Properties

Label 105.3.v.a.37.16
Level 105
Weight 3
Character 105.37
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.16
Character \(\chi\) \(=\) 105.37
Dual form 105.3.v.a.88.16

$q$-expansion

\(f(q)\) \(=\) \(q+(3.52852 - 0.945463i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(8.09242 - 4.67216i) q^{4} +(3.83301 + 3.21062i) q^{5} -6.32716 q^{6} +(-6.80203 + 1.65300i) q^{7} +(13.8047 - 13.8047i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(3.52852 - 0.945463i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(8.09242 - 4.67216i) q^{4} +(3.83301 + 3.21062i) q^{5} -6.32716 q^{6} +(-6.80203 + 1.65300i) q^{7} +(13.8047 - 13.8047i) q^{8} +(2.59808 + 1.50000i) q^{9} +(16.5603 + 7.70474i) q^{10} +(-7.38858 - 12.7974i) q^{11} +(-15.6334 + 4.18894i) q^{12} +(-7.90282 + 7.90282i) q^{13} +(-22.4382 + 12.2637i) q^{14} +(-4.97347 - 7.08975i) q^{15} +(16.9695 - 29.3921i) q^{16} +(-2.21369 + 8.26159i) q^{17} +(10.5855 + 2.83639i) q^{18} +(7.14233 + 4.12363i) q^{19} +(46.0188 + 8.07322i) q^{20} +(12.1210 + 0.283745i) q^{21} +(-38.1702 - 38.1702i) q^{22} +(4.87235 + 18.1839i) q^{23} +(-29.2841 + 16.9072i) q^{24} +(4.38389 + 24.6126i) q^{25} +(-20.4134 + 35.3570i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(-47.3218 + 45.1569i) q^{28} +5.44111i q^{29} +(-24.2521 - 20.3141i) q^{30} +(-26.5427 - 45.9734i) q^{31} +(11.8767 - 44.3244i) q^{32} +(6.62442 + 24.7227i) q^{33} +31.2441i q^{34} +(-31.3794 - 15.5027i) q^{35} +28.0330 q^{36} +(34.5256 - 9.25110i) q^{37} +(29.1006 + 7.79747i) q^{38} +(16.7644 - 9.67894i) q^{39} +(97.2348 - 8.59191i) q^{40} -40.8709 q^{41} +(43.0375 - 10.4588i) q^{42} +(53.7395 - 53.7395i) q^{43} +(-119.583 - 69.0412i) q^{44} +(5.14252 + 14.0909i) q^{45} +(34.3844 + 59.5555i) q^{46} +(40.2908 - 10.7959i) q^{47} +(-41.5667 + 41.5667i) q^{48} +(43.5352 - 22.4875i) q^{49} +(38.7390 + 82.7012i) q^{50} +(7.40714 - 12.8295i) q^{51} +(-27.0297 + 100.876i) q^{52} +(-55.5377 - 14.8813i) q^{53} +(-16.4384 - 9.49074i) q^{54} +(12.7670 - 72.7744i) q^{55} +(-71.0806 + 116.719i) q^{56} +(-10.1008 - 10.1008i) q^{57} +(5.14437 + 19.1990i) q^{58} +(-14.5251 + 8.38608i) q^{59} +(-73.3719 - 34.1364i) q^{60} +(46.7481 - 80.9701i) q^{61} +(-137.123 - 137.123i) q^{62} +(-20.1517 - 5.90843i) q^{63} -31.8720i q^{64} +(-55.6645 + 4.91865i) q^{65} +(46.7487 + 80.9712i) q^{66} +(-28.2333 + 105.368i) q^{67} +(20.6854 + 77.1989i) q^{68} -32.6064i q^{69} +(-125.380 - 25.0336i) q^{70} +51.0976 q^{71} +(56.5726 - 15.1586i) q^{72} +(42.2429 + 11.3190i) q^{73} +(113.077 - 65.2853i) q^{74} +(3.69914 - 43.1430i) q^{75} +77.0650 q^{76} +(71.4114 + 74.8349i) q^{77} +(50.0024 - 50.0024i) q^{78} +(-24.7788 - 14.3061i) q^{79} +(159.411 - 58.1774i) q^{80} +(4.50000 + 7.79423i) q^{81} +(-144.213 + 38.6419i) q^{82} +(-34.5883 + 34.5883i) q^{83} +(99.4142 - 54.3352i) q^{84} +(-35.0099 + 24.5594i) q^{85} +(138.812 - 240.429i) q^{86} +(2.43918 - 9.10315i) q^{87} +(-278.660 - 74.6669i) q^{88} +(45.7486 + 26.4130i) q^{89} +(31.4679 + 44.8580i) q^{90} +(40.6919 - 66.8186i) q^{91} +(124.387 + 124.387i) q^{92} +(23.7976 + 88.8137i) q^{93} +(131.960 - 76.1869i) q^{94} +(14.1372 + 38.7372i) q^{95} +(-39.7401 + 68.8319i) q^{96} +(-33.9979 - 33.9979i) q^{97} +(132.353 - 120.508i) q^{98} -44.3315i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.52852 0.945463i 1.76426 0.472731i 0.776684 0.629890i \(-0.216900\pi\)
0.987573 + 0.157159i \(0.0502334\pi\)
\(3\) −1.67303 0.448288i −0.557678 0.149429i
\(4\) 8.09242 4.67216i 2.02310 1.16804i
\(5\) 3.83301 + 3.21062i 0.766602 + 0.642123i
\(6\) −6.32716 −1.05453
\(7\) −6.80203 + 1.65300i −0.971718 + 0.236143i
\(8\) 13.8047 13.8047i 1.72558 1.72558i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) 16.5603 + 7.70474i 1.65603 + 0.770474i
\(11\) −7.38858 12.7974i −0.671689 1.16340i −0.977425 0.211283i \(-0.932236\pi\)
0.305736 0.952116i \(-0.401098\pi\)
\(12\) −15.6334 + 4.18894i −1.30278 + 0.349079i
\(13\) −7.90282 + 7.90282i −0.607909 + 0.607909i −0.942399 0.334490i \(-0.891436\pi\)
0.334490 + 0.942399i \(0.391436\pi\)
\(14\) −22.4382 + 12.2637i −1.60273 + 0.875978i
\(15\) −4.97347 7.08975i −0.331564 0.472650i
\(16\) 16.9695 29.3921i 1.06060 1.83700i
\(17\) −2.21369 + 8.26159i −0.130217 + 0.485976i −0.999972 0.00750800i \(-0.997610\pi\)
0.869755 + 0.493484i \(0.164277\pi\)
\(18\) 10.5855 + 2.83639i 0.588086 + 0.157577i
\(19\) 7.14233 + 4.12363i 0.375912 + 0.217033i 0.676038 0.736867i \(-0.263695\pi\)
−0.300126 + 0.953900i \(0.597029\pi\)
\(20\) 46.0188 + 8.07322i 2.30094 + 0.403661i
\(21\) 12.1210 + 0.283745i 0.577192 + 0.0135116i
\(22\) −38.1702 38.1702i −1.73501 1.73501i
\(23\) 4.87235 + 18.1839i 0.211842 + 0.790603i 0.987255 + 0.159149i \(0.0508750\pi\)
−0.775413 + 0.631454i \(0.782458\pi\)
\(24\) −29.2841 + 16.9072i −1.22017 + 0.704466i
\(25\) 4.38389 + 24.6126i 0.175356 + 0.984505i
\(26\) −20.4134 + 35.3570i −0.785131 + 1.35989i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) −47.3218 + 45.1569i −1.69006 + 1.61275i
\(29\) 5.44111i 0.187624i 0.995590 + 0.0938122i \(0.0299053\pi\)
−0.995590 + 0.0938122i \(0.970095\pi\)
\(30\) −24.2521 20.3141i −0.808402 0.677136i
\(31\) −26.5427 45.9734i −0.856217 1.48301i −0.875511 0.483198i \(-0.839475\pi\)
0.0192943 0.999814i \(-0.493858\pi\)
\(32\) 11.8767 44.3244i 0.371146 1.38514i
\(33\) 6.62442 + 24.7227i 0.200740 + 0.749172i
\(34\) 31.2441i 0.918944i
\(35\) −31.3794 15.5027i −0.896553 0.442935i
\(36\) 28.0330 0.778693
\(37\) 34.5256 9.25110i 0.933124 0.250030i 0.239938 0.970788i \(-0.422873\pi\)
0.693186 + 0.720758i \(0.256206\pi\)
\(38\) 29.1006 + 7.79747i 0.765804 + 0.205197i
\(39\) 16.7644 9.67894i 0.429857 0.248178i
\(40\) 97.2348 8.59191i 2.43087 0.214798i
\(41\) −40.8709 −0.996850 −0.498425 0.866933i \(-0.666088\pi\)
−0.498425 + 0.866933i \(0.666088\pi\)
\(42\) 43.0375 10.4588i 1.02470 0.249019i
\(43\) 53.7395 53.7395i 1.24976 1.24976i 0.293927 0.955828i \(-0.405038\pi\)
