Properties

Label 105.3.v.a.37.14
Level 105
Weight 3
Character 105.37
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.14
Character \(\chi\) \(=\) 105.37
Dual form 105.3.v.a.88.14

$q$-expansion

\(f(q)\) \(=\) \(q+(2.88660 - 0.773463i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(4.27013 - 2.46536i) q^{4} +(0.160937 - 4.99741i) q^{5} -5.17611 q^{6} +(5.19830 - 4.68804i) q^{7} +(1.96674 - 1.96674i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(2.88660 - 0.773463i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(4.27013 - 2.46536i) q^{4} +(0.160937 - 4.99741i) q^{5} -5.17611 q^{6} +(5.19830 - 4.68804i) q^{7} +(1.96674 - 1.96674i) q^{8} +(2.59808 + 1.50000i) q^{9} +(-3.40075 - 14.5500i) q^{10} +(6.71313 + 11.6275i) q^{11} +(-8.24925 + 2.21038i) q^{12} +(-3.94411 + 3.94411i) q^{13} +(11.3794 - 17.5532i) q^{14} +(-2.50953 + 8.28868i) q^{15} +(-5.70544 + 9.88212i) q^{16} +(-2.53643 + 9.46609i) q^{17} +(8.65981 + 2.32039i) q^{18} +(-4.57992 - 2.64422i) q^{19} +(-11.6332 - 21.7363i) q^{20} +(-10.7985 + 5.51290i) q^{21} +(28.3716 + 28.3716i) q^{22} +(-1.98091 - 7.39285i) q^{23} +(-4.17208 + 2.40875i) q^{24} +(-24.9482 - 1.60854i) q^{25} +(-8.33445 + 14.4357i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(10.6397 - 32.8342i) q^{28} +36.7188i q^{29} +(-0.833028 + 25.8672i) q^{30} +(-9.71723 - 16.8307i) q^{31} +(-11.7054 + 43.6852i) q^{32} +(-6.01883 - 22.4626i) q^{33} +29.2867i q^{34} +(-22.5914 - 26.7325i) q^{35} +14.7922 q^{36} +(43.7832 - 11.7317i) q^{37} +(-15.2656 - 4.09041i) q^{38} +(8.36672 - 4.83053i) q^{39} +(-9.51208 - 10.1451i) q^{40} +57.9301 q^{41} +(-26.9070 + 24.2658i) q^{42} +(46.3359 - 46.3359i) q^{43} +(57.3319 + 33.1006i) q^{44} +(7.91424 - 12.7422i) q^{45} +(-11.4362 - 19.8080i) q^{46} +(-61.3721 + 16.4446i) q^{47} +(13.9754 - 13.9754i) q^{48} +(5.04463 - 48.7396i) q^{49} +(-73.2597 + 14.6533i) q^{50} +(8.48707 - 14.7000i) q^{51} +(-7.11820 + 26.5655i) q^{52} +(-38.8830 - 10.4187i) q^{53} +(-13.4479 - 7.76417i) q^{54} +(59.1877 - 31.6770i) q^{55} +(1.00355 - 19.4438i) q^{56} +(6.47699 + 6.47699i) q^{57} +(28.4006 + 105.992i) q^{58} +(-60.4517 + 34.9018i) q^{59} +(9.71857 + 41.5806i) q^{60} +(-39.4523 + 68.3334i) q^{61} +(-41.0677 - 41.0677i) q^{62} +(20.5376 - 4.38243i) q^{63} +89.5118i q^{64} +(19.0756 + 20.3451i) q^{65} +(-34.7479 - 60.1852i) q^{66} +(28.7353 - 107.241i) q^{67} +(12.5064 + 46.6746i) q^{68} +13.2565i q^{69} +(-85.8891 - 59.6925i) q^{70} -121.479 