Properties

Label 105.3.v.a.37.10
Level 105
Weight 3
Character 105.37
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.10
Character \(\chi\) \(=\) 105.37
Dual form 105.3.v.a.88.10

$q$-expansion

\(f(q)\) \(=\) \(q+(0.901161 - 0.241465i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(-2.71032 + 1.56480i) q^{4} +(2.44472 + 4.36158i) q^{5} -1.61592 q^{6} +(5.41162 + 4.44009i) q^{7} +(-4.70337 + 4.70337i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(0.901161 - 0.241465i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(-2.71032 + 1.56480i) q^{4} +(2.44472 + 4.36158i) q^{5} -1.61592 q^{6} +(5.41162 + 4.44009i) q^{7} +(-4.70337 + 4.70337i) q^{8} +(2.59808 + 1.50000i) q^{9} +(3.25625 + 3.34017i) q^{10} +(3.17246 + 5.49486i) q^{11} +(5.23593 - 1.40296i) q^{12} +(-5.74921 + 5.74921i) q^{13} +(5.94887 + 2.69452i) q^{14} +(-2.13485 - 8.39300i) q^{15} +(3.15641 - 5.46707i) q^{16} +(0.226953 - 0.847000i) q^{17} +(2.70348 + 0.724396i) q^{18} +(5.02493 + 2.90114i) q^{19} +(-13.4510 - 7.99576i) q^{20} +(-7.06338 - 9.85438i) q^{21} +(4.18571 + 4.18571i) q^{22} +(-9.99491 - 37.3015i) q^{23} +(9.97735 - 5.76043i) q^{24} +(-13.0467 + 21.3256i) q^{25} +(-3.79273 + 6.56920i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(-21.6151 - 3.56594i) q^{28} -28.7187i q^{29} +(-3.95046 - 7.04795i) q^{30} +(30.5551 + 52.9230i) q^{31} +(8.41054 - 31.3886i) q^{32} +(-2.84435 - 10.6153i) q^{33} -0.818085i q^{34} +(-6.13593 + 34.4580i) q^{35} -9.38881 q^{36} +(-11.3239 + 3.03422i) q^{37} +(5.22880 + 1.40105i) q^{38} +(12.1959 - 7.04132i) q^{39} +(-32.0125 - 9.01571i) q^{40} +21.6632 q^{41} +(-8.74473 - 7.17482i) q^{42} +(45.3759 - 45.3759i) q^{43} +(-17.1967 - 9.92854i) q^{44} +(-0.190809 + 14.9988i) q^{45} +(-18.0141 - 31.2013i) q^{46} +(49.7271 - 13.3243i) q^{47} +(-7.73160 + 7.73160i) q^{48} +(9.57121 + 48.0561i) q^{49} +(-6.60780 + 22.3682i) q^{50} +(-0.759399 + 1.31532i) q^{51} +(6.58580 - 24.5786i) q^{52} +(-43.5401 - 11.6665i) q^{53} +(-4.19828 - 2.42388i) q^{54} +(-16.2105 + 27.2703i) q^{55} +(-46.3362 + 4.56946i) q^{56} +(-7.10632 - 7.10632i) q^{57} +(-6.93457 - 25.8802i) q^{58} +(50.4665 - 29.1369i) q^{59} +(18.9195 + 19.4071i) q^{60} +(-14.0159 + 24.2763i) q^{61} +(40.3141 + 40.3141i) q^{62} +(7.39966 + 19.6531i) q^{63} -5.06570i q^{64} +(-39.1308 - 11.0204i) q^{65} +(-5.12643 - 8.87924i) q^{66} +(9.00447 - 33.6051i) q^{67} +(0.710272 + 2.65077i) q^{68} +66.8873i q^{69} +(2.79094 + 32.5338i) q^{70} +22.2152 q^{71} +(-19.2748 + 5.16466i) q^{72} +(22.4783 + 6.02304i) q^{73} +(-9.47198 + 5.46865i) q^{74} +(31.3876 - 29.8298i) q^{75} -18.1589 q^{76} +(-7.22953 + 43.8221i) q^{77} +(9.29025 - 9.29025i) q^{78} +(127.568 + 73.6514i) q^{79} +(31.5616 + 0.401515i) q^{80} +(4.50000 + 7.79423i) q^{81} +(19.5220 - 5.23091i) q^{82} +(-86.8716 + 86.8716i) q^{83} +(34.5641 + 15.6557i) q^{84} +(4.24909 - 1.08080i) q^{85} +(29.9343 - 51.8478i) q^{86} +(-12.8742 + 48.0473i) q^{87} +(-40.7656 - 10.9231i) q^{88} +(-47.6858 - 27.5314i) q^{89} +(3.44974 + 13.5624i) q^{90} +(-56.6395 + 5.58552i) q^{91} +(85.4588 + 85.4588i) q^{92} +(-27.3949 - 102.239i) q^{93} +(41.5948 - 24.0148i) q^{94} +(-0.369043 + 29.0091i) q^{95} +(-28.1422 + 48.7437i) q^{96} +(-114.461 - 114.461i) q^{97} +(20.2291 + 40.9952i) q^{98} +19.0348i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.901161 0.241465i 0.450581 0.120733i −0.0263905 0.999652i \(-0.508401\pi\)
0.476971 + 0.878919i \(0.341735\pi\)
\(3\) −1.67303 0.448288i −0.557678 0.149429i
\(4\) −2.71032 + 1.56480i −0.677579 + 0.391200i
\(5\) 2.44472 + 4.36158i 0.488943 + 0.872316i
\(6\) −1.61592 −0.269320
\(7\) 5.41162 + 4.44009i 0.773088 + 0.634298i
\(8\) −4.70337 + 4.70337i −0.587921 + 0.587921i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) 3.25625 + 3.34017i 0.325625 + 0.334017i
\(11\) 3.17246 + 5.49486i 0.288405 + 0.499533i 0.973429 0.228988i \(-0.0735416\pi\)
−0.685024 + 0.728521i \(0.740208\pi\)
\(12\) 5.23593 1.40296i 0.436327 0.116914i
\(13\) −5.74921 + 5.74921i −0.442247 + 0.442247i −0.892767 0.450520i \(-0.851239\pi\)
0.450520 + 0.892767i \(0.351239\pi\)
\(14\) 5.94887 + 2.69452i 0.424919 + 0.192466i
\(15\) −2.13485 8.39300i −0.142323 0.559533i
\(16\) 3.15641 5.46707i 0.197276 0.341692i
\(17\) 0.226953 0.847000i 0.0133502 0.0498235i −0.958929 0.283645i \(-0.908456\pi\)
0.972280 + 0.233821i \(0.0751230\pi\)
\(18\) 2.70348 + 0.724396i 0.150194 + 0.0402442i
\(19\) 5.02493 + 2.90114i 0.264470 + 0.152692i 0.626372 0.779524i \(-0.284539\pi\)
−0.361902 + 0.932216i \(0.617872\pi\)
\(20\) −13.4510 7.99576i −0.672548 0.399788i
\(21\) −7.06338 9.85438i −0.336351 0.469256i
\(22\) 4.18571 + 4.18571i 0.190260 + 0.190260i
\(23\) −9.99491 37.3015i −0.434561 1.62181i −0.742114 0.670274i \(-0.766177\pi\)
0.307552 0.951531i \(-0.400490\pi\)
\(24\) 9.97735 5.76043i 0.415723 0.240018i
\(25\) −13.0467 + 21.3256i −0.521869 + 0.853026i
\(26\) −3.79273 + 6.56920i −0.145874 + 0.252662i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) −21.6151 3.56594i −0.771966 0.127355i
\(29\) 28.7187i 0.990300i −0.868808 0.495150i \(-0.835113\pi\)
0.868808 0.495150i \(-0.164887\pi\)
\(30\) −3.95046 7.04795i −0.131682 0.234932i
\(31\) 30.5551 + 52.9230i 0.985648 + 1.70719i 0.639022 + 0.769189i \(0.279339\pi\)
0.346626 + 0.938003i \(0.387327\pi\)
\(32\) 8.41054 31.3886i 0.262829 0.980893i
\(33\) −2.84435 10.6153i −0.0861924 0.321674i
\(34\) 0.818085i 0.0240613i
\(35\) −6.13593 + 34.4580i −0.175312 + 0.984513i
\(36\) −9.38881 −0.260800
\(37\) −11.3239 + 3.03422i −0.306051 + 0.0820061i −0.408576 0.912724i \(-0.633974\pi\)
0.102525 + 0.994730i \(0.467308\pi\)
\(38\) 5.22880 + 1.40105i 0.137600 + 0.0368698i
\(39\) 12.1959 7.04132i 0.312716 0.180547i
\(40\) −32.0125 9.01571i −0.800313 0.225393i
\(41\) 21.6632 0.528370 0.264185 0.964472i \(-0.414897\pi\)
0.264185 + 0.964472i \(0.414897\pi\)
\(42\) −8.74473 7.17482i −0.208208 0.170829i
\(43\) 45.3759 45.3759i 1.05525 1.05525i 0.0568731 0.998381i \(-0.481887\pi\)