0.955828 0.293927i \(-0.0949624\pi\)
\(44\) −119.583 69.0412i −2.71779 1.56912i
\(45\) 5.14252 + 14.0909i 0.114278 + 0.313132i
\(46\) 34.3844 + 59.5555i 0.747486 + 1.29468i
\(47\) 40.2908 10.7959i 0.857251 0.229700i 0.196684 0.980467i \(-0.436983\pi\)
0.660567 + 0.750767i \(0.270316\pi\)
\(48\) −41.5667 + 41.5667i −0.865972 + 0.865972i
\(49\) 43.5352 22.4875i 0.888473 0.458928i
\(50\) 38.7390 + 82.7012i 0.774779 + 1.65402i
\(51\) 7.40714 12.8295i 0.145238 0.251560i
\(52\) −27.0297 + 100.876i −0.519802 + 1.93993i
\(53\) −55.5377 14.8813i −1.04788 0.280779i −0.306505 0.951869i \(-0.599160\pi\)
−0.741376 + 0.671090i \(0.765826\pi\)
\(54\) −16.4384 9.49074i −0.304416 0.175754i
\(55\) 12.7670 72.7744i 0.232128 1.32317i
\(56\) −71.0806 + 116.719i −1.26930 + 2.08426i
\(57\) −10.1008 10.1008i −0.177207 0.177207i
\(58\) 5.14437 + 19.1990i 0.0886959 + 0.331018i
\(59\) −14.5251 + 8.38608i −0.246188 + 0.142137i −0.618018 0.786164i \(-0.712064\pi\)
0.371829 + 0.928301i \(0.378731\pi\)
\(60\) −73.3719 34.1364i −1.22286 0.568941i
\(61\) 46.7481 80.9701i 0.766363 1.32738i −0.173161 0.984894i \(-0.555398\pi\)
0.939523 0.342485i \(-0.111269\pi\)
\(62\) −137.123 137.123i −2.21165 2.21165i
\(63\) −20.1517 5.90843i −0.319868 0.0937845i
\(64\) 31.8720i 0.498000i
\(65\) −55.6645 + 4.91865i −0.856377 + 0.0756716i
\(66\) 46.7487 + 80.9712i 0.708314 + 1.22684i
\(67\) −28.2333 + 105.368i −0.421393 + 1.57266i 0.350284 + 0.936644i \(0.386085\pi\)
−0.771677 + 0.636015i \(0.780582\pi\)
\(68\) 20.6854 + 77.1989i 0.304197 + 1.13528i
\(69\) 32.6064i 0.472557i
\(70\) −125.380 25.0336i −1.79114 0.357623i
\(71\) 51.0976 0.719685 0.359842 0.933013i \(-0.382830\pi\)
0.359842 + 0.933013i \(0.382830\pi\)
\(72\) 56.5726 15.1586i 0.785730 0.210536i
\(73\) 42.2429 + 11.3190i 0.578670 + 0.155054i 0.536270 0.844046i \(-0.319833\pi\)
0.0424003 + 0.999101i \(0.486500\pi\)
\(74\) 113.077 65.2853i 1.52807 0.882234i
\(75\) 3.69914 43.1430i 0.0493219 0.575240i
\(76\) 77.0650 1.01401
\(77\) 71.4114 + 74.8349i 0.927421 + 0.971882i
\(78\) 50.0024 50.0024i 0.641057 0.641057i
\(79\) −24.7788 14.3061i −0.313656 0.181089i 0.334905 0.942252i \(-0.391296\pi\)
−0.648561 + 0.761162i \(0.724629\pi\)
\(80\) 159.411 58.1774i 1.99264 0.727218i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) −144.213 + 38.6419i −1.75870 + 0.471242i
\(83\) −34.5883 + 34.5883i −0.416726 + 0.416726i −0.884074 0.467348i \(-0.845210\pi\)
0.467348 + 0.884074i \(0.345210\pi\)
\(84\) 99.4142 54.3352i 1.18350 0.646848i
\(85\) −35.0099 + 24.5594i −0.411881 + 0.288935i
\(86\) 138.812 240.429i 1.61409 2.79569i
\(87\) 2.43918 9.10315i 0.0280366 0.104634i
\(88\) −278.660 74.6669i −3.16660 0.848487i
\(89\) 45.7486 + 26.4130i 0.514029 + 0.296775i 0.734488 0.678621i \(-0.237422\pi\)
−0.220459 + 0.975396i \(0.570756\pi\)
\(90\) 31.4679 + 44.8580i 0.349644 + 0.498422i
\(91\) 40.6919 66.8186i 0.447163 0.734270i
\(92\) 124.387 + 124.387i 1.35203 + 1.35203i
\(93\) 23.7976 + 88.8137i 0.255888 + 0.954986i
\(94\) 131.960 76.1869i 1.40383 0.810499i
\(95\) 14.1372 + 38.7372i 0.148813 + 0.407760i
\(96\) −39.7401 + 68.8319i −0.413960 + 0.716999i
\(97\) −33.9979 33.9979i −0.350494 0.350494i 0.509799 0.860293i \(-0.329720\pi\)
−0.860293 + 0.509799i \(0.829720\pi\)
\(98\) 132.353 120.508i 1.35055 1.22968i
\(99\) 44.3315i 0.447793i
\(100\) 150.470 + 178.693i 1.50470 + 1.78693i
\(101\) −9.50773 16.4679i −0.0941360 0.163048i 0.815112 0.579304i \(-0.196676\pi\)
−0.909248 + 0.416256i \(0.863342\pi\)
\(102\) 14.0063 52.2724i 0.137317 0.512474i
\(103\) −8.35972 31.1989i −0.0811623 0.302902i 0.913398 0.407069i \(-0.133449\pi\)
−0.994560 + 0.104167i \(0.966782\pi\)
\(104\) 218.192i 2.09800i
\(105\) 45.5490 + 40.0036i 0.433800 + 0.380986i
\(106\) −210.035 −1.98146
\(107\) −143.921 + 38.5636i −1.34506 + 0.360408i −0.858309 0.513134i \(-0.828485\pi\)
−0.486750 + 0.873541i \(0.661818\pi\)
\(108\) −46.9001 12.5668i −0.434260 0.116360i
\(109\) 111.636 64.4531i 1.02418 0.591313i 0.108871 0.994056i \(-0.465276\pi\)
0.915313 + 0.402743i \(0.131943\pi\)
\(110\) −23.7568 268.856i −0.215971 2.44415i
\(111\) −61.9096 −0.557744
\(112\) −66.8421 + 227.976i −0.596804 + 2.03550i
\(113\) −60.2587 + 60.2587i −0.533263 + 0.533263i −0.921542 0.388279i \(-0.873070\pi\)
0.388279 + 0.921542i \(0.373070\pi\)
\(114\) −45.1907 26.0908i −0.396409 0.228867i
\(115\) −39.7057 + 85.3422i −0.345267 + 0.742106i
\(116\) 25.4217 + 44.0317i 0.219153 + 0.379584i
\(117\) −32.3864 + 8.67790i −0.276806 + 0.0741701i
\(118\) −43.3234 + 43.3234i −0.367147 + 0.367147i
\(119\) 1.40116 59.8548i 0.0117744 0.502981i
\(120\) −166.529 29.2146i −1.38774 0.243455i
\(121\) −48.6822 + 84.3200i −0.402332 + 0.696859i
\(122\) 88.3972 329.903i 0.724567 2.70412i
\(123\) 68.3783 + 18.3219i 0.555921 + 0.148959i
\(124\) −429.590 248.024i −3.46443 2.00019i
\(125\) −62.2182 + 108.415i −0.497746 + 0.867323i
\(126\) −76.6917 1.79530i −0.608665 0.0142484i
\(127\) 66.3619 + 66.3619i 0.522534 + 0.522534i 0.918336 0.395802i \(-0.129533\pi\)
−0.395802 + 0.918336i \(0.629533\pi\)
\(128\) 17.3729 + 64.8366i 0.135726 + 0.506536i
\(129\) −113.999 + 65.8171i −0.883710 + 0.510210i
\(130\) −191.763 + 69.9842i −1.47510 + 0.538340i
\(131\) 0.764516 1.32418i 0.00583600 0.0101082i −0.863093 0.505046i \(-0.831476\pi\)
0.868929 + 0.494937i \(0.164809\pi\)
\(132\) 169.116 + 169.116i 1.28118 + 1.28118i
\(133\) −55.3987 16.2428i −0.416531 0.122126i
\(134\) 398.487i 2.97378i
\(135\) −2.28681 25.8799i −0.0169394 0.191703i
\(136\) 83.4892 + 144.608i 0.613891 + 1.06329i
\(137\) −12.7240 + 47.4866i −0.0928759 + 0.346618i −0.996689 0.0813101i \(-0.974090\pi\)
0.903813 + 0.427928i \(0.140756\pi\)
\(138\) −30.8282 115.052i −0.223393 0.833712i
\(139\) 63.4936i 0.456789i 0.973569 + 0.228394i \(0.0733476\pi\)
−0.973569 + 0.228394i \(0.926652\pi\)
\(140\) −326.366 + 21.1548i −2.33119 + 0.151106i
\(141\) −72.2475 −0.512393
