.280 + 344.280i −0.804392 + 0.804392i
\(429\) 95.4157 + 55.0883i 0.222414 + 0.128411i
\(430\) 20.0184 + 37.7097i 0.0465543 + 0.0876970i
\(431\) 32.0539 + 55.5190i 0.0743710 + 0.128814i 0.900813 0.434208i \(-0.142972\pi\)
−0.826442 + 0.563023i \(0.809638\pi\)
\(432\) 76.8354 20.5880i 0.177860 0.0476574i
\(433\) −58.9362 + 58.9362i −0.136111 + 0.136111i −0.771880 0.635769i \(-0.780683\pi\)
0.635769 + 0.771880i \(0.280683\pi\)
\(434\) 28.5693 4.78447i 0.0658278 0.0110241i
\(435\) −217.044 233.063i −0.498951 0.535776i
\(436\) −97.9601 + 169.672i −0.224679 + 0.389156i
\(437\) −41.0870 + 153.339i −0.0940207 + 0.350890i
\(438\) −4.69924 1.25916i −0.0107288 0.00287479i
\(439\) 262.656 + 151.644i 0.598304 + 0.345431i 0.768374 0.640001i \(-0.221066\pi\)
−0.170070 + 0.985432i \(0.554399\pi\)
\(440\) 31.1615 29.0198i 0.0708217 0.0659540i
\(441\) 28.0134 144.306i 0.0635225 0.327225i
\(442\) 23.9971 + 23.9971i 0.0542922 + 0.0542922i
\(443\) −55.0133 205.312i −0.124184 0.463459i 0.875626 0.482990i \(-0.160449\pi\)
−0.999809 + 0.0195310i \(0.993783\pi\)
\(444\) −332.227 + 191.811i −0.748259 + 0.432007i
\(445\) 55.9221 29.6865i 0.125668 0.0667112i
\(446\) 1.52687 2.64461i 0.00342347 0.00592963i
\(447\) −358.599 358.599i −0.802234 0.802234i
\(448\) −333.460 237.793i −0.744331 0.530788i
\(449\) 266.145i 0.592751i −0.955072 0.296375i \(-0.904222\pi\)
0.955072 0.296375i \(-0.0957779\pi\)
\(450\) −3.41973 17.7191i −0.00759940 0.0393759i
\(451\) −104.359 180.755i −0.231395 0.400788i
\(452\) 61.1846 228.344i 0.135364 0.505186i
\(453\) 92.9940 + 347.059i 0.205285 + 0.766134i
\(454\) 86.5615i 0.190664i
\(455\) −461.446 191.431i −1.01417 0.420728i
\(456\) −42.4700 −0.0931360
\(457\) 304.655 81.6321i 0.666641 0.178626i 0.0904000 0.995906i \(-0.471185\pi\)
0.576241 + 0.817280i \(0.304519\pi\)
\(458\) −54.0368 14.4791i −0.117984 0.0316138i
\(459\) −44.4661 + 25.6725i −0.0968760 + 0.0559314i
\(460\) 237.648 54.6984i 0.516626 0.118910i
\(461\) −613.866 −1.33160 −0.665799 0.746132i \(-0.731909\pi\)
−0.665799 + 0.746132i \(0.731909\pi\)
\(462\) −12.9412 1.24449i −0.0280113 0.00269371i
\(463\) 140.640 140.640i 0.303758 0.303758i −0.538724 0.842482i \(-0.681093\pi\)
0.842482 + 0.538724i \(0.181093\pi\)
\(464\) 487.540 + 281.482i 1.05073 + 0.606641i
\(465\) 142.404 + 43.6412i 0.306245 + 0.0938520i
\(466\) 3.96317 + 6.86440i 0.00850465 + 0.0147305i
\(467\) −309.664 + 82.9741i −0.663091 + 0.177675i −0.574641 0.818406i \(-0.694858\pi\)
−0.0884506 + 0.996081i \(0.528192\pi\)
\(468\) −119.363 + 119.363i −0.255049 + 0.255049i
\(469\) −314.223 381.088i −0.669985 0.812553i
\(470\) −1.98967 + 55.9075i −0.00423334 + 0.118952i
\(471\) 65.5989 113.621i 0.139276 0.241233i
\(472\) 56.9655 212.598i 0.120690 0.450420i