0.998381 0.0568731i \(-0.0181131\pi\)
\(44\) −17.1967 9.92854i −0.390835 0.225649i
\(45\) −0.190809 + 14.9988i −0.00424020 + 0.333306i
\(46\) −18.0141 31.2013i −0.391610 0.678288i
\(47\) 49.7271 13.3243i 1.05802 0.283497i 0.312460 0.949931i \(-0.398847\pi\)
0.745564 + 0.666434i \(0.232180\pi\)
\(48\) −7.73160 + 7.73160i −0.161075 + 0.161075i
\(49\) 9.57121 + 48.0561i 0.195331 + 0.980737i
\(50\) −6.60780 + 22.3682i −0.132156 + 0.447363i
\(51\) −0.759399 + 1.31532i −0.0148902 + 0.0257905i
\(52\) 6.58580 24.5786i 0.126650 0.472664i
\(53\) −43.5401 11.6665i −0.821511 0.220123i −0.176504 0.984300i \(-0.556479\pi\)
−0.645007 + 0.764177i \(0.723146\pi\)
\(54\) −4.19828 2.42388i −0.0777459 0.0448866i
\(55\) −16.2105 + 27.2703i −0.294736 + 0.495824i
\(56\) −46.3362 + 4.56946i −0.827432 + 0.0815974i
\(57\) −7.10632 7.10632i −0.124672 0.124672i
\(58\) −6.93457 25.8802i −0.119562 0.446210i
\(59\) 50.4665 29.1369i 0.855365 0.493845i −0.00709232 0.999975i \(-0.502258\pi\)
0.862457 + 0.506130i \(0.168924\pi\)
\(60\) 18.9195 + 19.4071i 0.315325 + 0.323451i
\(61\) −14.0159 + 24.2763i −0.229770 + 0.397973i −0.957740 0.287636i \(-0.907131\pi\)
0.727970 + 0.685609i \(0.240464\pi\)
\(62\) 40.3141 + 40.3141i 0.650228 + 0.650228i
\(63\) 7.39966 + 19.6531i 0.117455 + 0.311954i
\(64\) 5.06570i 0.0791516i
\(65\) −39.1308 11.0204i −0.602013 0.169545i
\(66\) −5.12643 8.87924i −0.0776732 0.134534i
\(67\) 9.00447 33.6051i 0.134395 0.501569i −0.865605 0.500728i \(-0.833066\pi\)
1.00000 0.000841087i \(-0.000267726\pi\)
\(68\) 0.710272 + 2.65077i 0.0104452 + 0.0389820i
\(69\) 66.8873i 0.969380i
\(70\) 2.79094 + 32.5338i 0.0398706 + 0.464768i
\(71\) 22.2152 0.312890 0.156445 0.987687i \(-0.449997\pi\)
0.156445 + 0.987687i \(0.449997\pi\)
\(72\) −19.2748 + 5.16466i −0.267705 + 0.0717314i
\(73\) 22.4783 + 6.02304i 0.307922 + 0.0825074i 0.409471 0.912323i \(-0.365713\pi\)
−0.101549 + 0.994831i \(0.532380\pi\)
\(74\) −9.47198 + 5.46865i −0.128000 + 0.0739007i
\(75\) 31.3876 29.8298i 0.418502 0.397731i
\(76\) −18.1589 −0.238932
\(77\) −7.22953 + 43.8221i −0.0938900 + 0.569118i
\(78\) 9.29025 9.29025i 0.119106 0.119106i
\(79\) 127.568 + 73.6514i 1.61479 + 0.932297i 0.988240 + 0.152912i \(0.0488651\pi\)
0.626546 + 0.779385i \(0.284468\pi\)
\(80\) 31.5616 + 0.401515i 0.394520 + 0.00501894i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 19.5220 5.23091i 0.238073 0.0637915i
\(83\) −86.8716 + 86.8716i −1.04665 + 1.04665i −0.0477883 + 0.998857i \(0.515217\pi\)
−0.998857 + 0.0477883i \(0.984783\pi\)
\(84\) 34.5641 + 15.6557i 0.411478 + 0.186377i
\(85\) 4.24909 1.08080i 0.0499893 0.0127153i
\(86\) 29.9343 51.8478i 0.348073 0.602881i
\(87\) −12.8742 + 48.0473i −0.147980 + 0.552268i
\(88\) −40.7656 10.9231i −0.463245 0.124126i
\(89\) −47.6858 27.5314i −0.535795 0.309342i 0.207578 0.978219i \(-0.433442\pi\)
−0.743373 + 0.668877i \(0.766775\pi\)
\(90\) 3.44974 + 13.5624i 0.0383304 + 0.150693i
\(91\) −56.6395 + 5.58552i −0.622413 + 0.0613794i
\(92\) 85.4588 + 85.4588i 0.928900 + 0.928900i
\(93\) −27.3949 102.239i −0.294569 1.09935i
\(94\) 41.5948 24.0148i 0.442498 0.255476i
\(95\) −0.369043 + 29.0091i −0.00388466 + 0.305359i
\(96\) −28.1422 + 48.7437i −0.293148 + 0.507747i
\(97\) −114.461 114.461i −1.18001 1.18001i −0.979741 0.200267i \(-0.935819\pi\)
−0.200267 0.979741i \(-0.564181\pi\)
\(98\) 20.2291 + 40.9952i 0.206419 + 0.418318i
\(99\) 19.0348i 0.192270i
\(100\) 1.99036 78.2148i 0.0199036 0.782148i
\(101\) 19.8817 + 34.4360i 0.196848 + 0.340951i 0.947505 0.319742i \(-0.103596\pi\)
−0.750657 + 0.660692i \(0.770263\pi\)
\(102\) −0.366737 + 1.36868i −0.00359546 + 0.0134185i
\(103\) −5.25895 19.6267i −0.0510578 0.190550i 0.935687 0.352832i \(-0.114781\pi\)
−0.986744 + 0.162282i \(0.948115\pi\)
\(104\) 54.0813i 0.520013i
\(105\) 25.7127 54.8986i 0.244883 0.522844i
\(106\) −42.0537 −0.396733
\(107\) −92.6228 + 24.8182i −0.865633 + 0.231946i −0.664199 0.747556i \(-0.731227\pi\)
−0.201435 + 0.979502i \(0.564560\pi\)
\(108\) 15.7078 + 4.20889i 0.145442 + 0.0389712i
\(109\) −89.8337 + 51.8655i −0.824163 + 0.475830i −0.851850 0.523786i \(-0.824519\pi\)
0.0276872 + 0.999617i \(0.491186\pi\)
\(110\) −8.02344 + 28.4892i −0.0729404 + 0.258993i
\(111\) 20.3054 0.182932
\(112\) 41.3556 15.5709i 0.369246 0.139026i
\(113\) 87.9948 87.9948i 0.778715 0.778715i −0.200897 0.979612i \(-0.564386\pi\)
0.979612 + 0.200897i \(0.0643857\pi\)
\(114\) −8.11987 4.68801i −0.0712270 0.0411229i
\(115\) 138.259 134.785i 1.20225 1.17205i
\(116\) 44.9390 + 77.8367i 0.387406 + 0.671006i
\(117\) −23.5607 + 6.31307i −0.201374 + 0.0539579i
\(118\) 38.4429 38.4429i 0.325788 0.325788i
\(119\) 4.98894 3.57595i 0.0419238 0.0300500i
\(120\) 49.5163 + 29.4344i 0.412636 + 0.245287i
\(121\) 40.3710 69.9246i 0.333645 0.577890i
\(122\) −6.76873 + 25.2612i −0.0554814 + 0.207059i
\(123\) −36.2432 9.71133i −0.294660 0.0789539i
\(124\) −165.628 95.6253i −1.33571 0.771172i
\(125\) −124.909 4.76920i −0.999272 0.0381536i
\(126\) 11.4138 + 15.9239i 0.0905860 + 0.126380i
\(127\) −105.877 105.877i −0.833679 0.833679i 0.154339 0.988018i \(-0.450675\pi\)
−0.988018 + 0.154339i \(0.950675\pi\)
\(128\) 32.4190 + 120.989i 0.253273 + 0.945228i
\(129\) −96.2569 + 55.5740i −0.746178 + 0.430806i
\(130\) −37.9242 0.482458i −0.291725 0.00371122i
\(131\) 77.5089 134.249i 0.591671 1.02480i −0.402337 0.915492i \(-0.631802\pi\)
0.994007 0.109312i \(-0.0348647\pi\)
\(132\) 24.3198 + 24.3198i 0.184241 + 0.184241i
\(133\) 14.3117 + 38.0110i 0.107606 + 0.285797i
\(134\) 32.4579i 0.242223i
\(135\) 7.04300 25.0079i 0.0521704 0.185244i
\(136\) 2.91631 + 5.05120i 0.0214434 + 0.0371411i
\(137\) 25.2465 94.2214i 0.184281 0.687747i −0.810502 0.585736i \(-0.800806\pi\)
0.994783 0.102011i \(-0.0325278\pi\)
\(138\) 16.1510 + 60.2762i 0.117036 + 0.436784i
\(139\) 124.815i 0.897952i −0.893544 0.448976i \(-0.851789\pi\)
0.893544 0.448976i \(-0.148211\pi\)
\(140\) −37.2895 102.993i −0.266354 0.735667i
\(141\) −89.1682 −0.632399