\(142\) 180.299 48.3109i 1.26971 0.340218i
\(143\) 159.526 + 42.7449i 1.11557 + 0.298915i
\(144\) 88.1762 50.9086i 0.612335 0.353532i
\(145\) −17.4693 + 20.8558i −0.120478 + 0.143833i
\(146\) 159.757 1.09422
\(147\) −82.9167 + 18.1060i −0.564059 + 0.123170i
\(148\) 236.173 236.173i 1.59576 1.59576i
\(149\) 30.8385 + 17.8046i 0.206970 + 0.119494i 0.599902 0.800073i \(-0.295206\pi\)
−0.392932 + 0.919567i \(0.628539\pi\)
\(150\) −27.7376 155.728i −0.184917 1.03819i
\(151\) 21.9235 + 37.9726i 0.145189 + 0.251474i 0.929443 0.368965i \(-0.120288\pi\)
−0.784255 + 0.620439i \(0.786954\pi\)
\(152\) 155.523 41.6722i 1.02318 0.274159i
\(153\) −18.1437 + 18.1437i −0.118586 + 0.118586i
\(154\) 322.730 + 196.539i 2.09565 + 1.27623i
\(155\) 45.8643 261.435i 0.295899 1.68668i
\(156\) 90.4431 156.652i 0.579763 1.00418i
\(157\) −20.5032 + 76.5190i −0.130594 + 0.487382i −0.999977 0.00675588i \(-0.997850\pi\)
0.869384 + 0.494138i \(0.164516\pi\)
\(158\) −100.958 27.0517i −0.638977 0.171213i
\(159\) 86.2452 + 49.7937i 0.542423 + 0.313168i
\(160\) 187.832 131.764i 1.17395 0.823526i
\(161\) −63.1998 115.633i −0.392546 0.718219i
\(162\) 23.2475 + 23.2475i 0.143503 + 0.143503i
\(163\) −23.5853 88.0217i −0.144695 0.540010i −0.999769 0.0215035i \(-0.993155\pi\)
0.855073 0.518507i \(-0.173512\pi\)
\(164\) −330.744 + 190.955i −2.01673 + 1.16436i
\(165\) −53.9835 + 116.031i −0.327173 + 0.703216i
\(166\) −89.3433 + 154.747i −0.538213 + 0.932212i
\(167\) −189.696 189.696i −1.13590 1.13590i −0.989177 0.146725i \(-0.953127\pi\)
−0.146725 0.989177i \(-0.546873\pi\)
\(168\) 171.244 163.410i 1.01931 0.972677i
\(169\) 44.0909i 0.260893i
\(170\) −100.313 + 119.759i −0.590075 + 0.704464i
\(171\) 12.3709 + 21.4270i 0.0723443 + 0.125304i
\(172\) 183.803 685.962i 1.06862 3.98815i
\(173\) 57.5035 + 214.606i 0.332390 + 1.24050i 0.906671 + 0.421839i \(0.138615\pi\)
−0.574280 + 0.818659i \(0.694718\pi\)
\(174\) 34.4268i 0.197855i
\(175\) −70.5040 160.169i −0.402880 0.915253i
\(176\) −501.523 −2.84956
\(177\) 28.0604 7.51875i 0.158533 0.0424788i
\(178\) 186.397 + 49.9449i 1.04717 + 0.280589i
\(179\) 3.21768 1.85773i 0.0179759 0.0103784i −0.490985 0.871168i \(-0.663363\pi\)
0.508961 + 0.860790i \(0.330030\pi\)
\(180\) 107.451 + 90.0031i 0.596948 + 0.500017i
\(181\) −127.476 −0.704286 −0.352143 0.935946i \(-0.614547\pi\)
−0.352143 + 0.935946i \(0.614547\pi\)
\(182\) 80.4074 274.243i 0.441799 1.50683i
\(183\) −114.509 + 114.509i −0.625732 + 0.625732i
\(184\) 318.283 + 183.761i 1.72980 + 0.998701i
\(185\) 162.039 + 75.3888i 0.875884 + 0.407507i
\(186\) 167.940 + 290.881i 0.902904 + 1.56388i
\(187\) 122.083 32.7120i 0.652849 0.174930i
\(188\) 275.610 275.610i 1.46601 1.46601i
\(189\) 31.0658 + 18.9187i 0.164369 + 0.100099i
\(190\) 86.5080 + 123.318i 0.455305 + 0.649045i
\(191\) −91.2245 + 158.005i −0.477615 + 0.827254i −0.999671 0.0256577i \(-0.991832\pi\)
0.522056 + 0.852911i \(0.325165\pi\)
\(192\) −14.2878 + 53.3229i −0.0744158 + 0.277723i
\(193\) −42.4123 11.3644i −0.219753 0.0588827i 0.147263 0.989097i \(-0.452954\pi\)
−0.367016 + 0.930215i \(0.619620\pi\)
\(194\) −152.106 87.8185i −0.784052 0.452673i
\(195\) 95.3335 + 16.7246i 0.488890 + 0.0857674i
\(196\) 247.240 385.382i 1.26143 1.96623i
\(197\) 101.036 + 101.036i 0.512872 + 0.512872i 0.915405 0.402533i \(-0.131870\pi\)
−0.402533 + 0.915405i \(0.631870\pi\)
\(198\) −41.9138 156.424i −0.211686 0.790022i
\(199\) −147.574 + 85.2021i −0.741580 + 0.428151i −0.822644 0.568558i \(-0.807502\pi\)
0.0810635 + 0.996709i \(0.474168\pi\)
\(200\) 400.287 + 279.251i 2.00144 + 1.39625i
\(201\) 94.4705 163.628i 0.470002 0.814068i
\(202\) −49.1179 49.1179i −0.243158 0.243158i
\(203\) −8.99415 37.0106i −0.0443061 0.182318i
\(204\) 138.429i 0.678575i
\(205\) −156.658 131.221i −0.764187 0.640101i
\(206\) −58.9948 102.182i −0.286382 0.496029i
\(207\) −14.6171 + 54.5516i −0.0706138 + 0.263534i
\(208\) 98.1732 + 366.387i 0.471987 + 1.76148i
\(209\) 121.871i 0.583115i
\(210\) 198.542 + 98.0883i 0.945440 + 0.467087i
\(211\) −97.2989 −0.461132 −0.230566 0.973057i \(-0.574058\pi\)
−0.230566 + 0.973057i \(0.574058\pi\)
\(212\) −518.962 + 139.055i −2.44793 + 0.655922i
\(213\) −85.4880 22.9064i −0.401352 0.107542i
\(214\) −471.368 + 272.145i −2.20266 + 1.27170i
\(215\) 378.521 33.4470i 1.76056 0.155568i
\(216\) −101.443 −0.469644
\(217\) 256.538 + 268.837i 1.18220 + 1.23888i
\(218\) 332.972 332.972i 1.52739 1.52739i
\(219\) −65.5997 37.8740i −0.299542 0.172941i
\(220\) −236.697 648.570i −1.07590 2.94805i
\(221\) −47.7955 82.7842i −0.216269 0.374589i
\(222\) −218.449 + 58.5332i −0.984004 + 0.263663i
\(223\) 46.8438 46.8438i 0.210062 0.210062i −0.594232 0.804294i \(-0.702544\pi\)
0.804294 + 0.594232i \(0.202544\pi\)
\(224\) −7.51737 + 321.128i −0.0335597 + 1.43361i
\(225\) −25.5293 + 70.5213i −0.113463 + 0.313428i
\(226\) −155.652 + 269.596i −0.688723 + 1.19290i
\(227\) −35.8205 + 133.684i −0.157799 + 0.588916i 0.841050 + 0.540958i \(0.181938\pi\)
−0.998849 + 0.0479581i \(0.984729\pi\)
\(228\) −128.932 34.5473i −0.565492 0.151523i
\(229\) 261.304 + 150.864i 1.14106 + 0.658793i 0.946694 0.322135i \(-0.104401\pi\)
0.194370 + 0.980928i \(0.437734\pi\)
\(230\) −59.4142 + 338.671i −0.258322 + 1.47248i
\(231\) −85.9260 157.214i −0.371974 0.680581i
\(232\) 75.1126 + 75.1126i 0.323761 + 0.323761i
\(233\) −61.4371 229.286i −0.263679 0.984062i −0.963054 0.269307i \(-0.913205\pi\)
0.699376 0.714754i \(-0.253461\pi\)
\(234\) −106.071 + 61.2402i −0.453295 + 0.261710i
\(235\) 189.096 + 87.9775i 0.804665 + 0.374372i
\(236\) −78.3622 + 135.727i −0.332043 + 0.575116i
\(237\) 35.0426 + 35.0426i 0.147859 + 0.147859i
\(238\) −51.6465 212.523i −0.217002 0.892955i
\(239\) 414.515i 1.73437i −0.497984 0.867186i \(-0.665926\pi\)
0.497984 0.867186i \(-0.334074\pi\)
\(240\) −292.780 + 25.8708i −1.21992 + 0.107795i
\(241\) −48.5940 84.1673i −0.201635 0.349242i 0.747420 0.664351i \(-0.231292\pi\)