\(473\) 152.760 + 40.9318i 0.322959 + 0.0865366i
\(474\) 23.8473 + 13.7683i 0.0503108 + 0.0290470i
\(475\) 22.8031 319.966i 0.0480066 0.673612i
\(476\) 255.417 + 95.4607i 0.536591 + 0.200548i
\(477\) 129.285 + 129.285i 0.271038 + 0.271038i
\(478\) 8.31737 + 31.0409i 0.0174004 + 0.0649390i
\(479\) 459.429 265.251i 0.959141 0.553761i 0.0632327 0.997999i \(-0.479859\pi\)
0.895909 + 0.444238i \(0.146526\pi\)
\(480\) 45.9967 + 86.6465i 0.0958264 + 0.180514i
\(481\) 400.978 694.514i 0.833634 1.44390i
\(482\) −78.5370 78.5370i −0.162940 0.162940i
\(483\) −122.132 87.0929i −0.252860 0.180317i
\(484\) 398.703i 0.823767i
\(485\) 865.309 199.165i 1.78414 0.410648i
\(486\) 1.87541 + 3.24830i 0.00385887 + 0.00668375i
\(487\) 36.7674 137.218i 0.0754977 0.281761i −0.917848 0.396932i \(-0.870075\pi\)
0.993346 + 0.115171i \(0.0367415\pi\)
\(488\) −21.9564 81.9423i −0.0449925 0.167914i
\(489\) 340.230i 0.695766i
\(490\) 58.9156 2.03255i 0.120236 0.00414807i
\(491\) −98.2025 −0.200005 −0.100003 0.994987i \(-0.531885\pi\)
−0.100003 + 0.994987i \(0.531885\pi\)
\(492\) 308.887 82.7661i 0.627820 0.168224i
\(493\) −350.998 94.0496i −0.711963 0.190770i
\(494\) 38.1638 22.0339i 0.0772548 0.0446031i
\(495\) −56.6662 35.4615i −0.114477 0.0716394i
\(496\) −263.281 −0.530809
\(497\) −345.612 + 484.657i −0.695397 + 0.975164i
\(498\) 27.3231 27.3231i 0.0548657 0.0548657i
\(499\) 75.4381 + 43.5542i 0.151179 + 0.0872830i 0.573681 0.819079i \(-0.305515\pi\)
−0.422502 + 0.906362i \(0.638848\pi\)
\(500\) −450.562 + 199.524i −0.901123 + 0.399047i
\(501\) 231.764 + 401.428i 0.462604 + 0.801253i
\(502\) −29.2754 + 7.84433i −0.0583176 + 0.0156261i
\(503\) 360.582 360.582i 0.716863 0.716863i −0.251098 0.967962i \(-0.580792\pi\)
0.967962 + 0.251098i \(0.0807917\pi\)
\(504\) 14.0495 37.5911i 0.0278759 0.0745856i
\(505\) 575.425 + 20.4786i 1.13946 + 0.0405516i
\(506\) −6.63332 + 11.4893i −0.0131093 + 0.0227060i
\(507\) 15.5723 58.1166i 0.0307146 0.114628i
\(508\) 335.350 + 89.8569i 0.660139 + 0.176884i
\(509\) −203.239 117.340i −0.399291 0.230531i 0.286887 0.957964i \(-0.407380\pi\)
−0.686178 + 0.727434i \(0.740713\pi\)
\(510\) −14.0327 15.0684i −0.0275152 0.0295459i
\(511\) 63.0464 51.9845i 0.123378 0.101731i
\(512\) −205.362 205.362i −0.401098 0.401098i
\(513\) 17.2561 + 64.4005i 0.0336375 + 0.125537i
\(514\) −50.9247 + 29.4014i −0.0990754 + 0.0572012i
\(515\) −461.947 141.568i −0.896984 0.274890i
\(516\) −121.152 + 209.841i −0.234791 + 0.406669i
\(517\) 146.531 + 146.531i 0.283426 + 0.283426i
\(518\) −9.05844 + 94.1970i −0.0174873 + 0.181848i
\(519\) 330.909i 0.637589i
\(520\) −115.612 72.3497i −0.222331 0.139134i
\(521\) 264.414 + 457.979i 0.507513 + 0.879038i 0.999962 + 0.00869711i \(0.00276841\pi\)