\(142\) 20.0195 5.36420i 0.140982 0.0377761i
\(143\) −49.8302 13.3520i −0.348463 0.0933704i
\(144\) 16.4012 9.46924i 0.113897 0.0657586i
\(145\) 125.259 70.2090i 0.863854 0.484200i
\(146\) 21.7109 0.148705
\(147\) 5.53002 84.6901i 0.0376192 0.576123i
\(148\) 25.9433 25.9433i 0.175293 0.175293i
\(149\) −193.793 111.886i −1.30062 0.750915i −0.320112 0.947380i \(-0.603721\pi\)
−0.980511 + 0.196465i \(0.937054\pi\)
\(150\) 21.0824 34.4605i 0.140550 0.229737i
\(151\) 28.9470 + 50.1377i 0.191702 + 0.332037i 0.945814 0.324708i \(-0.105266\pi\)
−0.754112 + 0.656745i \(0.771933\pi\)
\(152\) −37.2792 + 9.98894i −0.245258 + 0.0657167i
\(153\) 1.86014 1.86014i 0.0121578 0.0121578i
\(154\) 4.06654 + 41.2364i 0.0264061 + 0.267769i
\(155\) −156.129 + 262.650i −1.00728 + 1.69452i
\(156\) −22.0365 + 38.1684i −0.141260 + 0.244669i
\(157\) −19.9364 + 74.4038i −0.126984 + 0.473910i −0.999903 0.0139557i \(-0.995558\pi\)
0.872919 + 0.487865i \(0.162224\pi\)
\(158\) 132.744 + 35.5686i 0.840150 + 0.225117i
\(159\) 67.6140 + 39.0370i 0.425245 + 0.245516i
\(160\) 157.465 40.0529i 0.984156 0.250331i
\(161\) 111.533 246.240i 0.692754 1.52944i
\(162\) 5.93726 + 5.93726i 0.0366498 + 0.0366498i
\(163\) 82.4159 + 307.581i 0.505619 + 1.88700i 0.459748 + 0.888050i \(0.347940\pi\)
0.0458718 + 0.998947i \(0.485393\pi\)
\(164\) −58.7140 + 33.8986i −0.358012 + 0.206699i
\(165\) 39.3456 38.3571i 0.238458 0.232467i
\(166\) −57.3088 + 99.2618i −0.345234 + 0.597963i
\(167\) 125.538 + 125.538i 0.751723 + 0.751723i 0.974801 0.223077i \(-0.0716103\pi\)
−0.223077 + 0.974801i \(0.571610\pi\)
\(168\) 79.5704 + 13.1271i 0.473633 + 0.0781375i
\(169\) 102.893i 0.608835i
\(170\) 3.56814 1.99998i 0.0209891 0.0117646i
\(171\) 8.70343 + 15.0748i 0.0508973 + 0.0881566i
\(172\) −51.9788 + 193.987i −0.302202 + 1.12783i
\(173\) 46.2175 + 172.486i 0.267153 + 0.997029i 0.960919 + 0.276829i \(0.0892835\pi\)
−0.693766 + 0.720200i \(0.744050\pi\)
\(174\) 46.4070i 0.266707i
\(175\) −165.292 + 57.4776i −0.944524 + 0.328443i
\(176\) 40.0544 0.227582
\(177\) −97.4939 + 26.1234i −0.550813 + 0.147590i
\(178\) −49.6205 13.2958i −0.278767 0.0746953i
\(179\) 107.202 61.8932i 0.598895 0.345772i −0.169712 0.985494i \(-0.554284\pi\)
0.768607 + 0.639722i \(0.220950\pi\)
\(180\) −22.9530 40.9500i −0.127517 0.227500i
\(181\) 173.845 0.960472 0.480236 0.877139i \(-0.340551\pi\)
0.480236 + 0.877139i \(0.340551\pi\)
\(182\) −49.6927 + 18.7099i −0.273037 + 0.102802i
\(183\) 34.3319 34.3319i 0.187606 0.187606i
\(184\) 222.453 + 128.433i 1.20898 + 0.698006i
\(185\) −40.9177 41.9722i −0.221177 0.226877i
\(186\) −49.3745 85.5192i −0.265454 0.459780i
\(187\) 5.37414 1.44000i 0.0287387 0.00770052i
\(188\) −113.926 + 113.926i −0.605991 + 0.605991i
\(189\) −3.56962 36.1975i −0.0188869 0.191521i
\(190\) 6.67212 + 26.2310i 0.0351164 + 0.138058i
\(191\) 14.8999 25.8073i 0.0780097 0.135117i −0.824381 0.566035i \(-0.808477\pi\)
0.902391 + 0.430918i \(0.141810\pi\)
\(192\) −2.27089 + 8.47508i −0.0118276 + 0.0441410i
\(193\) −85.9499 23.0302i −0.445336 0.119327i 0.0291802 0.999574i \(-0.490710\pi\)
−0.474516 + 0.880247i \(0.657377\pi\)
\(194\) −130.786 75.5093i −0.674154 0.389223i
\(195\) 60.5268 + 35.9794i 0.310394 + 0.184510i
\(196\) −101.139 115.270i −0.516017 0.588113i
\(197\) −15.1895 15.1895i −0.0771040 0.0771040i 0.667503 0.744607i \(-0.267363\pi\)
−0.744607 + 0.667503i \(0.767363\pi\)
\(198\) 4.59623 + 17.1534i 0.0232133 + 0.0866332i
\(199\) −190.662 + 110.079i −0.958101 + 0.553160i −0.895588 0.444885i \(-0.853245\pi\)
−0.0625127 + 0.998044i \(0.519911\pi\)
\(200\) −38.9388 161.666i −0.194694 0.808330i
\(201\) −30.1295 + 52.1859i −0.149898 + 0.259631i
\(202\) 26.2317 + 26.2317i 0.129860 + 0.129860i
\(203\) 127.514 155.415i 0.628146 0.765589i
\(204\) 4.75324i 0.0233002i
\(205\) 52.9603 + 94.4856i 0.258343 + 0.460905i
\(206\) −9.47833 16.4169i −0.0460113 0.0796939i
\(207\) 29.9847 111.905i 0.144854 0.540602i
\(208\) 13.2844 + 49.5782i 0.0638675 + 0.238357i
\(209\) 36.8150i 0.176148i
\(210\) 9.91516 55.6812i 0.0472150 0.265149i
\(211\) −265.998 −1.26065 −0.630326 0.776330i \(-0.717079\pi\)
−0.630326 + 0.776330i \(0.717079\pi\)
\(212\) 136.263 36.5116i 0.642751 0.172225i
\(213\) −37.1668 9.95881i −0.174492 0.0467550i
\(214\) −77.4753 + 44.7304i −0.362034 + 0.209021i
\(215\) 308.842 + 86.9794i 1.43647 + 0.404556i
\(216\) 34.5626 0.160012
\(217\) −69.6302 + 422.066i −0.320877 + 1.94501i
\(218\) −68.4309 + 68.4309i −0.313903 + 0.313903i
\(219\) −34.9069 20.1535i −0.159392 0.0920251i
\(220\) 1.26297 99.2773i 0.00574077 0.451261i
\(221\) 3.56478 + 6.17438i 0.0161302 + 0.0279384i
\(222\) 18.2985 4.90306i 0.0824255 0.0220858i
\(223\) 153.429 153.429i 0.688020 0.688020i −0.273774 0.961794i \(-0.588272\pi\)
0.961794 + 0.273774i \(0.0882719\pi\)
\(224\) 184.883 132.519i 0.825369 0.591604i
\(225\) −65.8849 + 35.8355i −0.292822 + 0.159269i
\(226\) 58.0498 100.545i 0.256858 0.444890i
\(227\) 31.4644 117.427i 0.138610 0.517298i −0.861347 0.508017i \(-0.830379\pi\)
0.999957 0.00928178i \(-0.00295452\pi\)
\(228\) 30.3804 + 8.14039i 0.133247 + 0.0357035i
\(229\) −25.0201 14.4454i −0.109258 0.0630802i 0.444375 0.895841i \(-0.353426\pi\)
−0.553633 + 0.832761i \(0.686759\pi\)
\(230\) 92.0475 154.848i 0.400206 0.673252i
\(231\) 31.7401 70.0749i 0.137403 0.303354i
\(232\) 135.075 + 135.075i 0.582218 + 0.582218i
\(233\) 57.6663 + 215.214i 0.247495 + 0.923663i 0.972113 + 0.234513i \(0.0753495\pi\)
−0.724618 + 0.689151i \(0.757984\pi\)
\(234\) −19.7076 + 11.3782i −0.0842205 + 0.0486247i
\(235\) 179.684 + 184.314i 0.764612 + 0.784317i
\(236\) −91.1868 + 157.940i −0.386385 + 0.669238i
\(237\) −180.408 180.408i −0.761217 0.761217i
\(238\) 3.63237 4.42716i 0.0152621 0.0186015i
\(239\) 372.324i 1.55784i −0.627124 0.778920i \(-0.715768\pi\)
0.627124 0.778920i \(-0.284232\pi\)
\(240\) −52.6236 14.8204i −0.219265 0.0617517i
\(241\) 19.9134 + 34.4910i 0.0826282 + 0.143116i 0.904378 0.426732i \(-0.140335\pi\)