−0.949055 + 0.315109i \(0.897959\pi\)
\(242\) −92.0544 + 343.552i −0.380390 + 1.41963i
\(243\) −4.03459 15.0573i −0.0166032 0.0619642i
\(244\) 873.659i 3.58057i
\(245\) 239.069 + 53.5800i 0.975794 + 0.218694i
\(246\) 258.596 1.05121
\(247\) −89.0328 + 23.8563i −0.360457 + 0.0965841i
\(248\) −1001.06 268.233i −4.03653 1.08159i
\(249\) 73.3728 42.3618i 0.294670 0.170128i
\(250\) −117.035 + 441.370i −0.468140 + 1.76548i
\(251\) 183.078 0.729394 0.364697 0.931126i \(-0.381173\pi\)
0.364697 + 0.931126i \(0.381173\pi\)
\(252\) −190.681 + 46.3385i −0.756671 + 0.183883i
\(253\) 196.706 196.706i 0.777496 0.777496i
\(254\) 296.902 + 171.416i 1.16890 + 0.674867i
\(255\) 69.5823 25.3942i 0.272872 0.0995853i
\(256\) 186.345 + 322.759i 0.727911 + 1.26078i
\(257\) −157.493 + 42.2001i −0.612813 + 0.164203i −0.551858 0.833938i \(-0.686081\pi\)
−0.0609543 + 0.998141i \(0.519414\pi\)
\(258\) −340.018 + 340.018i −1.31790 + 1.31790i
\(259\) −219.552 + 119.997i −0.847691 + 0.463309i
\(260\) −427.480 + 299.877i −1.64415 + 1.15337i
\(261\) −8.16166 + 14.1364i −0.0312707 + 0.0541625i
\(262\) 1.44564 5.39521i 0.00551772 0.0205924i
\(263\) −396.959 106.365i −1.50935 0.404429i −0.593129 0.805107i \(-0.702108\pi\)
−0.916219 + 0.400679i \(0.868774\pi\)
\(264\) 432.736 + 249.840i 1.63915 + 0.946364i
\(265\) −165.098 235.350i −0.623012 0.888114i
\(266\) −210.832 4.93542i −0.792602 0.0185542i
\(267\) −64.6983 64.6983i −0.242316 0.242316i
\(268\) 263.821 + 984.594i 0.984407 + 3.67386i
\(269\) 63.6605 36.7544i 0.236656 0.136633i −0.376983 0.926220i \(-0.623038\pi\)
0.613639 + 0.789587i \(0.289705\pi\)
\(270\) −32.5376 89.1556i −0.120510 0.330206i
\(271\) 208.069 360.386i 0.767782 1.32984i −0.170981 0.985274i \(-0.554694\pi\)
0.938763 0.344563i \(-0.111973\pi\)
\(272\) 205.260 + 205.260i 0.754632 + 0.754632i
\(273\) −98.0327 + 93.5480i −0.359094 + 0.342667i
\(274\) 179.587i 0.655428i
\(275\) 282.587 237.955i 1.02759 0.865290i
\(276\) −152.342 263.865i −0.551966 0.956032i
\(277\) 80.0217 298.645i 0.288887 1.07814i −0.657065 0.753834i \(-0.728202\pi\)
0.945952 0.324307i \(-0.105131\pi\)
\(278\) 60.0309 + 224.038i 0.215938 + 0.805893i
\(279\) 159.256i 0.570811i
\(280\) −647.192 + 219.172i −2.31140 + 0.782755i
\(281\) 61.2527 0.217981 0.108991 0.994043i \(-0.465238\pi\)
0.108991 + 0.994043i \(0.465238\pi\)
\(282\) −254.926 + 68.3073i −0.903994 + 0.242224i
\(283\) −152.506 40.8640i −0.538892 0.144396i −0.0209006 0.999782i \(-0.506653\pi\)
−0.517991 + 0.855386i \(0.673320\pi\)
\(284\) 413.503 238.736i 1.45600 0.840621i
\(285\) −6.28664 71.1461i −0.0220584 0.249635i
\(286\) 603.304 2.10945
\(287\) 278.005 67.5595i 0.968658 0.235399i
\(288\) 97.3431 97.3431i 0.337997 0.337997i
\(289\) 186.928 + 107.923i 0.646809 + 0.373436i
\(290\) −41.9223 + 90.1066i −0.144560 + 0.310712i
\(291\) 41.6388 + 72.1205i 0.143089 + 0.247837i
\(292\) 394.732 105.768i 1.35182 0.362219i
\(293\) 37.4650 37.4650i 0.127867 0.127867i −0.640277 0.768144i \(-0.721180\pi\)
0.768144 + 0.640277i \(0.221180\pi\)
\(294\) −275.454 + 142.282i −0.936919 + 0.483952i
\(295\) −82.5994 14.4907i −0.279998 0.0491209i
\(296\) 348.906 604.322i 1.17874 2.04163i
\(297\) −19.8733 + 74.1680i −0.0669133 + 0.249724i
\(298\) 125.648 + 33.6672i 0.421637 + 0.112977i
\(299\) −182.209 105.199i −0.609395 0.351835i
\(300\) −171.636 366.414i −0.572120 1.22138i
\(301\) −276.706 + 454.369i −0.919289 + 1.50953i
\(302\) 113.259 + 113.259i 0.375030 + 0.375030i
\(303\) 8.52440 + 31.8135i 0.0281333 + 0.104995i
\(304\) 242.404 139.952i 0.797381 0.460368i
\(305\) 439.150 160.269i 1.43984 0.525472i
\(306\) −46.8661 + 81.1746i −0.153157 + 0.265276i
\(307\) 293.400 + 293.400i 0.955699 + 0.955699i 0.999059 0.0433607i \(-0.0138065\pi\)
−0.0433607 + 0.999059i \(0.513806\pi\)
\(308\) 927.532 + 271.950i 3.01147 + 0.882955i
\(309\) 55.9443i 0.181050i
\(310\) −85.3440 965.839i −0.275303 3.11561i
\(311\) 133.293 + 230.871i 0.428596 + 0.742351i 0.996749 0.0805727i \(-0.0256749\pi\)
−0.568152 + 0.822923i \(0.692342\pi\)
\(312\) 97.8126 365.042i 0.313502 1.17000i
\(313\) −57.2788 213.767i −0.182999 0.682963i −0.995050 0.0993760i \(-0.968315\pi\)
0.812051 0.583587i \(-0.198351\pi\)
\(314\) 289.383i 0.921603i
\(315\) −58.2719 87.3464i −0.184990 0.277290i
\(316\) −267.361 −0.846079
\(317\) 446.075 119.525i 1.40718 0.377052i 0.526260 0.850324i \(-0.323594\pi\)
0.880917 + 0.473272i \(0.156927\pi\)
\(318\) 351.396 + 94.1562i 1.10502 + 0.296089i
\(319\) 69.6320 40.2020i 0.218282 0.126025i
\(320\) 102.329 122.166i 0.319777 0.381768i
\(321\) 258.073 0.803965
\(322\) −332.329 348.261i −1.03208 1.08155i
\(323\) −49.8786 + 49.8786i −0.154423 + 0.154423i
\(324\) 72.8318 + 42.0494i 0.224789 + 0.129782i
\(325\) −229.154 159.864i −0.705090 0.491889i
\(326\) −166.442 288.287i −0.510560 0.884315i
\(327\) −215.664 + 57.7871i −0.659524 + 0.176719i
\(328\) −564.208 + 564.208i −1.72015 + 1.72015i
\(329\) −256.214 + 140.035i −0.778764 + 0.425637i
\(330\) −80.7791 + 460.455i −0.244785 + 1.39532i
\(331\) −228.038 + 394.974i −0.688937 + 1.19327i 0.283245 + 0.959048i \(0.408589\pi\)
−0.972182 + 0.234226i \(0.924744\pi\)
\(332\) −118.301 + 441.505i −0.356328 + 1.32983i
\(333\) 103.577 + 27.7533i 0.311041 + 0.0833433i
\(334\) −848.694 489.994i −2.54100 1.46705i
\(335\) −446.515 + 313.231i −1.33288 + 0.935017i
\(336\) 214.028 351.447i 0.636988 1.04597i
\(337\) −334.947 334.947i −0.993908 0.993908i 0.00607399 0.999982i \(-0.498067\pi\)
−0.999982 + 0.00607399i \(0.998067\pi\)
\(338\) 41.6863 + 155.575i 0.123332 + 0.460282i
\(339\) 127.828 73.8016i 0.377074 0.217704i
\(340\) −168.569 + 362.317i −0.495791 + 1.06564i
\(341\) −392.226 + 679.355i −1.15022 + 1.99224i
\(342\) 63.9093 + 63.9093i 0.186869 + 0.186869i
\(343\) −258.956 + 224.924i −0.754973 + 0.655756i
\(344\) 1483.71i 4.31311i
\(345\) 104.687 124.981i 0.303440 0.362263i
\(346\) 405.804 + 702.874i 1.17284 + 2.03143i