−0.492449 + 0.870341i \(0.663898\pi\)
\(522\) −6.87044 + 25.6408i −0.0131618 + 0.0491204i
\(523\) −96.7747 361.168i −0.185038 0.690570i −0.994622 0.103567i \(-0.966974\pi\)
0.809585 0.587003i \(-0.199692\pi\)
\(524\) 60.4960i 0.115450i
\(525\) 275.665 + 126.031i 0.525076 + 0.240059i
\(526\) 29.0816 0.0552882
\(527\) 164.151 43.9842i 0.311483 0.0834615i
\(528\) 114.139 + 30.5834i 0.216172 + 0.0579231i
\(529\) 325.565 187.965i 0.615435 0.355321i
\(530\) −38.8963 + 62.1548i −0.0733892 + 0.117273i
\(531\) −345.524 −0.650705
\(532\) 205.574 288.280i 0.386418 0.541879i
\(533\) −472.702 + 472.702i −0.886871 + 0.886871i
\(534\) −4.57024 2.63863i −0.00855850 0.00494125i
\(535\) −180.946 + 590.440i −0.338217 + 1.10363i
\(536\) −67.4207 116.776i −0.125785 0.217866i
\(537\) −305.418 + 81.8364i −0.568748 + 0.152395i
\(538\) 43.5076 43.5076i 0.0808692 0.0808692i
\(539\) 143.222 164.840i 0.265718 0.305825i
\(540\) 74.9510 69.7995i 0.138798 0.129258i
\(541\) 90.3132 156.427i 0.166937 0.289144i −0.770404 0.637556i \(-0.779946\pi\)
0.937342 + 0.348412i \(0.113279\pi\)
\(542\) −3.00617 + 11.2192i −0.00554643 + 0.0206996i
\(543\) −172.695 46.2734i −0.318038 0.0852180i
\(544\) 96.9346 + 55.9652i 0.178189 + 0.102877i
\(545\) −8.83806 + 248.340i −0.0162166 + 0.455669i
\(546\) 6.87773 + 41.0687i 0.0125966 + 0.0752173i
\(547\) −17.8276 17.8276i −0.0325916 0.0325916i 0.690623 0.723215i \(-0.257336\pi\)
−0.723215 + 0.690623i \(0.757336\pi\)
\(548\) 232.107 + 866.235i 0.423553 + 1.58072i
\(549\) −115.334 + 66.5882i −0.210080 + 0.121290i
\(550\) 8.76146 25.3353i 0.0159299 0.0460642i
\(551\) −235.927 + 408.638i −0.428180 + 0.741629i
\(552\) −28.9567 28.9567i −0.0524578 0.0524578i
\(553\) −420.845 + 191.853i −0.761022 + 0.346931i
\(554\) 24.9386i 0.0450155i
\(555\) −258.118 + 412.463i −0.465078 + 0.743177i
\(556\) 201.140 + 348.385i 0.361763 + 0.626591i
\(557\) −189.707 + 707.997i −0.340587 + 1.27109i 0.557096 + 0.830448i \(0.311915\pi\)
−0.897683 + 0.440641i \(0.854751\pi\)
\(558\) −3.21310 11.9915i −0.00575825 0.0214901i
\(559\) 506.532i 0.906139i
\(560\) −531.179 70.2250i −0.948534 0.125402i
\(561\) −76.2729 −0.135959
\(562\) 83.1916 22.2911i 0.148028 0.0396639i
\(563\) −805.856 215.928i −1.43136 0.383532i −0.541861 0.840468i \(-0.682280\pi\)
−0.889499 + 0.456936i \(0.848947\pi\)
\(564\) −274.961 + 158.749i −0.487520 + 0.281470i
\(565\) −67.2542 292.199i −0.119034 0.517166i
\(566\) 43.4295 0.0767306
\(567\) −62.7107 6.03057i −0.110601 0.0106359i
\(568\) −114.909 + 114.909i −0.202305 + 0.202305i
\(569\) −394.493 227.761i −0.693309 0.400282i 0.111541 0.993760i \(-0.464421\pi\)
−0.804851 + 0.593478i \(0.797755\pi\)
\(570\) −23.6160 + 12.5366i −0.0414315 + 0.0219941i