−0.821750 + 0.569848i \(0.807002\pi\)
\(242\) 19.4964 72.7616i 0.0805637 0.300668i
\(243\) −4.03459 15.0573i −0.0166032 0.0619642i
\(244\) 87.7287i 0.359544i
\(245\) −186.202 + 159.229i −0.760007 + 0.649915i
\(246\) −35.0059 −0.142300
\(247\) −45.5687 + 12.2101i −0.184489 + 0.0494336i
\(248\) −392.628 105.204i −1.58318 0.424211i
\(249\) 184.282 106.396i 0.740090 0.427291i
\(250\) −113.715 + 25.8634i −0.454859 + 0.103454i
\(251\) −16.5512 −0.0659409 −0.0329705 0.999456i \(-0.510497\pi\)
−0.0329705 + 0.999456i \(0.510497\pi\)
\(252\) −50.8086 41.6872i −0.201622 0.165425i
\(253\) 173.258 173.258i 0.684815 0.684815i
\(254\) −120.978 69.8468i −0.476292 0.274987i
\(255\) −7.59338 0.0966002i −0.0297779 0.000378824i
\(256\) 68.5608 + 118.751i 0.267816 + 0.463870i
\(257\) −112.862 + 30.2413i −0.439152 + 0.117670i −0.471619 0.881802i \(-0.656330\pi\)
0.0324673 + 0.999473i \(0.489664\pi\)
\(258\) −73.3238 + 73.3238i −0.284201 + 0.284201i
\(259\) −74.7527 33.8590i −0.288621 0.130730i
\(260\) 123.302 31.3631i 0.474237 0.120627i
\(261\) 43.0780 74.6133i 0.165050 0.285875i
\(262\) 37.4314 139.696i 0.142868 0.533191i
\(263\) 102.374 + 27.4309i 0.389253 + 0.104300i 0.448137 0.893965i \(-0.352088\pi\)
−0.0588842 + 0.998265i \(0.518754\pi\)
\(264\) 63.3055 + 36.5494i 0.239793 + 0.138445i
\(265\) −55.5586 218.425i −0.209655 0.824245i
\(266\) 22.0755 + 30.7983i 0.0829904 + 0.115783i
\(267\) 67.4379 + 67.4379i 0.252576 + 0.252576i
\(268\) 28.1804 + 105.171i 0.105151 + 0.392428i
\(269\) −372.354 + 214.979i −1.38421 + 0.799177i −0.992655 0.120976i \(-0.961398\pi\)
−0.391559 + 0.920153i \(0.628064\pi\)
\(270\) 0.308332 24.2368i 0.00114197 0.0897660i
\(271\) 120.424 208.581i 0.444370 0.769671i −0.553638 0.832757i \(-0.686761\pi\)
0.998008 + 0.0630859i \(0.0200942\pi\)
\(272\) −3.91425 3.91425i −0.0143906 0.0143906i
\(273\) 97.2637 + 16.0461i 0.356277 + 0.0587768i
\(274\) 91.0048i 0.332134i
\(275\) −158.572 4.03523i −0.576624 0.0146736i
\(276\) −104.665 181.286i −0.379222 0.656832i
\(277\) 22.3512 83.4157i 0.0806901 0.301140i −0.913773 0.406225i \(-0.866845\pi\)
0.994463 + 0.105085i \(0.0335116\pi\)
\(278\) −30.1386 112.479i −0.108412 0.404600i
\(279\) 183.330i 0.657099i
\(280\) −133.209 190.928i −0.475746 0.681886i
\(281\) −369.537 −1.31508 −0.657539 0.753420i \(-0.728403\pi\)
−0.657539 + 0.753420i \(0.728403\pi\)
\(282\) −80.3549 + 21.5310i −0.284947 + 0.0763512i
\(283\) −296.803 79.5280i −1.04877 0.281018i −0.307028 0.951700i \(-0.599335\pi\)
−0.741744 + 0.670683i \(0.766001\pi\)
\(284\) −60.2102 + 34.7624i −0.212008 + 0.122403i
\(285\) 13.6218 48.3677i 0.0477959 0.169711i
\(286\) −48.1291 −0.168284
\(287\) 117.233 + 96.1864i 0.408477 + 0.335144i
\(288\) 68.9341 68.9341i 0.239354 0.239354i
\(289\) 249.615 + 144.116i 0.863721 + 0.498670i
\(290\) 95.9253 93.5153i 0.330777 0.322467i
\(291\) 140.185 + 242.808i 0.481736 + 0.834392i
\(292\) −70.3481 + 18.8497i −0.240918 + 0.0645539i
\(293\) 296.489 296.489i 1.01191 1.01191i 0.0119781 0.999928i \(-0.496187\pi\)
0.999928 0.0119781i \(-0.00381285\pi\)
\(294\) −15.4663 77.6548i −0.0526065 0.264132i
\(295\) 250.459 + 148.882i 0.849014 + 0.504686i
\(296\) 38.9893 67.5315i 0.131721 0.228147i
\(297\) 8.53305 31.8458i 0.0287308 0.107225i
\(298\) −201.655 54.0334i −0.676695 0.181320i
\(299\) 271.917 + 156.991i 0.909422 + 0.525055i
\(300\) −38.3927 + 129.964i −0.127976 + 0.433212i
\(301\) 447.031 44.0840i 1.48515 0.146459i
\(302\) 38.1924 + 38.1924i 0.126465 + 0.126465i
\(303\) −17.8254 66.5253i −0.0588297 0.219556i
\(304\) 31.7215 18.3144i 0.104347 0.0602448i
\(305\) −140.148 1.78291i −0.459502 0.00584562i
\(306\) 1.22713 2.12545i 0.00401022 0.00694590i
\(307\) −373.720 373.720i −1.21733 1.21733i −0.968564 0.248766i \(-0.919975\pi\)
−0.248766 0.968564i \(-0.580025\pi\)
\(308\) −48.9785 130.084i −0.159021 0.422352i
\(309\) 35.1936i 0.113895i
\(310\) −77.2766 + 274.390i −0.249279 + 0.885128i
\(311\) 241.180 + 417.737i 0.775499 + 1.34320i 0.934513 + 0.355928i \(0.115835\pi\)
−0.159014 + 0.987276i \(0.550831\pi\)
\(312\) −24.2440 + 90.4798i −0.0777051 + 0.289999i
\(313\) −35.4941 132.466i −0.113400 0.423213i 0.885763 0.464139i \(-0.153636\pi\)
−0.999162 + 0.0409254i \(0.986969\pi\)
\(314\) 71.8638i 0.228866i
\(315\) −67.6285 + 80.3205i −0.214694 + 0.254986i
\(316\) −461.000 −1.45886
\(317\) −153.392 + 41.1012i −0.483886 + 0.129657i −0.492512 0.870306i \(-0.663921\pi\)
0.00862536 + 0.999963i \(0.497254\pi\)
\(318\) 70.3572 + 18.8522i 0.221249 + 0.0592835i
\(319\) 157.805 91.1089i 0.494687 0.285608i
\(320\) 22.0944 12.3842i 0.0690451 0.0387006i
\(321\) 166.087 0.517404
\(322\) 41.0512 248.833i 0.127488 0.772774i
\(323\) 3.59769 3.59769i 0.0111384 0.0111384i
\(324\) −24.3928 14.0832i −0.0752865 0.0434667i
\(325\) −47.5972 197.614i −0.146453 0.608043i
\(326\) 148.540 + 257.279i 0.455645 + 0.789199i
\(327\) 173.545 46.5014i 0.530720 0.142206i
\(328\) −101.890 + 101.890i −0.310640 + 0.310640i
\(329\) 328.265 + 148.687i 0.997767 + 0.451935i
\(330\) 26.1948 44.0666i 0.0793783 0.133535i
\(331\) −114.201 + 197.802i −0.345018 + 0.597589i −0.985357 0.170503i \(-0.945461\pi\)
0.640339 + 0.768093i \(0.278794\pi\)
\(332\) 99.5127 371.386i 0.299737 1.11863i
\(333\) −33.9716 9.10267i −0.102017 0.0273354i
\(334\) 143.443 + 82.8167i 0.429469 + 0.247954i
\(335\) 168.585 42.8813i 0.503238 0.128004i
\(336\) −76.1695 + 7.51147i −0.226695 + 0.0223556i
\(337\) 234.580 + 234.580i 0.696082 + 0.696082i 0.963563 0.267481i \(-0.0861912\pi\)
−0.267481 + 0.963563i \(0.586191\pi\)
\(338\) 24.8451 + 92.7233i 0.0735063 + 0.274329i
\(339\) −186.665 + 107.771i −0.550635 + 0.317909i
\(340\) −9.82514 + 9.57830i −0.0288975 + 0.0281715i
\(341\) −193.869 + 335.792i −0.568532 + 0.984727i
\(342\) 11.4832 + 11.4832i 0.0335767 + 0.0335767i
\(343\) −161.578 + 302.558i −0.471072 + 0.882095i
\(344\) 426.840i 1.24081i
\(345\) −291.734 + 163.520i −0.845606 + 0.473972i
\(346\) 83.2988 + 144.278i 0.240748 + 0.416988i