q^{71} +(8.05985 - 2.15963i) q^{72} +(4.70119 + 1.25968i) q^{73} +(117.311 - 67.7293i) q^{74} +(41.0181 + 13.8751i) q^{75} -26.0758 q^{76} +(89.4070 + 28.9718i) q^{77} +(20.4152 - 20.4152i) q^{78} +(-116.005 - 66.9753i) q^{79} +(48.4668 + 30.1028i) q^{80} +(4.50000 + 7.79423i) q^{81} +(167.221 - 44.8068i) q^{82} +(99.6896 - 99.6896i) q^{83} +(-32.5197 + 50.1630i) q^{84} +(46.8977 + 14.1990i) q^{85} +(97.9142 - 169.592i) q^{86} +(16.4606 - 61.4317i) q^{87} +(36.0712 + 9.66526i) q^{88} +(-20.5641 - 11.8727i) q^{89} +(12.9896 - 42.9032i) q^{90} +(-2.01253 + 38.9928i) q^{91} +(-26.6847 - 26.6847i) q^{92} +(8.71223 + 32.5145i) q^{93} +(-164.438 + 94.9381i) q^{94} +(-13.9513 + 22.4622i) q^{95} +(39.1670 - 67.8393i) q^{96} +(-40.9086 - 40.9086i) q^{97} +(-23.1364 - 144.594i) q^{98} +40.2788i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.88660 0.773463i 1.44330 0.386731i 0.549613 0.835419i \(-0.314775\pi\)
0.893688 + 0.448688i \(0.148109\pi\)
\(3\) −1.67303 0.448288i −0.557678 0.149429i
\(4\) 4.27013 2.46536i 1.06753 0.616340i
\(5\) 0.160937 4.99741i 0.0321874 0.999482i
\(6\) −5.17611 −0.862686
\(7\) 5.19830 4.68804i 0.742614 0.669719i
\(8\) 1.96674 1.96674i 0.245842 0.245842i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) −3.40075 14.5500i −0.340075 1.45500i
\(11\) 6.71313 + 11.6275i 0.610285 + 1.05704i 0.991192 + 0.132431i \(0.0422784\pi\)
−0.380907 + 0.924613i \(0.624388\pi\)
\(12\) −8.24925 + 2.21038i −0.687438 + 0.184198i
\(13\) −3.94411 + 3.94411i −0.303393 + 0.303393i −0.842340 0.538947i \(-0.818822\pi\)
0.538947 + 0.842340i \(0.318822\pi\)
\(14\) 11.3794 17.5532i 0.812814 1.25380i
\(15\) −2.50953 + 8.28868i −0.167302 + 0.552579i
\(16\) −5.70544 + 9.88212i −0.356590 + 0.617632i
\(17\) −2.53643 + 9.46609i −0.149202 + 0.556829i 0.850330 + 0.526249i \(0.176402\pi\)
−0.999532 + 0.0305799i \(0.990265\pi\)
\(18\) 8.65981 + 2.32039i 0.481100 + 0.128910i
\(19\) −4.57992 2.64422i −0.241049 0.139169i 0.374610 0.927182i \(-0.377777\pi\)
−0.615659 + 0.788013i \(0.711110\pi\)
\(20\) −11.6332 21.7363i −0.581659 1.08682i
\(21\) −10.7985 + 5.51290i −0.514215 + 0.262519i
\(22\) 28.3716 + 28.3716i 1.28962 + 1.28962i
\(23\) −1.98091 7.39285i −0.0861264 0.321428i 0.909399 0.415925i \(-0.136542\pi\)
−0.995525 + 0.0944974i \(0.969876\pi\)
\(24\) −4.17208 + 2.40875i −0.173837 + 0.100365i
\(25\) −24.9482 1.60854i −0.997928 0.0643415i
\(26\) −8.33445 + 14.4357i −0.320556 + 0.555219i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) 10.6397 32.8342i 0.379990 1.17265i