\(347\) 21.8916 81.7004i 0.0630881 0.235448i −0.927181 0.374614i \(-0.877775\pi\)
0.990269 + 0.139166i \(0.0444421\pi\)
\(348\) −22.7925 85.0628i −0.0654957 0.244433i
\(349\) 1.96290i 0.00562435i 0.999996 + 0.00281218i \(0.000895145\pi\)
−0.999996 + 0.00281218i \(0.999105\pi\)
\(350\) −400.209 498.501i −1.14345 1.42429i
\(351\) 58.0736 0.165452
\(352\) −654.988 + 175.504i −1.86076 + 0.498590i
\(353\) −424.231 113.672i −1.20179 0.322018i −0.398253 0.917276i \(-0.630383\pi\)
−0.803535 + 0.595258i \(0.797050\pi\)
\(354\) 91.9028 53.0601i 0.259612 0.149887i
\(355\) 195.858 + 164.055i 0.551711 + 0.462126i
\(356\) 493.622 1.38658
\(357\) −29.1763 + 99.5109i −0.0817265 + 0.278742i
\(358\) 9.59723 9.59723i 0.0268079 0.0268079i
\(359\) −206.235 119.070i −0.574471 0.331671i 0.184462 0.982840i \(-0.440946\pi\)
−0.758933 + 0.651169i \(0.774279\pi\)
\(360\) 265.511 + 123.530i 0.737532 + 0.343138i
\(361\) −146.491 253.731i −0.405793 0.702855i
\(362\) −449.800 + 120.524i −1.24254 + 0.332938i
\(363\) 119.246 119.246i 0.328503 0.328503i
\(364\) 17.1085 730.843i 0.0470014 2.00781i
\(365\) 125.577 + 179.012i 0.344046 + 0.490443i
\(366\) −295.783 + 512.311i −0.808150 + 1.39976i
\(367\) 99.8556 372.666i 0.272086 1.01544i −0.685683 0.727901i \(-0.740496\pi\)
0.957769 0.287539i \(-0.0928371\pi\)
\(368\) 617.143 + 165.363i 1.67702 + 0.449356i
\(369\) −106.186 61.3063i −0.287766 0.166142i
\(370\) 643.033 + 112.809i 1.73793 + 0.304890i
\(371\) 402.368 + 9.41913i 1.08455 + 0.0253885i
\(372\) 607.532 + 607.532i 1.63315 + 1.63315i
\(373\) −46.0346 171.804i −0.123417 0.460599i 0.876361 0.481655i \(-0.159964\pi\)
−0.999778 + 0.0210554i \(0.993297\pi\)
\(374\) 399.843 230.849i 1.06910 0.617245i
\(375\) 152.694 153.491i 0.407185 0.409309i
\(376\) 407.167 705.234i 1.08289 1.87562i
\(377\) −43.0001 43.0001i −0.114059 0.114059i
\(378\) 127.503 + 37.3836i 0.337309 + 0.0988983i
\(379\) 530.767i 1.40044i 0.713927 + 0.700220i \(0.246915\pi\)
−0.713927 + 0.700220i \(0.753085\pi\)
\(380\) 295.391 + 247.426i 0.777344 + 0.651121i
\(381\) −81.2764 140.775i −0.213324 0.369488i
\(382\) −172.499 + 643.774i −0.451567 + 1.68527i
\(383\) −24.7833 92.4927i −0.0647085 0.241495i 0.925995 0.377536i \(-0.123229\pi\)
−0.990703 + 0.136041i \(0.956562\pi\)
\(384\) 116.262i 0.302765i
\(385\) 33.4543 + 516.117i 0.0868942 + 1.34056i
\(386\) −160.397 −0.415537
\(387\) 220.228 59.0100i 0.569066 0.152481i
\(388\) −433.969 116.282i −1.11848 0.299695i
\(389\) −275.146 + 158.856i −0.707317 + 0.408370i −0.810067 0.586337i \(-0.800569\pi\)
0.102750 + 0.994707i \(0.467236\pi\)
\(390\) 352.198 31.1211i 0.903072 0.0797977i
\(391\) −161.014 −0.411799
\(392\) 290.556 911.421i 0.741215 2.32505i
\(393\) −1.87267 + 1.87267i −0.00476507 + 0.00476507i
\(394\) 452.032 + 260.981i 1.14729 + 0.662388i
\(395\) −49.0462 134.391i −0.124168 0.340229i
\(396\) −207.124 358.749i −0.523040 0.905931i
\(397\) 271.959 72.8713i 0.685036 0.183555i 0.100518 0.994935i \(-0.467950\pi\)
0.584519 + 0.811380i \(0.301283\pi\)
\(398\) −440.163 + 440.163i −1.10594 + 1.10594i
\(399\) 85.4024 + 52.0092i 0.214041 + 0.130349i
\(400\) 797.809 + 288.813i 1.99452 + 0.722032i
\(401\) −196.938 + 341.107i −0.491118 + 0.850642i −0.999948 0.0102254i \(-0.996745\pi\)
0.508829 + 0.860867i \(0.330078\pi\)
\(402\) 178.637 666.681i 0.444370 1.65841i
\(403\) 573.082 + 153.557i 1.42204 + 0.381034i
\(404\) −153.881 88.8433i −0.380894 0.219909i
\(405\) −7.77574 + 44.3231i −0.0191994 + 0.109440i
\(406\) −66.7281 122.089i −0.164355 0.300711i
\(407\) −373.485 373.485i −0.917654 0.917654i
\(408\) −74.8544 279.360i −0.183467 0.684707i
\(409\) 261.465 150.957i 0.639280 0.369088i −0.145057 0.989423i \(-0.546337\pi\)
0.784337 + 0.620335i \(0.213003\pi\)
\(410\) −676.836 314.899i −1.65082 0.768047i
\(411\) 42.5753 73.7427i 0.103590 0.179423i
\(412\) −213.417 213.417i −0.518001 0.518001i
\(413\) 84.9381 81.0524i 0.205661 0.196253i
\(414\) 206.306i 0.498324i
\(415\) −243.627 + 21.5275i −0.587052 + 0.0518734i
\(416\) 256.428 + 444.147i 0.616414 + 1.06766i
\(417\) 28.4634 106.227i 0.0682576 0.254741i
\(418\) −115.224 430.023i −0.275657 1.02876i
\(419\) 439.671i 1.04934i 0.851307 + 0.524668i \(0.175810\pi\)
−0.851307 + 0.524668i \(0.824190\pi\)
\(420\) 555.505 + 110.913i 1.32263 + 0.264079i
\(421\) −134.308 −0.319020 −0.159510 0.987196i \(-0.550991\pi\)
−0.159510 + 0.987196i \(0.550991\pi\)
\(422\) −343.321 + 91.9925i −0.813556 + 0.217992i
\(423\) 120.872 + 32.3877i 0.285750 + 0.0765666i
\(424\) −972.110 + 561.248i −2.29271 + 1.32370i
\(425\) −213.044 18.2667i −0.501280 0.0429805i
\(426\) −323.303 −0.758927
\(427\) −184.139 + 628.036i −0.431238 + 1.47081i
\(428\) −984.496 + 984.496i −2.30023 + 2.30023i
\(429\) −247.730 143.027i −0.577460 0.333397i
\(430\) 1303.99 475.895i 3.03254 1.10673i
\(431\) −369.794 640.501i −0.857990 1.48608i −0.873843 0.486208i \(-0.838380\pi\)
0.0158536 0.999874i \(-0.494953\pi\)
\(432\) −170.343 + 45.6434i −0.394313 + 0.105656i
\(433\) 419.987 419.987i 0.969947 0.969947i −0.0296144 0.999561i \(-0.509428\pi\)
0.999561 + 0.0296144i \(0.00942795\pi\)
\(434\) 1159.37 + 706.048i 2.67137 + 1.62684i
\(435\) 38.5761 27.0612i 0.0886807 0.0622096i
\(436\) 602.271 1043.16i 1.38136 2.39258i
\(437\) −40.1835 + 149.967i −0.0919532 + 0.343174i
\(438\) −267.278 71.6169i −0.610223 0.163509i
\(439\) −160.861 92.8731i −0.366426 0.211556i 0.305470 0.952202i \(-0.401186\pi\)
−0.671896 + 0.740646i \(0.734520\pi\)
\(440\) −828.381 1180.87i −1.88268 2.68380i
\(441\) 146.839 + 6.87856i 0.332968 + 0.0155976i
\(442\) −246.917 246.917i −0.558635 0.558635i
\(443\) 213.428 + 796.525i 0.481779 + 1.79802i 0.594145 + 0.804358i \(0.297491\pi\)
−0.112366 + 0.993667i \(0.535843\pi\)
\(444\) −500.998 + 289.252i −1.12837 + 0.651467i
\(445\) 90.5528 + 248.122i 0.203489 + 0.557578i
\(446\) 121.000 209.578i 0.271301 0.469907i
\(447\) −43.6123 43.6123i −0.0975666 0.0975666i