\(347\) 7.80239 29.1189i 0.0224853 0.0839161i −0.953771 0.300533i \(-0.902836\pi\)
0.976257 + 0.216617i \(0.0695022\pi\)
\(348\) −40.2912 150.369i −0.115779 0.432095i
\(349\) 292.832i 0.839062i 0.907741 + 0.419531i \(0.137805\pi\)
−0.907741 + 0.419531i \(0.862195\pi\)
\(350\) −135.076 + 91.7088i −0.385930 + 0.262025i
\(351\) 42.2479 0.120364
\(352\) 199.158 53.3642i 0.565789 0.151603i
\(353\) −219.306 58.7627i −0.621262 0.166467i −0.0655606 0.997849i \(-0.520884\pi\)
−0.555701 + 0.831382i \(0.687550\pi\)
\(354\) −81.5498 + 47.0828i −0.230367 + 0.133002i
\(355\) 54.3099 + 96.8934i 0.152986 + 0.272939i
\(356\) 172.325 0.484058
\(357\) −9.94971 + 3.74620i −0.0278703 + 0.0104936i
\(358\) 81.6613 81.6613i 0.228104 0.228104i
\(359\) 341.968 + 197.435i 0.952557 + 0.549959i 0.893874 0.448317i \(-0.147977\pi\)
0.0586830 + 0.998277i \(0.481310\pi\)
\(360\) −69.6474 71.4423i −0.193465 0.198451i
\(361\) −163.667 283.479i −0.453370 0.785261i
\(362\) 156.663 41.9777i 0.432770 0.115960i
\(363\) −98.8884 + 98.8884i −0.272420 + 0.272420i
\(364\) 144.771 103.768i 0.397722 0.285077i
\(365\) 28.6831 + 112.765i 0.0785838 + 0.308947i
\(366\) 22.6486 39.2285i 0.0618815 0.107182i
\(367\) 62.2669 232.383i 0.169665 0.633197i −0.827735 0.561120i \(-0.810371\pi\)
0.997399 0.0720767i \(-0.0229626\pi\)
\(368\) −235.478 63.0961i −0.639886 0.171457i
\(369\) 56.2826 + 32.4948i 0.152527 + 0.0880617i
\(370\) −47.0083 27.9435i −0.127049 0.0755229i
\(371\) −183.822 256.457i −0.495477 0.691258i
\(372\) 234.233 + 234.233i 0.629659 + 0.629659i
\(373\) −70.5913 263.450i −0.189253 0.706301i −0.993680 0.112250i \(-0.964194\pi\)
0.804427 0.594051i \(-0.202472\pi\)
\(374\) 4.49526 2.59534i 0.0120194 0.00693941i
\(375\) 206.839 + 63.9742i 0.551570 + 0.170598i
\(376\) −171.216 + 296.554i −0.455361 + 0.788708i
\(377\) 165.110 + 165.110i 0.437957 + 0.437957i
\(378\) −11.9572 31.7578i −0.0316329 0.0840154i
\(379\) 492.386i 1.29917i −0.760289 0.649585i \(-0.774942\pi\)
0.760289 0.649585i \(-0.225058\pi\)
\(380\) −44.3932 79.2013i −0.116824 0.208424i
\(381\) 129.673 + 224.600i 0.340348 + 0.589500i
\(382\) 7.19560 26.8543i 0.0188366 0.0702993i
\(383\) −179.594 670.253i −0.468913 1.75001i −0.643579 0.765379i \(-0.722551\pi\)
0.174666 0.984628i \(-0.444115\pi\)
\(384\) 216.952i 0.564979i
\(385\) −208.808 + 75.6004i −0.542357 + 0.196365i
\(386\) −83.0157 −0.215067
\(387\) 185.954 49.8262i 0.480502 0.128750i
\(388\) 489.333 + 131.116i 1.26117 + 0.337929i
\(389\) −46.6270 + 26.9201i −0.119864 + 0.0692034i −0.558733 0.829347i \(-0.688712\pi\)
0.438869 + 0.898551i \(0.355379\pi\)
\(390\) 63.2322 + 17.8081i 0.162134 + 0.0456619i
\(391\) −33.8627 −0.0866055
\(392\) −271.043 181.009i −0.691435 0.461757i
\(393\) −189.857 + 189.857i −0.483097 + 0.483097i
\(394\) −17.3559 10.0204i −0.0440506 0.0254326i
\(395\) −9.36891 + 736.455i −0.0237188 + 1.86444i
\(396\) −29.7856 51.5902i −0.0752162 0.130278i
\(397\) 370.697 99.3280i 0.933746 0.250196i 0.240294 0.970700i \(-0.422756\pi\)
0.693451 + 0.720504i \(0.256089\pi\)
\(398\) −145.237 + 145.237i −0.364917 + 0.364917i
\(399\) −6.90399 70.0094i −0.0173032 0.175462i
\(400\) 75.4079 + 138.640i 0.188520 + 0.346600i
\(401\) 277.288 480.277i 0.691491 1.19770i −0.279858 0.960041i \(-0.590287\pi\)
0.971349 0.237657i \(-0.0763794\pi\)
\(402\) −14.5505 + 54.3032i −0.0361952 + 0.135082i
\(403\) −479.933 128.598i −1.19090 0.319101i
\(404\) −107.771 62.2217i −0.266760 0.154014i
\(405\) −22.9939 + 38.6818i −0.0567751 + 0.0955106i
\(406\) 77.3830 170.844i 0.190599 0.420797i
\(407\) −52.5972 52.5972i −0.129231 0.129231i
\(408\) −2.61469 9.75816i −0.00640856 0.0239171i
\(409\) 230.537 133.100i 0.563659 0.325429i −0.190954 0.981599i \(-0.561158\pi\)
0.754613 + 0.656170i \(0.227825\pi\)
\(410\) 70.5408 + 72.3587i 0.172051 + 0.176485i
\(411\) −84.4766 + 146.318i −0.205539 + 0.356004i
\(412\) 44.9653 + 44.9653i 0.109139 + 0.109139i
\(413\) 402.476 + 66.3983i 0.974518 + 0.160771i
\(414\) 108.084i 0.261073i
\(415\) −591.274 166.521i −1.42476 0.401255i
\(416\) 132.105 + 228.813i 0.317561 + 0.550032i
\(417\) −55.9532 + 208.820i −0.134180 + 0.500767i
\(418\) 8.88956 + 33.1763i 0.0212669 + 0.0793691i
\(419\) 426.729i 1.01845i 0.860635 + 0.509223i \(0.170067\pi\)
−0.860635 + 0.509223i \(0.829933\pi\)
\(420\) 16.2159 + 189.028i 0.0386094 + 0.450066i
\(421\) −115.529 −0.274415 −0.137207 0.990542i \(-0.543813\pi\)
−0.137207 + 0.990542i \(0.543813\pi\)
\(422\) −239.707 + 64.2292i −0.568026 + 0.152202i
\(423\) 149.181 + 39.9730i 0.352675 + 0.0944989i
\(424\) 259.657 149.913i 0.612399 0.353569i
\(425\) 15.1018 + 15.8905i 0.0355337 + 0.0373894i
\(426\) −35.8980 −0.0842675
\(427\) −183.638 + 69.1421i −0.430065 + 0.161925i
\(428\) 212.201 212.201i 0.495798 0.495798i
\(429\) 77.3821 + 44.6766i 0.180378 + 0.104141i
\(430\) 299.319 + 3.80783i 0.696091 + 0.00885541i
\(431\) −180.772 313.107i −0.419425 0.726466i 0.576456 0.817128i \(-0.304435\pi\)
−0.995882 + 0.0906620i \(0.971102\pi\)
\(432\) −31.6847 + 8.48989i −0.0733442 + 0.0196525i
\(433\) −132.541 + 132.541i −0.306098 + 0.306098i −0.843394 0.537296i \(-0.819446\pi\)
0.537296 + 0.843394i \(0.319446\pi\)
\(434\) 39.1663 + 397.163i 0.0902450 + 0.915122i
\(435\) −241.036 + 61.3100i −0.554106 + 0.140943i
\(436\) 162.318 281.144i 0.372290 0.644825i
\(437\) 57.9934 216.434i 0.132708 0.495273i
\(438\) −36.3231 9.73274i −0.0829294 0.0222209i
\(439\) −694.152 400.769i −1.58121 0.912913i −0.994683 0.102984i \(-0.967161\pi\)
−0.586529 0.809929i \(-0.699506\pi\)
\(440\) −52.0183 204.506i −0.118223 0.464787i
\(441\) −47.2175 + 139.210i −0.107069 + 0.315670i
\(442\) 4.70334 + 4.70334i 0.0106410 + 0.0106410i
\(443\) 58.8515 + 219.637i 0.132848 + 0.495794i 0.999997 0.00225336i \(-0.000717266\pi\)
−0.867150 + 0.498047i \(0.834051\pi\)
\(444\) −55.0341 + 31.7740i −0.123951 + 0.0715630i
\(445\) 3.50216 275.292i 0.00787003 0.618633i
\(446\) 101.216 175.312i 0.226942 0.393075i
\(447\) 274.064 + 274.064i 0.613119 + 0.613119i