\(29\) 36.7188i 1.26616i 0.774085 + 0.633082i \(0.218211\pi\)
−0.774085 + 0.633082i \(0.781789\pi\)
\(30\) −0.833028 + 25.8672i −0.0277676 + 0.862239i
\(31\) −9.71723 16.8307i −0.313459 0.542927i 0.665650 0.746264i \(-0.268155\pi\)
−0.979109 + 0.203337i \(0.934821\pi\)
\(32\) −11.7054 + 43.6852i −0.365794 + 1.36516i
\(33\) −6.01883 22.4626i −0.182389 0.680684i
\(34\) 29.2867i 0.861373i
\(35\) −22.5914 26.7325i −0.645470 0.763786i
\(36\) 14.7922 0.410893
\(37\) 43.7832 11.7317i 1.18333 0.317072i 0.387083 0.922045i \(-0.373483\pi\)
0.796246 + 0.604973i \(0.206816\pi\)
\(38\) −15.2656 4.09041i −0.401727 0.107642i
\(39\) 8.36672 4.83053i 0.214531 0.123860i
\(40\) −9.51208 10.1451i −0.237802 0.253628i
\(41\) 57.9301 1.41293 0.706464 0.707749i \(-0.250289\pi\)
0.706464 + 0.707749i \(0.250289\pi\)
\(42\) −26.9070 + 24.2658i −0.640643 + 0.577757i
\(43\) 46.3359 46.3359i 1.07758 1.07758i 0.0808525 0.996726i \(-0.474236\pi\)
0.996726 0.0808525i \(-0.0257643\pi\)
\(44\) 57.3319 + 33.1006i 1.30300 + 0.752286i
\(45\) 7.91424 12.7422i 0.175872 0.283161i
\(46\) −11.4362 19.8080i −0.248613 0.430610i
\(47\) −61.3721 + 16.4446i −1.30579 + 0.349885i −0.843636 0.536915i \(-0.819590\pi\)
−0.462153 + 0.886800i \(0.652923\pi\)
\(48\) 13.9754 13.9754i 0.291155 0.291155i
\(49\) 5.04463 48.7396i 0.102952 0.994686i
\(50\) −73.2597 + 14.6533i −1.46519 + 0.293066i
\(51\) 8.48707 14.7000i 0.166413 0.288236i
\(52\) −7.11820 + 26.5655i −0.136889 + 0.510875i
\(53\) −38.8830 10.4187i −0.733641 0.196578i −0.127391 0.991853i \(-0.540660\pi\)
−0.606250 + 0.795274i \(0.707327\pi\)
\(54\) −13.4479 7.76417i −0.249036 0.143781i
\(55\) 59.1877 31.6770i 1.07614 0.575945i
\(56\) 1.00355 19.4438i 0.0179206 0.347212i
\(57\) 6.47699 + 6.47699i 0.113631 + 0.113631i
\(58\) 28.4006 + 105.992i 0.489666 + 1.82746i
\(59\) −60.4517 + 34.9018i −1.02461 + 0.591556i −0.915434 0.402467i \(-0.868153\pi\)
−0.109171 + 0.994023i \(0.534819\pi\)
\(60\) 9.71857 + 41.5806i 0.161976 + 0.693010i
\(61\) −39.4523 + 68.3334i −0.646759 + 1.12022i 0.337133 + 0.941457i \(0.390543\pi\)
−0.983892 + 0.178763i \(0.942790\pi\)
\(62\) −41.0677 41.0677i −0.662383 0.662383i
\(63\) 20.5376 4.38243i 0.325994 0.0695623i
\(64\) 89.5118i 1.39862i
\(65\) 19.0756 + 20.3451i 0.293470 + 0.313001i
\(66\) −34.7479 60.1852i −0.526484 0.911897i
\(67\) 28.7353 107.241i 0.428885 1.60062i −0.326407 0.945229i \(-0.605838\pi\)