\(448\) 52.6844 + 216.794i 0.117599 + 0.483916i
\(449\) 116.438i 0.259328i −0.991558 0.129664i \(-0.958610\pi\)
0.991558 0.129664i \(-0.0413898\pi\)
\(450\) −23.4051 + 272.973i −0.0520112 + 0.606606i
\(451\) 301.978 + 523.040i 0.669573 + 1.15973i
\(452\) −206.101 + 769.178i −0.455975 + 1.70172i
\(453\) −19.6561 73.3575i −0.0433909 0.161937i
\(454\) 505.572i 1.11360i
\(455\) 370.501 125.470i 0.814288 0.275759i
\(456\) −278.876 −0.611569
\(457\) 85.9655 23.0344i 0.188108 0.0504035i −0.163535 0.986538i \(-0.552290\pi\)
0.351643 + 0.936134i \(0.385623\pi\)
\(458\) 1064.65 + 285.272i 2.32456 + 0.622865i
\(459\) 38.4886 22.2214i 0.0838532 0.0484127i
\(460\) 77.4175 + 876.136i 0.168299 + 1.90464i
\(461\) 556.638 1.20746 0.603729 0.797190i \(-0.293681\pi\)
0.603729 + 0.797190i \(0.293681\pi\)
\(462\) −451.831 473.493i −0.977990 1.02488i
\(463\) −154.534 + 154.534i −0.333767 + 0.333767i −0.854015 0.520248i \(-0.825840\pi\)
0.520248 + 0.854015i \(0.325840\pi\)
\(464\) 159.925 + 92.3330i 0.344667 + 0.198994i
\(465\) −193.930 + 416.828i −0.417055 + 0.896405i
\(466\) −433.563 750.954i −0.930394 1.61149i
\(467\) −0.763909 + 0.204689i −0.00163578 + 0.000438306i −0.259637 0.965706i \(-0.583603\pi\)
0.258001 + 0.966145i \(0.416936\pi\)
\(468\) −221.539 + 221.539i −0.473375 + 0.473375i
\(469\) 17.8703 763.387i 0.0381030 1.62769i
\(470\) 750.409 + 131.647i 1.59661 + 0.280099i
\(471\) 68.6050 118.827i 0.145658 0.252287i
\(472\) −84.7473 + 316.281i −0.179549 + 0.670088i
\(473\) −1084.78 290.667i −2.29341 0.614518i
\(474\) 156.780 + 90.5168i 0.330759 + 0.190964i
\(475\) −70.1821 + 193.869i −0.147752 + 0.408145i
\(476\) −268.312 490.916i −0.563681 1.03134i
\(477\) −121.969 121.969i −0.255701 0.255701i
\(478\) −391.909 1462.62i −0.819892 3.05988i
\(479\) −758.464 + 437.899i −1.58343 + 0.914195i −0.589079 + 0.808076i \(0.700509\pi\)
−0.994353 + 0.106119i \(0.966157\pi\)
\(480\) −373.317 + 136.243i −0.777744 + 0.283840i
\(481\) −199.740 + 345.959i −0.415259 + 0.719250i
\(482\) −251.042 251.042i −0.520834 0.520834i
\(483\) 53.8984 + 221.790i 0.111591 + 0.459192i
\(484\) 909.804i 1.87976i
\(485\) −21.1600 239.469i −0.0436290 0.493750i
\(486\) −28.4722 49.3153i −0.0585848 0.101472i
\(487\) −144.993 + 541.121i −0.297727 + 1.11113i 0.641301 + 0.767289i \(0.278395\pi\)
−0.939028 + 0.343841i \(0.888272\pi\)
\(488\) −472.423 1763.11i −0.968080 3.61292i
\(489\) 157.836i 0.322773i
\(490\) 894.218 36.9733i 1.82493 0.0754558i
\(491\) 383.827 0.781726 0.390863 0.920449i \(-0.372177\pi\)
0.390863 + 0.920449i \(0.372177\pi\)
\(492\) 638.949 171.206i 1.29868 0.347979i
\(493\) −44.9522 12.0449i −0.0911809 0.0244319i
\(494\) −291.598 + 168.354i −0.590280 + 0.340798i
\(495\) 142.331 169.923i 0.287538 0.343278i
\(496\) −1801.67 −3.63240
\(497\) −347.567 + 84.4643i −0.699331 + 0.169948i
\(498\) 218.845 218.845i 0.439449 0.439449i
\(499\) −10.5456 6.08851i −0.0211335 0.0122014i 0.489396 0.872062i \(-0.337217\pi\)
−0.510530 + 0.859860i \(0.670551\pi\)
\(500\) 3.03844 + 1168.04i 0.00607689 + 2.33607i
\(501\) 232.329 + 402.405i 0.463730 + 0.803204i
\(502\) 645.993 173.093i 1.28684 0.344808i
\(503\) 250.202 250.202i 0.497420 0.497420i −0.413214 0.910634i \(-0.635594\pi\)
0.910634 + 0.413214i \(0.135594\pi\)
\(504\) −359.751 + 196.623i −0.713792 + 0.390126i
\(505\) 16.4288 93.6472i 0.0325323 0.185440i
\(506\) 508.103 880.060i 1.00416 1.73925i
\(507\) 19.7654 73.7654i 0.0389850 0.145494i
\(508\) 847.081 + 226.975i 1.66748 + 0.446801i
\(509\) 536.048 + 309.488i 1.05314 + 0.608031i 0.923527 0.383534i \(-0.125293\pi\)
0.129613 + 0.991565i \(0.458626\pi\)
\(510\) 221.513 155.391i 0.434339 0.304689i
\(511\) −306.048 7.16436i −0.598920 0.0140203i
\(512\) 772.824 + 772.824i 1.50942 + 1.50942i
\(513\) −11.0914 41.3938i −0.0216207 0.0806896i
\(514\) −515.817 + 297.807i −1.00354 + 0.579392i
\(515\) 68.1248 146.425i 0.132281 0.284321i
\(516\) −615.016 + 1065.24i −1.19189 + 2.06442i
\(517\) −435.851 435.851i −0.843038 0.843038i
\(518\) −661.240 + 630.990i −1.27652 + 1.21813i
\(519\) 384.821i 0.741467i
\(520\) −700.529 + 836.330i −1.34717 + 1.60833i
\(521\) 234.346 + 405.900i 0.449801 + 0.779078i 0.998373 0.0570252i \(-0.0181615\pi\)
−0.548572 + 0.836104i \(0.684828\pi\)
\(522\) −15.4331 + 57.5971i −0.0295653 + 0.110339i
\(523\) −4.04502 15.0962i −0.00773427 0.0288647i 0.961951 0.273222i \(-0.0880895\pi\)
−0.969685 + 0.244358i \(0.921423\pi\)
\(524\) 14.2878i 0.0272667i
\(525\) 46.1536 + 299.574i 0.0879117 + 0.570618i
\(526\) −1501.24 −2.85407
\(527\) 438.570 117.515i 0.832202 0.222988i
\(528\) 839.064 + 224.826i 1.58914 + 0.425808i
\(529\) 151.214 87.3034i 0.285849 0.165035i
\(530\) −805.067 674.342i −1.51899 1.27234i
\(531\) −50.3165 −0.0947580
\(532\) −524.198 + 127.388i −0.985335 + 0.239452i
\(533\) 322.995 322.995i 0.605994 0.605994i
\(534\) −289.459 167.119i −0.542057 0.312957i
\(535\) −675.465 314.262i −1.26255 0.587405i
\(536\) 1064.82 + 1844.32i 1.98660 + 3.44090i
\(537\) −6.21609 + 1.66560i −0.0115756 + 0.00310167i
\(538\) 189.877 189.877i 0.352931 0.352931i
\(539\) −609.444 390.986i −1.13069 0.725392i
\(540\) −139.421 198.747i −0.258187 0.368050i
\(541\) 364.758 631.779i 0.674229 1.16780i −0.302465 0.953161i \(-0.597810\pi\)
0.976694 0.214638i \(-0.0688571\pi\)
\(542\) 393.443 1468.35i 0.725909 2.70913i
\(543\) 213.271 + 57.1458i 0.392765 + 0.105241i
\(544\) 339.898 + 196.240i 0.624813 + 0.360736i
\(545\) 634.836 + 111.371i 1.16484 + 0.204351i
\(546\) −257.464 + 422.772i −0.471546 + 0.774307i
\(547\) 464.863 + 464.863i 0.849841 + 0.849841i 0.990113 0.140272i \(-0.0447977\pi\)
−0.140272 + 0.990113i \(0.544798\pi\)
\(548\) 118.897 + 443.730i 0.216966 + 0.809727i
\(549\) 242.910 140.244i 0.442460 0.255454i
\(550\) 772.134 1106.80i 1.40388 2.01237i
\(551\) −22.4371 + 38.8622i −0.0407207 + 0.0705303i
\(552\) −450.121 450.121i −0.815436 0.815436i
\(553\) 192.194 + 56.3509i 0.347548 + 0.101900i
\(554\) 1129.43i 2.03868i