\(448\) 22.4922 27.4136i 0.0502057 0.0611911i
\(449\) 662.413i 1.47531i −0.675179 0.737654i \(-0.735934\pi\)
0.675179 0.737654i \(-0.264066\pi\)
\(450\) −50.7198 + 48.2025i −0.112711 + 0.107117i
\(451\) 68.7255 + 119.036i 0.152385 + 0.263938i
\(452\) −100.799 + 376.188i −0.223007 + 0.832275i
\(453\) −25.9532 96.8585i −0.0572917 0.213816i
\(454\) 113.418i 0.249819i
\(455\) −162.829 233.383i −0.357867 0.512929i
\(456\) 66.8473 0.146595
\(457\) 297.859 79.8111i 0.651770 0.174641i 0.0822410 0.996612i \(-0.473792\pi\)
0.569529 + 0.821971i \(0.307126\pi\)
\(458\) −26.0352 6.97611i −0.0568454 0.0152317i
\(459\) −3.94595 + 2.27820i −0.00859685 + 0.00496339i
\(460\) −163.813 + 581.658i −0.356115 + 1.26447i
\(461\) −684.929 −1.48575 −0.742873 0.669432i \(-0.766537\pi\)
−0.742873 + 0.669432i \(0.766537\pi\)
\(462\) 11.6823 70.8129i 0.0252864 0.153275i
\(463\) 201.578 201.578i 0.435375 0.435375i −0.455077 0.890452i \(-0.650388\pi\)
0.890452 + 0.455077i \(0.150388\pi\)
\(464\) −157.007 90.6481i −0.338377 0.195362i
\(465\) 378.952 369.431i 0.814950 0.794476i
\(466\) 103.933 + 180.018i 0.223033 + 0.386304i
\(467\) −795.026 + 213.027i −1.70241 + 0.456160i −0.973545 0.228496i \(-0.926619\pi\)
−0.728866 + 0.684656i \(0.759953\pi\)
\(468\) 53.9782 53.9782i 0.115338 0.115338i
\(469\) 197.939 141.878i 0.422044 0.302511i
\(470\) 206.430 + 122.710i 0.439212 + 0.261084i
\(471\) 66.7086 115.543i 0.141632 0.245314i
\(472\) −100.321 + 374.404i −0.212545 + 0.793229i
\(473\) 393.288 + 105.381i 0.831475 + 0.222793i
\(474\) −206.140 119.015i −0.434893 0.251086i
\(475\) −127.428 + 69.3094i −0.268269 + 0.145914i
\(476\) −7.92595 + 17.4986i −0.0166511 + 0.0367619i
\(477\) −95.6207 95.6207i −0.200463 0.200463i
\(478\) −89.9033 335.524i −0.188082 0.701932i
\(479\) 686.937 396.603i 1.43411 0.827982i 0.436675 0.899619i \(-0.356156\pi\)
0.997431 + 0.0716375i \(0.0228225\pi\)
\(480\) −281.399 3.57986i −0.586249 0.00745804i
\(481\) 47.6590 82.5478i 0.0990831 0.171617i
\(482\) 26.2736 + 26.2736i 0.0545095 + 0.0545095i
\(483\) −296.985 + 361.968i −0.614877 + 0.749417i
\(484\) 252.690i 0.522088i
\(485\) 219.406 779.054i 0.452383 1.60630i
\(486\) −7.27163 12.5948i −0.0149622 0.0259153i
\(487\) 80.1179 299.004i 0.164513 0.613971i −0.833589 0.552386i \(-0.813718\pi\)
0.998102 0.0615857i \(-0.0196158\pi\)
\(488\) −48.2584 180.103i −0.0988901 0.369063i
\(489\) 551.538i 1.12789i
\(490\) −129.349 + 188.452i −0.263978 + 0.384597i
\(491\) −566.849 −1.15448 −0.577239 0.816575i \(-0.695870\pi\)
−0.577239 + 0.816575i \(0.695870\pi\)
\(492\) 113.427 30.3926i 0.230542 0.0617736i
\(493\) −24.3247 6.51779i −0.0493402 0.0132207i
\(494\) −38.1164 + 22.0065i −0.0771587 + 0.0445476i
\(495\) −83.0216 + 46.5346i −0.167720 + 0.0940092i
\(496\) 385.778 0.777778
\(497\) 120.220 + 98.6375i 0.241892 + 0.198466i
\(498\) 140.377 140.377i 0.281882 0.281882i
\(499\) −426.256 246.099i −0.854220 0.493184i 0.00785223 0.999969i \(-0.497501\pi\)
−0.862073 + 0.506785i \(0.830834\pi\)
\(500\) 346.006 182.532i 0.692011 0.365063i
\(501\) −153.752 266.306i −0.306890 0.531549i
\(502\) −14.9153 + 3.99653i −0.0297117 + 0.00796122i
\(503\) −113.182 + 113.182i −0.225015 + 0.225015i −0.810606 0.585591i \(-0.800862\pi\)
0.585591 + 0.810606i \(0.300862\pi\)
\(504\) −127.239 57.6325i −0.252459 0.114350i
\(505\) −101.590 + 170.902i −0.201169 + 0.338419i
\(506\) 114.298 197.969i 0.225885 0.391244i
\(507\) 46.1257 172.144i 0.0909778 0.339534i
\(508\) 452.638 + 121.284i 0.891019 + 0.238748i
\(509\) 599.580 + 346.168i 1.17796 + 0.680094i 0.955541 0.294858i \(-0.0952723\pi\)
0.222416 + 0.974952i \(0.428606\pi\)
\(510\) −6.86618 + 1.74649i −0.0134631 + 0.00342448i
\(511\) 94.9011 + 132.400i 0.185716 + 0.259100i
\(512\) −263.822 263.822i −0.515278 0.515278i
\(513\) −7.80328 29.1222i −0.0152111 0.0567685i
\(514\) −94.4046 + 54.5045i −0.183667 + 0.106040i
\(515\) 72.7466 70.9190i 0.141256 0.137707i
\(516\) 173.924 301.246i 0.337063 0.583810i
\(517\) 230.973 + 230.973i 0.446755 + 0.446755i
\(518\) −75.5400 12.4622i −0.145830 0.0240583i
\(519\) 309.293i 0.595941i
\(520\) 235.880 132.213i 0.453615 0.254257i
\(521\) 216.865 + 375.621i 0.416248 + 0.720963i 0.995559 0.0941443i \(-0.0300115\pi\)
−0.579311 + 0.815107i \(0.696678\pi\)
\(522\) 20.8037 77.6405i 0.0398539 0.148737i
\(523\) −46.4148 173.222i −0.0887471 0.331209i 0.907250 0.420591i \(-0.138177\pi\)
−0.995997 + 0.0893824i \(0.971511\pi\)
\(524\) 485.144i 0.925847i
\(525\) 302.305 22.0636i 0.575819 0.0420259i
\(526\) 98.8787 0.187982
\(527\) 51.7603 13.8691i 0.0982169 0.0263171i
\(528\) −67.0123 17.9559i −0.126917 0.0340073i
\(529\) −833.378 + 481.151i −1.57538 + 0.909548i
\(530\) −102.809 183.420i −0.193980 0.346076i
\(531\) 174.821 0.329230
\(532\) −98.2688 80.6269i −0.184716 0.151554i
\(533\) −124.546 + 124.546i −0.233670 + 0.233670i
\(534\) 77.0563 + 44.4885i 0.144300 + 0.0833118i
\(535\) −334.683 343.308i −0.625575 0.641697i
\(536\) 115.706 + 200.409i 0.215869 + 0.373897i
\(537\) −207.099 + 55.4919i −0.385659 + 0.103337i
\(538\) −283.641 + 283.641i −0.527214 + 0.527214i
\(539\) −233.697 + 205.049i −0.433576 + 0.380424i
\(540\) 20.0437 + 78.8003i 0.0371179 + 0.145926i
\(541\) −112.946 + 195.629i −0.208773 + 0.361606i −0.951328 0.308179i \(-0.900280\pi\)
0.742555 + 0.669785i \(0.233614\pi\)
\(542\) 58.1566 217.043i 0.107300 0.400449i
\(543\) −290.849 77.9328i −0.535634 0.143523i
\(544\) −24.6773 14.2474i −0.0453627 0.0261902i
\(545\) −445.833 265.020i −0.818043 0.486276i
\(546\) 91.5249 9.02575i 0.167628 0.0165307i
\(547\) 204.480 + 204.480i 0.373821 + 0.373821i 0.868867 0.495046i \(-0.164849\pi\)
−0.495046 + 0.868867i \(0.664849\pi\)
\(548\) 79.0116 + 294.875i 0.144182 + 0.538094i
\(549\) −72.8290 + 42.0478i −0.132658 + 0.0765898i
\(550\) −143.873 + 34.6532i −0.261587 + 0.0630057i
\(551\) 83.3170 144.309i 0.151211 0.261904i
\(552\) −314.595 314.595i −0.569919 0.569919i
\(553\) 363.331 + 964.987i 0.657017 + 1.74500i
\(554\) 80.5680i 0.145430i