0.755291 0.655389i \(-0.227495\pi\)
\(68\) 12.5064 + 46.6746i 0.183918 + 0.686392i
\(69\) 13.2565i 0.192123i
\(70\) −85.8891 59.6925i −1.22699 0.852750i
\(71\) −121.479 −1.71097 −0.855486 0.517826i \(-0.826741\pi\)
−0.855486 + 0.517826i \(0.826741\pi\)
\(72\) 8.05985 2.15963i 0.111942 0.0299949i
\(73\) 4.70119 + 1.25968i 0.0643998 + 0.0172559i 0.290875 0.956761i \(-0.406054\pi\)
−0.226475 + 0.974017i \(0.572720\pi\)
\(74\) 117.311 67.7293i 1.58528 0.915261i
\(75\) 41.0181 + 13.8751i 0.546907 + 0.185001i
\(76\) −26.0758 −0.343103
\(77\) 89.4070 + 28.9718i 1.16113 + 0.376257i
\(78\) 20.4152 20.4152i 0.261733 0.261733i
\(79\) −116.005 66.9753i −1.46841 0.847788i −0.469039 0.883177i \(-0.655400\pi\)
−0.999374 + 0.0353889i \(0.988733\pi\)
\(80\) 48.4668 + 30.1028i 0.605835 + 0.376285i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 167.221 44.8068i 2.03928 0.546424i
\(83\) 99.6896 99.6896i 1.20108 1.20108i 0.227242 0.973838i \(-0.427029\pi\)
0.973838 0.227242i \(-0.0729707\pi\)
\(84\) −32.5197 + 50.1630i −0.387140 + 0.597179i
\(85\) 46.8977 + 14.1990i 0.551738 + 0.167047i
\(86\) 97.9142 169.592i 1.13854 1.97200i
\(87\) 16.4606 61.4317i 0.189202 0.706112i
\(88\) 36.0712 + 9.66526i 0.409900 + 0.109832i
\(89\) −20.5641 11.8727i −0.231058 0.133401i 0.380002 0.924986i \(-0.375923\pi\)
−0.611060 + 0.791584i \(0.709257\pi\)
\(90\) 12.9896 42.9032i 0.144329 0.476702i
\(91\) −2.01253 + 38.9928i −0.0221158 + 0.428492i
\(92\) −26.6847 26.6847i −0.290052 0.290052i
\(93\) 8.71223 + 32.5145i 0.0936799 + 0.349618i
\(94\) −164.438 + 94.9381i −1.74934 + 1.00998i
\(95\) −13.9513 + 22.4622i −0.146856 + 0.236444i
\(96\) 39.1670 67.8393i 0.407990 0.706659i
\(97\) −40.9086 40.9086i −0.421738 0.421738i 0.464064 0.885802i \(-0.346391\pi\)
−0.885802 + 0.464064i \(0.846391\pi\)
\(98\) −23.1364 144.594i −0.236086 1.47545i
\(99\) 40.2788i 0.406857i
\(100\) −110.498 + 54.6376i −1.10498 + 0.546376i
\(101\) 34.1609 + 59.1683i 0.338226 + 0.585825i 0.984099 0.177620i \(-0.0568397\pi\)
−0.645873 + 0.763445i \(0.723506\pi\)
\(102\) 13.1289 48.9976i 0.128714 0.480368i
\(103\) 32.8404 + 122.562i 0.318839 + 1.18992i 0.920362 + 0.391067i \(0.127894\pi\)
−0.601524 + 0.798855i \(0.705439\pi\)
\(104\) 15.5141i 0.149174i
\(105\) 25.8124 + 54.8518i 0.245832 + 0.522398i
\(106\) −120.298 −1.13489
\(107\) 58.6252 15.7086i 0.547899 0.146809i 0.0257581 0.999668i \(-0.491800\pi\)
0.522141 + 0.852859i \(0.325133\pi\)
\(108\) −24.7478 6.63114i −0.229146 0.0613995i