\(571\) −79.5469 137.779i −0.139312 0.241295i 0.787925 0.615772i \(-0.211156\pi\)
−0.927236 + 0.374477i \(0.877822\pi\)
\(572\) −242.215 + 64.9012i −0.423452 + 0.113464i
\(573\) −316.734 + 316.734i −0.552765 + 0.552765i
\(574\) 27.6166 73.8917i 0.0481126 0.128731i
\(575\) 233.705 202.610i 0.406443 0.352365i
\(576\) −87.7633 + 152.010i −0.152367 + 0.263907i
\(577\) −193.065 + 720.527i −0.334601 + 1.24875i 0.569700 + 0.821852i \(0.307059\pi\)
−0.904301 + 0.426895i \(0.859607\pi\)
\(578\) 44.4749 + 11.9170i 0.0769462 + 0.0206177i
\(579\) 137.428 + 79.3438i 0.237353 + 0.137036i
\(580\) 724.382 + 25.7797i 1.24893 + 0.0444478i
\(581\) 107.198 + 640.109i 0.184507 + 1.10174i
\(582\) −52.3334 52.3334i −0.0899199 0.0899199i
\(583\) 70.2962 + 262.349i 0.120577 + 0.449998i
\(584\) 19.3192 11.1539i 0.0330808 0.0190992i
\(585\) −62.7347 + 204.708i −0.107239 + 0.349928i
\(586\) 19.8431 34.3692i 0.0338619 0.0586505i
\(587\) −198.400 198.400i −0.337990 0.337990i 0.517620 0.855611i \(-0.326818\pi\)
−0.855611 + 0.517620i \(0.826818\pi\)
\(588\) 187.156 + 277.324i 0.318293 + 0.471639i
\(589\) 220.672i 0.374656i
\(590\) −31.0801 135.033i −0.0526781 0.228870i
\(591\) −227.955 394.829i −0.385710 0.668070i
\(592\) 222.611 830.797i 0.376033 1.40337i
\(593\) 126.975 + 473.876i 0.214123 + 0.799116i 0.986474 + 0.163920i \(0.0524140\pi\)
−0.772351 + 0.635196i \(0.780919\pi\)
\(594\) 5.57183i 0.00938019i
\(595\) 342.913 44.9556i 0.576324 0.0755557i
\(596\) 1154.23 1.93662
\(597\) 453.040 121.392i 0.758860 0.203336i
\(598\) 41.0437 + 10.9976i 0.0686350 + 0.0183907i
\(599\) 821.554 474.325i 1.37154 0.791861i 0.380421 0.924814i \(-0.375779\pi\)
0.991122 + 0.132953i \(0.0424458\pi\)
\(600\) 68.5397 + 46.3637i 0.114233 + 0.0772729i
\(601\) 1121.80 1.86655 0.933275 0.359161i \(-0.116937\pi\)
0.933275 + 0.359161i \(0.116937\pi\)
\(602\) 24.7934 + 54.3865i 0.0411851 + 0.0903430i
\(603\) −149.682 + 149.682i −0.248230 + 0.248230i
\(604\) −708.202 408.881i −1.17252 0.676955i
\(605\) 237.113 + 446.663i 0.391923 + 0.738287i
\(606\) −23.9965 41.5631i −0.0395981 0.0685859i
\(607\) 293.221 78.5682i 0.483065 0.129437i −0.00906430 0.999959i \(-0.502885\pi\)
0.492130 + 0.870522i \(0.336219\pi\)
\(608\) 102.773 102.773i 0.169035 0.169035i
\(609\) −283.647 344.005i −0.465759 0.564869i
\(610\) −36.3975 39.0837i −0.0596680 0.0640717i
\(611\) 331.862 574.802i 0.543146 0.940756i
\(612\) 30.2456 112.878i 0.0494209 0.184441i
\(613\) −306.525 82.1330i −0.500040 0.133985i −2.15317e−5 1.00000i \(-0.500007\pi\)
−0.500019 + 0.866015i \(0.666674\pi\)
\(614\) 30.1516 + 17.4080i 0.0491069 + 0.0283519i
\(615\) 296.822 276.421i 0.482637 0.449465i
\(616\) 45.9951 37.9249i 0.0746674 0.0615665i
\(617\) −405.225 405.225i −0.656767 0.656767i 0.297847 0.954614i \(-0.403731\pi\)