\(555\) −237.300 198.768i −0.427567 0.358140i
\(556\) 296.653 + 513.817i 0.533548 + 0.924132i
\(557\) 98.6198 368.054i 0.177055 0.660779i −0.819137 0.573598i \(-0.805547\pi\)
0.996192 0.0871816i \(-0.0277861\pi\)
\(558\) −150.571 561.939i −0.269840 1.00706i
\(559\) 849.387i 1.51948i
\(560\) −988.151 + 659.231i −1.76455 + 1.17720i
\(561\) −218.913 −0.390219
\(562\) 216.131 57.9121i 0.384575 0.103046i
\(563\) 762.882 + 204.414i 1.35503 + 0.363079i 0.861989 0.506927i \(-0.169219\pi\)
0.493041 + 0.870006i \(0.335885\pi\)
\(564\) −584.657 + 337.552i −1.03663 + 0.598496i
\(565\) −424.440 + 37.5046i −0.751221 + 0.0663798i
\(566\) −576.757 −1.01900
\(567\) −43.4930 45.5781i −0.0767072 0.0803846i
\(568\) 705.385 705.385i 1.24188 1.24188i
\(569\) −271.365 156.673i −0.476916 0.275347i 0.242215 0.970223i \(-0.422126\pi\)
−0.719130 + 0.694875i \(0.755460\pi\)
\(570\) −89.4485 245.096i −0.156927 0.429993i
\(571\) −385.124 667.054i −0.674472 1.16822i −0.976623 0.214960i \(-0.931038\pi\)
0.302151 0.953260i \(-0.402295\pi\)
\(572\) 1490.66 399.422i 2.60605 0.698290i
\(573\) 223.453 223.453i 0.389971 0.389971i
\(574\) 917.069 501.228i 1.59768 0.873219i
\(575\) −426.193 + 199.638i −0.741205 + 0.347196i
\(576\) 47.8080 82.8059i 0.0830000 0.143760i
\(577\) 217.694 812.444i 0.377286 1.40805i −0.472691 0.881228i \(-0.656717\pi\)
0.849976 0.526821i \(-0.176616\pi\)
\(578\) 761.615 + 204.074i 1.31767 + 0.353069i
\(579\) 65.8627 + 38.0259i 0.113753 + 0.0656751i
\(580\) −43.9273 + 250.393i −0.0757367 + 0.431713i
\(581\) 178.096 292.445i 0.306533 0.503347i
\(582\) 215.110 + 215.110i 0.369606 + 0.369606i
\(583\) 219.903 + 820.689i 0.377192 + 1.40770i
\(584\) 739.404 426.895i 1.26610 0.730985i
\(585\) −151.999 70.7177i −0.259827 0.120885i
\(586\) 96.7740 167.618i 0.165143 0.286037i
\(587\) 300.621 + 300.621i 0.512131 + 0.512131i 0.915179 0.403048i \(-0.132049\pi\)
−0.403048 + 0.915179i \(0.632049\pi\)
\(588\) −586.402 + 533.921i −0.997282 + 0.908030i
\(589\) 437.809i 0.743309i
\(590\) −305.154 + 26.9641i −0.517209 + 0.0457019i
\(591\) −123.743 214.329i −0.209379 0.362656i
\(592\) 313.974 1171.77i 0.530361 1.97933i
\(593\) 88.7777 + 331.323i 0.149709 + 0.558723i 0.999500 + 0.0316034i \(0.0100614\pi\)
−0.849791 + 0.527120i \(0.823272\pi\)
\(594\) 280.492i 0.472209i
\(595\) 197.541 224.925i 0.332002 0.378026i
\(596\) 332.744 0.558296
\(597\) 285.092 76.3901i 0.477541 0.127957i
\(598\) −742.389 198.923i −1.24145 0.332647i
\(599\) 407.516 235.280i 0.680328 0.392787i −0.119651 0.992816i \(-0.538178\pi\)
0.799978 + 0.600029i \(0.204844\pi\)
\(600\) −544.509 646.640i −0.907515 1.07773i
\(601\) 1180.46 1.96417 0.982083 0.188450i \(-0.0603464\pi\)
0.982083 + 0.188450i \(0.0603464\pi\)
\(602\) −546.773 + 1864.86i −0.908261 + 3.09778i
\(603\) −231.404 + 231.404i −0.383755 + 0.383755i
\(604\) 354.828 + 204.860i 0.587464 + 0.339173i
\(605\) −457.318 + 166.899i −0.755898 + 0.275867i
\(606\) 60.1569 + 104.195i 0.0992689 + 0.171939i
\(607\) −834.313 + 223.553i −1.37449 + 0.368292i −0.869115 0.494610i \(-0.835311\pi\)
−0.505371 + 0.862902i \(0.668644\pi\)
\(608\) 267.604 267.604i 0.440139 0.440139i
\(609\) −1.54388 + 65.9519i −0.00253511 + 0.108295i
\(610\) 1398.02 980.711i 2.29183 1.60772i
\(611\) −233.093 + 403.729i −0.381494 + 0.660767i
\(612\) −62.0562 + 231.597i −0.101399 + 0.378426i
\(613\) −478.615 128.245i −0.780775 0.209208i −0.153649 0.988126i \(-0.549102\pi\)
−0.627126 + 0.778918i \(0.715769\pi\)
\(614\) 1312.66 + 757.866i 2.13789 + 1.23431i
\(615\) 203.270 + 289.764i 0.330520 + 0.471162i
\(616\) 2018.88 + 47.2605i 3.27740 + 0.0767216i
\(617\) 13.0926 + 13.0926i 0.0212197 + 0.0212197i 0.717637 0.696417i \(-0.245224\pi\)
−0.696417 + 0.717637i \(0.745224\pi\)
\(618\) 52.8933 + 197.400i 0.0855878 + 0.319418i
\(619\) 386.935 223.397i 0.625096 0.360899i −0.153754 0.988109i \(-0.549136\pi\)
0.778850 + 0.627210i \(0.215803\pi\)
\(620\) −850.312 2329.92i −1.37147 3.75794i
\(621\) 48.9097 84.7140i 0.0787595 0.136415i
\(622\) 688.608 + 688.608i 1.10709 + 1.10709i
\(623\) −354.844 104.039i −0.569573 0.166997i
\(624\) 656.988i 1.05287i
\(625\) −586.563 + 215.798i −0.938501 + 0.345277i
\(626\) −404.218 700.127i −0.645716 1.11841i
\(627\) −54.6332 + 203.894i −0.0871344 + 0.325190i
\(628\) 191.588 + 715.018i 0.305077 + 1.13856i
\(629\) 305.715i 0.486034i
\(630\) −288.196 253.109i −0.457454 0.401760i
\(631\) 905.125 1.43443 0.717215 0.696852i \(-0.245417\pi\)
0.717215 + 0.696852i \(0.245417\pi\)
\(632\) −539.554 + 144.573i −0.853724 + 0.228755i
\(633\) 162.784 + 43.6179i 0.257163 + 0.0689067i
\(634\) 1460.98 843.495i 2.30438 1.33043i
\(635\) 41.3031 + 467.428i 0.0650443 + 0.736107i
\(636\) 930.577 1.46317
\(637\) −166.336 + 521.765i −0.261124 + 0.819098i
\(638\) 207.688 207.688i 0.325530 0.325530i
\(639\) 132.756 + 76.6464i 0.207755 + 0.119947i
\(640\) −141.575 + 304.297i −0.221211 + 0.475464i
\(641\) 112.385 + 194.656i 0.175327 + 0.303675i 0.940274 0.340417i \(-0.110568\pi\)
−0.764947 + 0.644093i \(0.777235\pi\)
\(642\) 910.613 243.998i 1.41840 0.380059i
\(643\) −115.806 + 115.806i −0.180102 + 0.180102i −0.791400 0.611298i \(-0.790648\pi\)
0.611298 + 0.791400i \(0.290648\pi\)
\(644\) −1051.70 640.473i −1.63307 0.994523i
\(645\) −648.271 113.728i −1.00507 0.176323i
\(646\) −128.839 + 223.156i −0.199441 + 0.345442i
\(647\) 122.458 457.021i 0.189271 0.706369i −0.804405 0.594082i \(-0.797516\pi\)
0.993676 0.112288i \(-0.0358178\pi\)
\(648\) 169.718 + 45.4757i 0.261910 + 0.0701786i
\(649\) 214.640 + 123.922i 0.330724 + 0.190944i
\(650\) −959.720 347.426i −1.47649 0.534501i
\(651\) −308.681 564.776i −0.474164 0.867551i
\(652\) −602.114 602.114i −0.923488 0.923488i
\(653\) −272.625 1017.45i −0.417497 1.55812i −0.779782 0.626051i \(-0.784670\pi\)
0.362285 0.932067i \(-0.381997\pi\)
\(654\) −706.340 + 407.805i −1.08003 + 0.623556i
\(655\) 7.18183 2.62103i 0.0109646 0.00400157i