\(109\) 18.6575 10.7719i 0.171170 0.0988251i −0.411967 0.911199i \(-0.635158\pi\)
0.583137 + 0.812374i \(0.301825\pi\)
\(110\) 146.350 137.218i 1.33046 1.24744i
\(111\) −78.5098 −0.707296
\(112\) 16.6691 + 78.1175i 0.148831 + 0.697478i
\(113\) 12.3946 12.3946i 0.109686 0.109686i −0.650134 0.759820i \(-0.725287\pi\)
0.759820 + 0.650134i \(0.225287\pi\)
\(114\) 23.7062 + 13.6868i 0.207949 + 0.120060i
\(115\) −37.2639 + 8.70962i −0.324034 + 0.0757358i
\(116\) 90.5250 + 156.794i 0.780388 + 1.35167i
\(117\) −16.1633 + 4.33093i −0.138148 + 0.0370165i
\(118\) −147.505 + 147.505i −1.25004 + 1.25004i
\(119\) 31.1923 + 61.0985i 0.262120 + 0.513432i
\(120\) 11.3661 + 21.2373i 0.0947174 + 0.176977i
\(121\) −29.6323 + 51.3247i −0.244895 + 0.424171i
\(122\) −61.0298 + 227.766i −0.500244 + 1.86694i
\(123\) −96.9189 25.9693i −0.787959 0.211133i
\(124\) −82.9877 47.9129i −0.669255 0.386395i
\(125\) −12.0536 + 124.417i −0.0964288 + 0.995340i
\(126\) 55.8943 28.5354i 0.443606 0.226472i
\(127\) −21.0785 21.0785i −0.165973 0.165973i 0.619234 0.785207i \(-0.287443\pi\)
−0.785207 + 0.619234i \(0.787443\pi\)
\(128\) 22.4125 + 83.6445i 0.175097 + 0.653472i
\(129\) −98.2932 + 56.7496i −0.761963 + 0.439920i
\(130\) 70.7998 + 43.9739i 0.544614 + 0.338261i
\(131\) −62.6091 + 108.442i −0.477932 + 0.827803i −0.999680 0.0252971i \(-0.991947\pi\)
0.521748 + 0.853100i \(0.325280\pi\)
\(132\) −81.0795 81.0795i −0.614239 0.614239i
\(133\) −36.2040 + 7.72540i −0.272211 + 0.0580857i
\(134\) 331.789i 2.47604i
\(135\) −18.9530 + 17.7703i −0.140392 + 0.131632i
\(136\) 13.6288 + 23.6058i 0.100212 + 0.173572i
\(137\) −9.48345 + 35.3927i −0.0692222 + 0.258341i −0.991861 0.127324i \(-0.959361\pi\)
0.922639 + 0.385665i \(0.126028\pi\)
\(138\) 10.2534 + 38.2662i 0.0743000 + 0.277291i
\(139\) 84.6491i 0.608986i −0.952515 0.304493i \(-0.901513\pi\)
0.952515 0.304493i \(-0.0984870\pi\)
\(140\) −162.374 58.4552i −1.15981 0.417537i
\(141\) 110.049 0.780493
\(142\) −350.662 + 93.9595i −2.46945 + 0.661687i
\(143\) −72.3374 19.3828i −0.505856 0.135544i
\(144\) −29.6464 + 17.1163i −0.205877 + 0.118863i
\(145\) 183.499 + 5.90941i 1.26551 + 0.0407546i
\(146\) 14.5448 0.0996217
\(147\) −30.2892 + 79.2815i −0.206049 + 0.539330i
\(148\) 158.037 158.037i 1.06782 1.06782i
\(149\) 28.2589 + 16.3153i 0.189657 + 0.109499i 0.591822 0.806069i \(-0.298409\pi\)
−0.402165 + 0.915567i \(0.631742\pi\)
\(150\) 129.135 + 8.32597i 0.860898 + 0.0555065i