−0.954614 + 0.297847i \(0.903731\pi\)
\(618\) 10.4230 + 38.8992i 0.0168657 + 0.0629438i
\(619\) −906.466 + 523.349i −1.46440 + 0.845474i −0.999210 0.0397346i \(-0.987349\pi\)
−0.465194 + 0.885209i \(0.654015\pi\)
\(620\) −299.413 + 158.945i −0.482925 + 0.256363i
\(621\) −32.1438 + 55.6747i −0.0517613 + 0.0896533i
\(622\) −1.82031 1.82031i −0.00292655 0.00292655i
\(623\) 80.6532 36.7678i 0.129459 0.0590173i
\(624\) 378.470i 0.606522i
\(625\) −386.101 + 491.478i −0.617762 + 0.786365i
\(626\) 57.4444 + 99.4966i 0.0917642 + 0.158940i
\(627\) −25.6338 + 95.6668i −0.0408833 + 0.152579i
\(628\) 77.2841 + 288.428i 0.123064 + 0.459281i
\(629\) 555.177i 0.882635i
\(630\) −3.28406 25.0502i −0.00521280 0.0397623i
\(631\) −340.356 −0.539392 −0.269696 0.962946i \(-0.586923\pi\)
−0.269696 + 0.962946i \(0.586923\pi\)
\(632\) −121.963 + 32.6799i −0.192979 + 0.0517087i
\(633\) 492.870 + 132.064i 0.778625 + 0.208632i
\(634\) −15.4364 + 8.91221i −0.0243476 + 0.0140571i
\(635\) 429.129 98.7708i 0.675793 0.155545i
\(636\) −416.132 −0.654295
\(637\) −628.700 306.446i −0.986971 0.481077i
\(638\) −27.8834 + 27.8834i −0.0437044 + 0.0437044i
\(639\) 220.935 + 127.557i 0.345751 + 0.199619i
\(640\) −283.907 87.0060i −0.443604 0.135947i
\(641\) 29.6837 + 51.4137i 0.0463085 + 0.0802086i 0.888251 0.459359i \(-0.151921\pi\)
−0.841942 + 0.539568i \(0.818588\pi\)
\(642\) 49.7193 13.3223i 0.0774445 0.0207512i
\(643\) −147.606 + 147.606i −0.229558 + 0.229558i −0.812508 0.582950i \(-0.801898\pi\)
0.582950 + 0.812508i \(0.301898\pi\)
\(644\) 336.717 56.3897i 0.522852 0.0875616i
\(645\) −10.9304 + 307.134i −0.0169464 + 0.476176i
\(646\) −15.2536 + 26.4200i −0.0236124 + 0.0408979i
\(647\) 188.763 704.471i 0.291750 1.08883i −0.652014 0.758207i \(-0.726075\pi\)
0.943764 0.330620i \(-0.107258\pi\)
\(648\) −16.6129 4.45140i −0.0256371 0.00686945i
\(649\) −444.510 256.638i −0.684915 0.395436i
\(650\) −85.6442 6.10364i −0.131760 0.00939021i
\(651\) 195.322 + 73.0004i 0.300033 + 0.112136i
\(652\) 547.551 + 547.551i 0.839802 + 0.839802i
\(653\) 71.0567 + 265.187i 0.108816 + 0.406106i 0.998750 0.0499826i \(-0.0159166\pi\)
−0.889934 + 0.456089i \(0.849250\pi\)
\(654\) 17.9376 10.3563i 0.0274276 0.0158353i
\(655\) 35.9776 + 67.7731i 0.0549277 + 0.103470i
\(656\) −358.487 + 620.917i −0.546474 + 0.946520i
\(657\) −24.7632 24.7632i −0.0376913 0.0376913i
\(658\) −7.49706 + 77.9605i −0.0113937 + 0.118481i
\(659\) 153.073i 0.232281i 0.993233 + 0.116140i \(0.0370523\pi\)
−0.993233 + 0.116140i \(0.962948\pi\)
\(660\) 148.266 34.1258i 0.224646 0.0517058i
\(661\) −427.398 740.276i −0.646594 1.11993i −0.983931 0.178549i \(-0.942860\pi\)
0.337337 0.941384i \(-0.390474\pi\)