\(555\) 49.6410 + 88.5637i 0.0894432 + 0.159574i
\(556\) 195.311 + 338.289i 0.351279 + 0.608433i
\(557\) −18.0213 + 67.2563i −0.0323542 + 0.120747i −0.980214 0.197939i \(-0.936575\pi\)
0.947860 + 0.318687i \(0.103242\pi\)
\(558\) 44.2680 + 165.210i 0.0793333 + 0.296076i
\(559\) 521.752i 0.933366i
\(560\) 169.016 + 142.309i 0.301815 + 0.254123i
\(561\) −9.63665 −0.0171776
\(562\) −333.012 + 89.2304i −0.592549 + 0.158773i
\(563\) −70.3730 18.8564i −0.124996 0.0334927i 0.195778 0.980648i \(-0.437277\pi\)
−0.320775 + 0.947155i \(0.603943\pi\)
\(564\) 241.674 139.531i 0.428500 0.247395i
\(565\) 598.919 + 168.674i 1.06003 + 0.298538i
\(566\) −286.670 −0.506484
\(567\) −10.2548 + 62.1598i −0.0180861 + 0.109629i
\(568\) −104.486 + 104.486i −0.183955 + 0.183955i
\(569\) −1.86123 1.07458i −0.00327105 0.00188854i 0.498364 0.866968i \(-0.333934\pi\)
−0.501635 + 0.865080i \(0.667268\pi\)
\(570\) 0.596343 46.8763i 0.00104622 0.0822391i
\(571\) 59.6097 + 103.247i 0.104395 + 0.180818i 0.913491 0.406859i \(-0.133376\pi\)
−0.809096 + 0.587677i \(0.800043\pi\)
\(572\) 155.949 41.7864i 0.272638 0.0730531i
\(573\) −36.4970 + 36.4970i −0.0636946 + 0.0636946i
\(574\) 128.871 + 58.3718i 0.224515 + 0.101693i
\(575\) 925.880 + 273.515i 1.61023 + 0.475678i
\(576\) 7.59855 13.1611i 0.0131919 0.0228491i
\(577\) −129.489 + 483.261i −0.224418 + 0.837540i 0.758219 + 0.652000i \(0.226070\pi\)
−0.982637 + 0.185540i \(0.940597\pi\)
\(578\) 259.743 + 69.5978i 0.449382 + 0.120411i
\(579\) 133.473 + 77.0605i 0.230523 + 0.133092i
\(580\) −229.628 + 386.294i −0.395910 + 0.666024i
\(581\) −855.834 + 84.3982i −1.47304 + 0.145264i
\(582\) 184.959 + 184.959i 0.317799 + 0.317799i
\(583\) −74.0232 276.258i −0.126969 0.473856i
\(584\) −134.052 + 77.3951i −0.229542 + 0.132526i
\(585\) −85.1342 87.3282i −0.145529 0.149279i
\(586\) 195.592 338.776i 0.333775 0.578116i
\(587\) −201.820 201.820i −0.343817 0.343817i 0.513983 0.857800i \(-0.328169\pi\)
−0.857800 + 0.513983i \(0.828169\pi\)
\(588\) 117.535 + 238.190i 0.199890 + 0.405086i
\(589\) 354.579i 0.602001i
\(590\) 261.654 + 73.6898i 0.443481 + 0.124898i
\(591\) 18.6033 + 32.2218i 0.0314776 + 0.0545208i
\(592\) −19.1545 + 71.4857i −0.0323556 + 0.120753i
\(593\) 167.591 + 625.460i 0.282616 + 1.05474i 0.950564 + 0.310529i \(0.100506\pi\)
−0.667948 + 0.744208i \(0.732827\pi\)
\(594\) 30.7586i 0.0517822i
\(595\) 27.7933 + 13.0175i 0.0467114 + 0.0218781i
\(596\) 700.320 1.17503
\(597\) 368.331 98.6939i 0.616969 0.165316i
\(598\) 282.949 + 75.8160i 0.473159 + 0.126783i
\(599\) −710.555 + 410.239i −1.18624 + 0.684873i −0.957449 0.288604i \(-0.906809\pi\)
−0.228786 + 0.973477i \(0.573476\pi\)
\(600\) −7.32702 + 287.928i −0.0122117 + 0.479880i
\(601\) 622.468 1.03572 0.517860 0.855465i \(-0.326729\pi\)
0.517860 + 0.855465i \(0.326729\pi\)
\(602\) 392.202 147.669i 0.651498 0.245298i
\(603\) 73.8020 73.8020i 0.122391 0.122391i
\(604\) −156.911 90.5926i −0.259786 0.149988i
\(605\) 403.677 + 5.13544i 0.667236 + 0.00848833i
\(606\) −32.1271 55.6458i −0.0530151 0.0918248i
\(607\) 518.474 138.925i 0.854158 0.228871i 0.194933 0.980817i \(-0.437551\pi\)
0.659225 + 0.751946i \(0.270884\pi\)
\(608\) 133.325 133.325i 0.219285 0.219285i
\(609\) −283.005 + 202.851i −0.464704 + 0.333088i
\(610\) −126.727 + 32.2342i −0.207748 + 0.0528430i
\(611\) −209.287 + 362.496i −0.342532 + 0.593283i
\(612\) −2.13082 + 7.95232i −0.00348173 + 0.0129940i
\(613\) 749.051 + 200.708i 1.22194 + 0.327419i 0.811437 0.584439i \(-0.198686\pi\)
0.410506 + 0.911858i \(0.365352\pi\)
\(614\) −427.023 246.542i −0.695477 0.401534i
\(615\) −46.2476 181.819i −0.0751993 0.295641i
\(616\) −172.108 240.115i −0.279396 0.389796i
\(617\) 40.4359 + 40.4359i 0.0655363 + 0.0655363i 0.739115 0.673579i \(-0.235244\pi\)
−0.673579 + 0.739115i \(0.735244\pi\)
\(618\) 8.49804 + 31.7151i 0.0137509 + 0.0513189i
\(619\) −228.173 + 131.736i −0.368616 + 0.212821i −0.672854 0.739776i \(-0.734932\pi\)
0.304238 + 0.952596i \(0.401598\pi\)
\(620\) 12.1641 956.175i 0.0196195 1.54222i
\(621\) −100.331 + 173.778i −0.161563 + 0.279836i
\(622\) 318.211 + 318.211i 0.511594 + 0.511594i
\(623\) −135.815 360.719i −0.218002 0.579003i
\(624\) 88.9012i 0.142470i
\(625\) −284.566 556.460i −0.455305 0.890335i
\(626\) −63.9718 110.802i −0.102191 0.177001i
\(627\) 16.5037 61.5928i 0.0263217 0.0982341i
\(628\) −62.3931 232.854i −0.0993521 0.370787i
\(629\) 10.2800i 0.0163433i
\(630\) −41.5496 + 88.7117i −0.0659517 + 0.140812i
\(631\) 827.879 1.31201 0.656006 0.754756i \(-0.272245\pi\)
0.656006 + 0.754756i \(0.272245\pi\)
\(632\) −946.410 + 253.590i −1.49748 + 0.401249i
\(633\) 445.023 + 119.243i 0.703038 + 0.188378i
\(634\) −128.306 + 74.0777i −0.202376 + 0.116842i
\(635\) 202.952 720.632i 0.319610 1.13485i
\(636\) −244.340 −0.384183
\(637\) −331.312 221.258i −0.520113 0.347344i
\(638\) 120.208 120.208i 0.188414 0.188414i
\(639\) 57.7168 + 33.3228i 0.0903236 + 0.0521484i
\(640\) −448.449 + 437.182i −0.700701 + 0.683097i
\(641\) −425.709 737.350i −0.664133 1.15031i −0.979520 0.201349i \(-0.935467\pi\)
0.315386 0.948963i \(-0.397866\pi\)
\(642\) 149.671 40.1042i 0.233132 0.0624676i
\(643\) −746.802 + 746.802i −1.16143 + 1.16143i −0.177271 + 0.984162i \(0.556727\pi\)
−0.984162 + 0.177271i \(0.943273\pi\)
\(644\) 83.0257 + 841.915i 0.128922 + 1.30732i
\(645\) −477.711 283.970i −0.740637 0.440263i
\(646\) 2.37338 4.11082i 0.00367396 0.00636349i
\(647\) 12.8027 47.7805i 0.0197879 0.0738493i −0.955326 0.295555i \(-0.904496\pi\)
0.975114 + 0.221705i \(0.0711623\pi\)
\(648\) −57.8243 15.4940i −0.0892350 0.0239105i
\(649\) 320.206 + 184.871i 0.493384 + 0.284855i
\(650\) −90.6097 166.589i −0.139400 0.256291i
\(651\) 305.701 674.916i 0.469586 1.03674i
\(652\) −704.676 704.676i −1.08079 1.08079i
\(653\) 156.550 + 584.252i 0.239739 + 0.894719i 0.975955 + 0.217972i \(0.0699443\pi\)
−0.736216 + 0.676747i \(0.763389\pi\)
\(654\) 145.164 83.8104i 0.221963 0.128151i
\(655\) 775.026 + 9.85960i 1.18325 + 0.0150528i