\(151\) 78.0454 + 135.179i 0.516857 + 0.895223i 0.999808 + 0.0195756i \(0.00623149\pi\)
−0.482951 + 0.875647i \(0.660435\pi\)
\(152\) −14.2080 + 3.80702i −0.0934737 + 0.0250462i
\(153\) −20.7890 + 20.7890i −0.135876 + 0.135876i
\(154\) 280.491 + 14.4770i 1.82137 + 0.0940063i
\(155\) −85.6740 + 45.8523i −0.552735 + 0.295821i
\(156\) 23.8180 41.2539i 0.152679 0.264448i
\(157\) 17.2166 64.2534i 0.109660 0.409257i −0.889172 0.457573i \(-0.848719\pi\)
0.998832 + 0.0483159i \(0.0153854\pi\)
\(158\) −386.662 103.606i −2.44723 0.655733i
\(159\) 60.3819 + 34.8615i 0.379760 + 0.219255i
\(160\) 216.429 + 65.5272i 1.35268 + 0.409545i
\(161\) −44.9553 29.1437i −0.279225 0.181017i
\(162\) 19.0183 + 19.0183i 0.117397 + 0.117397i
\(163\) −15.1289 56.4617i −0.0928152 0.346391i 0.903864 0.427820i \(-0.140718\pi\)
−0.996679 + 0.0814289i \(0.974052\pi\)
\(164\) 247.369 142.818i 1.50835 0.870844i
\(165\) −113.223 + 26.4635i −0.686202 + 0.160385i
\(166\) 210.658 364.871i 1.26902 2.19802i
\(167\) −93.0212 93.0212i −0.557013 0.557013i 0.371443 0.928456i \(-0.378863\pi\)
−0.928456 + 0.371443i \(0.878863\pi\)
\(168\) −10.3954 + 32.0803i −0.0618775 + 0.190954i
\(169\) 137.888i 0.815905i
\(170\) 146.358 + 4.71331i 0.860927 + 0.0277254i
\(171\) −7.93266 13.7398i −0.0463898 0.0803495i
\(172\) 83.6255 312.095i 0.486195 1.81450i
\(173\) 62.6748 + 233.906i 0.362282 + 1.35206i 0.871068 + 0.491162i \(0.163428\pi\)
−0.508786 + 0.860893i \(0.669906\pi\)
\(174\) 190.061i 1.09230i
\(175\) −137.229 + 108.596i −0.784166 + 0.620551i
\(176\) −153.206 −0.870486
\(177\) 116.784 31.2921i 0.659795 0.176792i
\(178\) −68.5435 18.3662i −0.385076 0.103181i
\(179\) 228.989 132.207i 1.27927 0.738585i 0.302553 0.953133i \(-0.402161\pi\)
0.976713 + 0.214548i \(0.0688279\pi\)
\(180\) 2.38061 73.9225i 0.0132256 0.410680i
\(181\) 286.020 1.58022 0.790110 0.612965i \(-0.210023\pi\)
0.790110 + 0.612965i \(0.210023\pi\)
\(182\) 24.3501 + 114.113i 0.133792 + 0.626996i
\(183\) 96.6381 96.6381i 0.528077 0.528077i
\(184\) −18.4357 10.6439i −0.100194 0.0578471i
\(185\) −51.5816 220.690i −0.278819 1.19292i
\(186\) 50.2975 + 87.1178i 0.270417 + 0.468375i
\(187\) −127.094 + 34.0548i −0.679649 + 0.182111i
\(188\) −221.525 + 221.525i −1.17832 + 1.17832i
\(189\) −36.3247 1.87483i −0.192194 0.00991972i
\(190\) −22.8983 + 75.6303i −0.120517 + 0.398054i
\(191\) 38.1037 65.9976i 0.199496 0.345537i −0.748869 0.662718i \(-0.769403\pi\)
0.948365 + 0.317181i \(0.102736\pi\)
\(192\) 40.1271 149.756i 0.208995 0.779980i