\(662\) −23.2240 + 86.6732i −0.0350816 + 0.130926i
\(663\) 63.2279 + 235.970i 0.0953663 + 0.355912i
\(664\) 177.182i 0.266841i
\(665\) 58.8599 445.214i 0.0885112 0.669495i
\(666\) 40.5564 0.0608955
\(667\) −439.474 + 117.757i −0.658882 + 0.176547i
\(668\) −1019.03 273.049i −1.52550 0.408756i
\(669\) 19.0371 10.9911i 0.0284560 0.0164291i
\(670\) −71.9609 45.0330i −0.107404 0.0672134i
\(671\) −197.833 −0.294833
\(672\) 56.9685 + 124.965i 0.0847745 + 0.185960i
\(673\) −26.8360 + 26.8360i −0.0398752 + 0.0398752i −0.726763 0.686888i \(-0.758976\pi\)
0.686888 + 0.726763i \(0.258976\pi\)
\(674\) −0.447934 0.258615i −0.000664591 0.000383702i
\(675\) 42.4563 122.770i 0.0628983 0.181881i
\(676\) 68.4690 + 118.592i 0.101286 + 0.175432i
\(677\) 235.342 63.0598i 0.347625 0.0931459i −0.0807817 0.996732i \(-0.525742\pi\)
0.428407 + 0.903586i \(0.359075\pi\)
\(678\) −17.6720 + 17.6720i −0.0260649 + 0.0260649i
\(679\) 1226.03 205.323i 1.80565 0.302390i
\(680\) 94.3561 + 3.35800i 0.138759 + 0.00493823i
\(681\) 311.553 539.626i 0.457494 0.792403i
\(682\) 4.77306 17.8133i 0.00699862 0.0261192i
\(683\) −1285.99 344.581i −1.88286 0.504511i −0.999348 0.0361036i \(-0.988505\pi\)
−0.883513 0.468407i \(-0.844828\pi\)
\(684\) −131.415 75.8722i −0.192127 0.110924i
\(685\) 775.187 + 832.398i 1.13166 + 1.21518i
\(686\) 82.5035 + 2.12995i 0.120267 + 0.00310489i
\(687\) −284.753 284.753i −0.414488 0.414488i
\(688\) −140.606 524.748i −0.204369 0.762715i
\(689\) 753.370 434.958i 1.09342 0.631289i
\(690\) −24.6494 7.55406i −0.0357238 0.0109479i
\(691\) 260.502 451.203i 0.376993 0.652972i −0.613630 0.789594i \(-0.710291\pi\)
0.990623 + 0.136622i \(0.0436246\pi\)
\(692\) −532.551 532.551i −0.769582 0.769582i
\(693\) −76.1968 54.3365i −0.109952 0.0784076i
\(694\) 50.4544i 0.0727008i
\(695\) 432.523 + 270.672i 0.622336 + 0.389456i
\(696\) −60.8602 105.413i −0.0874428 0.151455i
\(697\) 119.779 447.021i 0.171849 0.641350i
\(698\) 15.9451 + 59.5079i 0.0228440 + 0.0852549i
\(699\) 57.0571i 0.0816268i
\(700\) −646.472 + 240.814i −0.923532 + 0.344020i
\(701\) −387.575 −0.552889 −0.276444 0.961030i \(-0.589156\pi\)
−0.276444 + 0.961030i \(0.589156\pi\)
\(702\) 17.2379 4.61887i 0.0245554 0.00657959i
\(703\) 696.342 + 186.584i 0.990529 + 0.265411i
\(704\) −225.811 + 130.372i −0.320755 + 0.185188i
\(705\) −213.627 + 341.368i −0.303017 + 0.484210i
\(706\) −0.771879 −0.00109331
\(707\) 802.404 + 77.1630i 1.13494 + 0.109141i
\(708\) 556.072 556.072i 0.785413 0.785413i
\(709\) −13.1567 7.59601i −0.0185567 0.0107137i 0.490693 0.871333i \(-0.336744\pi\)
−0.509250 + 0.860619i \(0.670077\pi\)
\(710\) −29.9769 + 97.8166i −0.0422210 + 0.137770i
\(711\) 99.1099 + 171.663i 0.139395 + 0.241439i
\(712\) 23.3737 6.26296i 0.0328282 0.00879629i