\(656\) −693.559 + 1201.28i −1.05725 + 1.83122i
\(657\) 92.7719 + 92.7719i 0.141205 + 0.141205i
\(658\) −771.656 + 736.354i −1.17273 + 1.11908i
\(659\) 77.0532i 0.116924i −0.998290 0.0584622i \(-0.981380\pi\)
0.998290 0.0584622i \(-0.0186197\pi\)
\(660\) 105.256 + 1191.19i 0.159479 + 1.80483i
\(661\) −321.259 556.436i −0.486019 0.841810i 0.513852 0.857879i \(-0.328218\pi\)
−0.999871 + 0.0160692i \(0.994885\pi\)
\(662\) −431.203 + 1609.27i −0.651364 + 2.43093i
\(663\) 42.8523 + 159.927i 0.0646339 + 0.241217i
\(664\) 954.958i 1.43819i
\(665\) −160.194 240.122i −0.240894 0.361086i
\(666\) 391.712 0.588156
\(667\) −98.9404 + 26.5110i −0.148336 + 0.0397466i
\(668\) −2421.38 648.808i −3.62483 0.971270i
\(669\) −99.3708 + 57.3718i −0.148536 + 0.0857575i
\(670\) −1279.39 + 1527.40i −1.90953 + 2.27970i
\(671\) −1381.61 −2.05903
\(672\) 156.534 533.887i 0.232938 0.794475i
\(673\) −321.230 + 321.230i −0.477310 + 0.477310i −0.904270 0.426960i \(-0.859584\pi\)
0.426960 + 0.904270i \(0.359584\pi\)
\(674\) −1498.54 865.185i −2.22336 1.28366i
\(675\) 74.3251 106.540i 0.110111 0.157837i
\(676\) 206.000 + 356.802i 0.304733 + 0.527813i
\(677\) −1088.09 + 291.552i −1.60722 + 0.430654i −0.947213 0.320605i \(-0.896114\pi\)
−0.660008 + 0.751259i \(0.729447\pi\)
\(678\) 381.267 381.267i 0.562340 0.562340i
\(679\) 287.454 + 175.056i 0.423348 + 0.257815i
\(680\) −144.265 + 822.334i −0.212154 + 1.20931i
\(681\) 119.858 207.600i 0.176002 0.304845i
\(682\) −741.670 + 2767.95i −1.08749 + 4.05858i
\(683\) 1059.34 + 283.849i 1.55101 + 0.415592i 0.929804 0.368056i \(-0.119977\pi\)
0.621206 + 0.783648i \(0.286643\pi\)
\(684\) 200.221 + 115.597i 0.292720 + 0.169002i
\(685\) −201.233 + 141.165i −0.293770 + 0.206080i
\(686\) −701.072 + 1038.48i −1.02197 + 1.51382i
\(687\) −369.539 369.539i −0.537902 0.537902i
\(688\) −667.581 2491.45i −0.970322 3.62129i
\(689\) 556.508 321.300i 0.807704 0.466328i
\(690\) 251.224 539.974i 0.364093 0.782571i
\(691\) −47.8948 + 82.9562i −0.0693123 + 0.120052i −0.898599 0.438771i \(-0.855414\pi\)
0.829286 + 0.558824i \(0.188747\pi\)
\(692\) 1468.02 + 1468.02i 2.12141 + 2.12141i
\(693\) 73.2799 + 301.544i 0.105743 + 0.435128i
\(694\) 308.979i 0.445214i
\(695\) −203.854 + 243.372i −0.293315 + 0.350175i
\(696\) −91.9938 159.338i −0.132175 0.228934i
\(697\) 90.4752 337.658i 0.129807 0.484445i
\(698\) 1.85585 + 6.92612i 0.00265881 + 0.00992281i
\(699\) 411.145i 0.588190i
\(700\) −1318.88 966.750i −1.88412 1.38107i
\(701\) −518.219 −0.739257 −0.369628 0.929180i \(-0.620515\pi\)
−0.369628 + 0.929180i \(0.620515\pi\)
\(702\) 204.914 54.9065i 0.291900 0.0782143i
\(703\) 284.741 + 76.2962i 0.405037 + 0.108529i
\(704\) −407.879 + 235.489i −0.579373 + 0.334501i
\(705\) −276.925 231.959i −0.392802 0.329020i
\(706\) −1604.38 −2.27249
\(707\) 91.8932 + 96.2987i 0.129976 + 0.136207i
\(708\) 191.947 191.947i 0.271112 0.271112i
\(709\) −382.186 220.655i −0.539049 0.311220i 0.205645 0.978627i \(-0.434071\pi\)
−0.744693 + 0.667407i \(0.767404\pi\)
\(710\) 846.194 + 393.694i 1.19182 + 0.554498i
\(711\) −42.9182 74.3365i −0.0603631 0.104552i
\(712\) 996.165 266.922i 1.39911 0.374890i
\(713\) 706.648 706.648i 0.991091 0.991091i
\(714\) −8.86534 + 378.711i −0.0124164 + 0.530407i
\(715\) 474.227 + 676.018i 0.663255 + 0.945480i
\(716\) 17.3592 30.0671i 0.0242447 0.0419931i
\(717\) −185.822 + 693.497i −0.259166 + 0.967220i
\(718\) −840.279 225.152i −1.17031 0.313582i
\(719\) 922.670 + 532.704i 1.28327 + 0.740896i 0.977445 0.211192i \(-0.0677346\pi\)
0.305825 + 0.952088i \(0.401068\pi\)
\(720\) 501.428 + 87.9670i 0.696428 + 0.122176i
\(721\) 108.435 + 198.397i 0.150395 + 0.275169i
\(722\) −756.790 756.790i −1.04819 1.04819i
\(723\) 43.5682 + 162.599i 0.0602603 + 0.224895i
\(724\) −1031.59 + 595.587i −1.42484 + 0.822634i
\(725\) −133.920 + 23.8532i −0.184717 + 0.0329010i
\(726\) 308.020 533.506i 0.424270 0.734857i
\(727\) −1013.20 1013.20i −1.39367 1.39367i −0.816917 0.576755i \(-0.804319\pi\)
−0.576755 0.816917i \(-0.695681\pi\)
\(728\) −360.670 1484.14i −0.495426 2.03866i
\(729\) 27.0000i 0.0370370i
\(730\) 612.348 + 512.917i 0.838833 + 0.702626i
\(731\) 325.011 + 562.936i 0.444612 + 0.770090i
\(732\) −391.651 + 1461.66i −0.535042 + 1.99680i
\(733\) −131.207 489.670i −0.178999 0.668035i −0.995836 0.0911656i \(-0.970941\pi\)
0.816836 0.576870i \(-0.195726\pi\)
\(734\) 1409.37i 1.92012i
\(735\) −375.952 196.813i −0.511499 0.267773i
\(736\) 863.856 1.17372
\(737\) 1557.04 417.208i 2.11267 0.566090i
\(738\) −432.640 115.926i −0.586234 0.157081i
\(739\) −436.379 + 251.943i −0.590499 + 0.340925i −0.765295 0.643680i \(-0.777407\pi\)
0.174796 + 0.984605i \(0.444073\pi\)
\(740\) 1663.51 146.992i 2.24799 0.198638i
\(741\) 159.649 0.215451
\(742\) 1428.67 347.188i 1.92543 0.467908i
\(743\) −93.7564 + 93.7564i −0.126186 + 0.126186i −0.767380 0.641193i \(-0.778440\pi\)
0.641193 + 0.767380i \(0.278440\pi\)
\(744\) 1554.56 + 897.526i 2.08946 + 1.20635i
\(745\) 61.0405 + 167.256i 0.0819335 + 0.224505i
\(746\) −324.868 562.687i −0.435480 0.754273i
\(747\) −141.745 + 37.9805i −0.189753 + 0.0508441i
\(748\) 835.109 835.109i 1.11646 1.11646i
\(749\) 915.211 500.213i 1.22191 0.667841i
\(750\) 393.664 685.962i 0.524886 0.914615i
\(751\) 236.900 410.323i 0.315446 0.546369i −0.664086 0.747656i \(-0.731179\pi\)
0.979532 + 0.201287i \(0.0645125\pi\)
\(752\) 366.402 1367.43i 0.487237 1.81839i
\(753\) −306.295 82.0716i −0.406767 0.108993i
\(754\) −192.381 111.072i −0.255148 0.147310i
\(755\) −37.8825 + 215.937i −0.0501755 + 0.286010i
\(756\) 339.789 + 7.95420i 0.449456 + 0.0105214i
\(757\) −119.279 119.279i −0.157568 0.157568i 0.623920 0.781488i \(-0.285539\pi\)
−0.781488 + 0.623920i \(0.785539\pi\)
\(758\) 501.821 + 1872.82i 0.662032 + 2.47074i
\(759\) −417.277 + 240.915i −0.549773 + 0.317411i
\(760\) 729.913 + 339.594i 0.960412 + 0.446834i
\(761\) 378.809 656.117i 0.497778 0.862177i −0.502219