\(656\) 68.3779 118.434i 0.104235 0.180540i
\(657\) 49.3658 + 49.3658i 0.0751382 + 0.0751382i
\(658\) 331.723 + 54.7258i 0.504138 + 0.0831700i
\(659\) 388.703i 0.589837i −0.955522 0.294919i \(-0.904707\pi\)
0.955522 0.294919i \(-0.0952926\pi\)
\(660\) −46.6178 + 165.528i −0.0706330 + 0.250800i
\(661\) −202.057 349.973i −0.305684 0.529460i 0.671730 0.740796i \(-0.265552\pi\)
−0.977413 + 0.211337i \(0.932218\pi\)
\(662\) −55.1512 + 205.827i −0.0833100 + 0.310917i
\(663\) −3.19609 11.9280i −0.00482066 0.0179909i
\(664\) 817.178i 1.23069i
\(665\) −130.800 + 155.348i −0.196692 + 0.233605i
\(666\) −32.8119 −0.0492671
\(667\) −1071.25 + 287.041i −1.60607 + 0.430346i
\(668\) −536.689 143.805i −0.803426 0.215277i
\(669\) −325.471 + 187.911i −0.486504 + 0.280883i
\(670\) 141.568 79.3504i 0.211295 0.118433i
\(671\) −177.860 −0.265067
\(672\) −368.721 + 138.829i −0.548693 + 0.206590i
\(673\) 141.994 141.994i 0.210987 0.210987i −0.593700 0.804687i \(-0.702333\pi\)
0.804687 + 0.593700i \(0.202333\pi\)
\(674\) 268.037 + 154.751i 0.397681 + 0.229601i
\(675\) 126.292 30.4187i 0.187099 0.0450647i
\(676\) −161.007 278.873i −0.238177 0.412534i
\(677\) 129.601 34.7265i 0.191434 0.0512947i −0.161828 0.986819i \(-0.551739\pi\)
0.353262 + 0.935524i \(0.385072\pi\)
\(678\) −142.192 + 142.192i −0.209723 + 0.209723i
\(679\) −111.202 1127.63i −0.163773 1.66073i
\(680\) −14.9016 + 25.0684i −0.0219142 + 0.0368654i
\(681\) −105.282 + 182.354i −0.154599 + 0.267773i
\(682\) −93.6255 + 349.415i −0.137281 + 0.512339i
\(683\) −429.989 115.215i −0.629560 0.168690i −0.0700897 0.997541i \(-0.522329\pi\)
−0.559470 + 0.828851i \(0.688995\pi\)
\(684\) −47.1781 27.2383i −0.0689738 0.0398221i
\(685\) 472.674 120.230i 0.690036 0.175518i
\(686\) −72.5502 + 311.669i −0.105758 + 0.454329i
\(687\) 35.3838 + 35.3838i 0.0515048 + 0.0515048i
\(688\) −104.848 391.299i −0.152396 0.568748i
\(689\) 317.394 183.248i 0.460660 0.265962i
\(690\) −223.415 + 217.802i −0.323790 + 0.315655i
\(691\) −257.093 + 445.297i −0.372059 + 0.644424i −0.989882 0.141892i \(-0.954681\pi\)
0.617823 + 0.786317i \(0.288015\pi\)
\(692\) −395.170 395.170i −0.571055 0.571055i
\(693\) −84.5160 + 103.009i −0.121957 + 0.148642i
\(694\) 28.1248i 0.0405257i
\(695\) 544.392 305.138i 0.783297 0.439047i
\(696\) −165.432 286.536i −0.237690 0.411690i
\(697\) 4.91652 18.3487i 0.00705383 0.0263252i
\(698\) 70.7089 + 263.889i 0.101302 + 0.378065i
\(699\) 385.910i 0.552089i
\(700\) 358.052 414.431i 0.511502 0.592044i
\(701\) 441.593 0.629947 0.314973 0.949100i \(-0.398004\pi\)
0.314973 + 0.949100i \(0.398004\pi\)
\(702\) 38.0722 10.2014i 0.0542339 0.0145319i
\(703\) −65.7044 17.6054i −0.0934629 0.0250433i
\(704\) 27.8353 16.0707i 0.0395388 0.0228277i
\(705\) −217.991 388.914i −0.309207 0.551651i
\(706\) −211.819 −0.300027
\(707\) −45.3072 + 274.631i −0.0640837 + 0.388446i
\(708\) 223.361 223.361i 0.315482 0.315482i
\(709\) −182.944 105.623i −0.258031 0.148974i 0.365405 0.930849i \(-0.380931\pi\)
−0.623436 + 0.781874i \(0.714264\pi\)
\(710\) 72.3383 + 74.2026i 0.101885 + 0.104511i
\(711\) 220.954 + 382.704i 0.310766 + 0.538262i
\(712\) 353.774 94.7935i 0.496874 0.133137i
\(713\) 1668.71 1668.71i 2.34041 2.34041i
\(714\) −8.06171 + 5.77844i −0.0112909 + 0.00809305i
\(715\) −63.5851 249.980i −0.0889302 0.349623i
\(716\) −193.701 + 335.500i −0.270532 + 0.468576i
\(717\) −166.908 + 622.909i −0.232787 + 0.868772i
\(718\) 355.842 + 95.3476i 0.495602 + 0.132796i
\(719\) −149.598 86.3704i −0.208064 0.120126i 0.392347 0.919817i \(-0.371663\pi\)
−0.600411 + 0.799691i \(0.704996\pi\)
\(720\) 81.3971 + 48.3855i 0.113052 + 0.0672021i
\(721\) 58.6848 129.562i 0.0813936 0.179698i
\(722\) −215.940 215.940i −0.299087 0.299087i
\(723\) −17.8539 66.6315i −0.0246941 0.0921598i
\(724\) −471.176 + 272.034i −0.650796 + 0.375737i
\(725\) 612.444 + 374.685i 0.844751 + 0.516807i
\(726\) −65.2362 + 112.992i −0.0898571 + 0.155637i
\(727\) 81.3739 + 81.3739i 0.111931 + 0.111931i 0.760854 0.648923i \(-0.224780\pi\)
−0.648923 + 0.760854i \(0.724780\pi\)
\(728\) 240.126 292.667i 0.329843 0.402016i
\(729\) 27.0000i 0.0370370i
\(730\) 53.0770 + 94.6939i 0.0727083 + 0.129718i
\(731\) −28.1352 48.7316i −0.0384887 0.0666643i
\(732\) −39.3277 + 146.773i −0.0537263 + 0.200509i
\(733\) 162.793 + 607.551i 0.222091 + 0.828856i 0.983549 + 0.180641i \(0.0578173\pi\)
−0.761458 + 0.648214i \(0.775516\pi\)
\(734\) 224.450i 0.305790i
\(735\) 382.902 182.924i 0.520955 0.248876i
\(736\) −1254.90 −1.70503
\(737\) 213.222 57.1326i 0.289311 0.0775205i
\(738\) 58.5660 + 15.6927i 0.0793578 + 0.0212638i
\(739\) 879.807 507.957i 1.19054 0.687357i 0.232109 0.972690i \(-0.425437\pi\)
0.958429 + 0.285333i \(0.0921041\pi\)
\(740\) 176.578 + 49.7298i 0.238619 + 0.0672024i
\(741\) 81.7115 0.110272
\(742\) −227.579 186.722i −0.306710 0.251647i
\(743\) −827.334 + 827.334i −1.11351 + 1.11351i −0.120832 + 0.992673i \(0.538556\pi\)
−0.992673 + 0.120832i \(0.961444\pi\)
\(744\) 609.718 + 352.021i 0.819513 + 0.473146i
\(745\) 14.2326 1118.77i 0.0191042 1.50171i
\(746\) −127.228 220.366i −0.170547 0.295397i
\(747\) −356.006 + 95.3916i −0.476582 + 0.127700i
\(748\) −12.3123 + 12.3123i −0.0164603 + 0.0164603i
\(749\) −611.434 276.947i −0.816334 0.369755i
\(750\) 201.843 + 7.70663i 0.269124 + 0.0102755i
\(751\) −36.7464 + 63.6466i −0.0489299 + 0.0847491i −0.889453 0.457027i \(-0.848914\pi\)
0.840523 + 0.541776i \(0.182248\pi\)
\(752\) 84.1143 313.919i 0.111854 0.417445i
\(753\) 27.6906 + 7.41969i 0.0367738 + 0.00985350i
\(754\) 188.659 + 108.922i 0.250211 + 0.144459i
\(755\) −147.912 + 248.827i −0.195910 + 0.329572i
\(756\) 66.3167 + 92.5209i 0.0877205 + 0.122382i
\(757\) 270.218 + 270.218i 0.356958 + 0.356958i 0.862691 0.505732i \(-0.168778\pi\)
−0.505732 + 0.862691i \(0.668778\pi\)
\(758\) −118.894 443.719i −0.156852 0.585381i
\(759\) −367.536 + 212.197i −0.484237 + 0.279574i
\(760\) −134.705 138.176i −0.177243 0.181811i
\(761\) −461.228 +