\(713\) 150.458 150.458i 0.211021 0.211021i
\(714\) −18.3389 22.2413i −0.0256847 0.0311502i
\(715\) −232.753 + 216.756i −0.325529 + 0.303155i
\(716\) 359.822 623.230i 0.502545 0.870433i
\(717\) −59.8720 + 223.446i −0.0835036 + 0.311640i
\(718\) −71.9873 19.2890i −0.100261 0.0268648i
\(719\) −35.5781 20.5410i −0.0494827 0.0285689i 0.475055 0.879956i \(-0.342428\pi\)
−0.524537 + 0.851387i \(0.675762\pi\)
\(720\) −8.16700 + 229.484i −0.0113430 + 0.318727i
\(721\) −633.607 236.807i −0.878789 0.328442i
\(722\) −33.4093 33.4093i −0.0462733 0.0462733i
\(723\) −206.930 772.273i −0.286210 1.06815i
\(724\) 352.398 203.457i 0.486737 0.281018i
\(725\) 826.850 401.917i 1.14048 0.554369i
\(726\) 21.0754 36.5036i 0.0290294 0.0502804i
\(727\) −198.452 198.452i −0.272974 0.272974i 0.557322 0.830296i \(-0.311829\pi\)
−0.830296 + 0.557322i \(0.811829\pi\)
\(728\) −155.459 110.859i −0.213543 0.152279i
\(729\) 27.0000i 0.0370370i
\(730\) 7.45016 11.9051i 0.0102057 0.0163083i
\(731\) 175.331 + 303.682i 0.239850 + 0.415433i
\(732\) 78.4496 292.778i 0.107172 0.399970i
\(733\) −68.7887 256.723i −0.0938454 0.350236i 0.902996 0.429648i \(-0.141362\pi\)
−0.996842 + 0.0794121i \(0.974696\pi\)
\(734\) 84.4626i 0.115072i
\(735\) 374.597 + 199.379i 0.509656 + 0.271264i
\(736\) 140.145 0.190414
\(737\) −303.740 + 81.3868i −0.412130 + 0.110430i
\(738\) −32.6554 8.74999i −0.0442485 0.0118564i
\(739\) 990.596 571.921i 1.34045 0.773912i 0.353581 0.935404i \(-0.384964\pi\)
0.986874 + 0.161492i \(0.0516306\pi\)
\(740\) −248.396 1079.21i −0.335671 1.45839i
\(741\) 317.219 0.428096
\(742\) −59.5994 + 83.5771i −0.0803227 + 0.112638i
\(743\) −43.0155 + 43.0155i −0.0578943 + 0.0578943i −0.735461 0.677567i \(-0.763034\pi\)
0.677567 + 0.735461i \(0.263034\pi\)
\(744\) 49.2985 + 28.4625i 0.0662615 + 0.0382561i
\(745\) 1293.07 686.431i 1.73566 0.921384i
\(746\) −11.9341 20.6705i −0.0159975 0.0277085i
\(747\) 268.675 71.9912i 0.359672 0.0963737i
\(748\) 122.750 122.750i 0.164105 0.164105i
\(749\) −302.676 + 809.849i −0.404107 + 1.08124i
\(750\) 51.7983 + 5.54903i 0.0690644 + 0.00739871i
\(751\) −627.063 + 1086.11i −0.834971 + 1.44621i 0.0590826 + 0.998253i \(0.481182\pi\)
−0.894054 + 0.447960i \(0.852151\pi\)
\(752\) 184.240 687.594i 0.245000 0.914353i
\(753\) −210.737 56.4668i −0.279863 0.0749892i
\(754\) 109.379 + 63.1499i 0.145065 + 0.0837531i
\(755\) −1036.56 36.8896i −1.37292 0.0488604i
\(756\) 110.629 91.2186i 0.146335 0.120660i
\(757\) −686.443 686.443i −0.906795 0.906795i 0.0892176 0.996012i \(-0.471563\pi\)
−0.996012 + 0.0892176i \(0.971563\pi\)
\(758\) 29.0700 + 108.491i 0.0383509 + 0.143128i
\(759\) −82.7046 + 47.7495i −0.108965 + 0.0629111i
\(760\) 35.9231 117.219i 0.0472672 0.154236i