\(193\) −236.585 63.3927i −1.22583 0.328459i −0.412874 0.910788i \(-0.635475\pi\)
−0.812953 + 0.582329i \(0.802142\pi\)
\(194\) −149.728 86.4456i −0.771795 0.445596i
\(195\) −22.7936 42.5893i −0.116890 0.218407i
\(196\) −98.6195 220.561i −0.503161 1.12531i
\(197\) 136.078 + 136.078i 0.690750 + 0.690750i 0.962397 0.271647i \(-0.0875684\pi\)
−0.271647 + 0.962397i \(0.587568\pi\)
\(198\) 31.1542 + 116.269i 0.157344 + 0.587217i
\(199\) 107.888 62.2892i 0.542151 0.313011i −0.203799 0.979013i \(-0.565329\pi\)
0.745950 + 0.666002i \(0.231996\pi\)
\(200\) −52.2302 + 45.9030i −0.261151 + 0.229515i
\(201\) −96.1501 + 166.537i −0.478359 + 0.828541i
\(202\) 144.373 + 144.373i 0.714720 + 0.714720i
\(203\) 172.139 + 190.875i 0.847975 + 0.940272i
\(204\) 83.6947i 0.410268i
\(205\) 9.32309 289.500i 0.0454785 1.41220i
\(206\) 189.594 + 328.387i 0.920360 + 1.59411i
\(207\) 5.94272 22.1785i 0.0287088 0.107143i
\(208\) −16.4733 61.4790i −0.0791984 0.295572i
\(209\) 71.0040i 0.339732i
\(210\) 116.936 + 138.371i 0.556837 + 0.658907i
\(211\) −25.5567 −0.121122 −0.0605610 0.998164i \(-0.519289\pi\)
−0.0605610 + 0.998164i \(0.519289\pi\)
\(212\) −191.721 + 51.3715i −0.904344 + 0.242318i
\(213\) 203.238 + 54.4576i 0.954171 + 0.255669i
\(214\) 157.078 90.6889i 0.734008 0.423780i
\(215\) −224.102 239.017i −1.04234 1.11170i
\(216\) −14.4525 −0.0669098
\(217\) −129.416 41.9365i −0.596388 0.193256i
\(218\) 45.5252 45.5252i 0.208831 0.208831i
\(219\) −7.30054 4.21497i −0.0333358 0.0192464i
\(220\) 174.644 281.184i 0.793836 1.27811i
\(221\) −27.3313 47.3393i −0.123671 0.214205i
\(222\) −226.627 + 60.7244i −1.02084 + 0.273533i
\(223\) −58.9789 + 58.9789i −0.264479 + 0.264479i −0.826871 0.562392i \(-0.809881\pi\)
0.562392 + 0.826871i \(0.309881\pi\)
\(224\) 143.949 + 281.964i 0.642631 + 1.25877i
\(225\) −62.4045 41.6014i −0.277353 0.184895i
\(226\) 26.1914 45.3649i 0.115891 0.200730i
\(227\) 106.629 397.945i 0.469732 1.75306i −0.170972 0.985276i \(-0.554691\pi\)
0.640704 0.767788i \(-0.278642\pi\)
\(228\) 43.6257 + 11.6895i 0.191341 + 0.0512696i
\(229\) −325.569 187.967i −1.42170 0.820818i −0.425255 0.905074i \(-0.639816\pi\)
−0.996444 + 0.0842553i \(0.973149\pi\)
\(230\) −100.829 + 53.9634i −0.438389 + 0.234624i
\(231\) −136.593 88.5507i −0.591312 0.383337i
\(232\) 72.2163 + 72.2163i 0.311277 + 0.311277i
\(233\) 6.28523 + 23.4568i 0.0269752 + 0.100673i 0.978101 0.208131i \(-0.0667380\pi\)
−0.951126 + 0.308804i \(0.900071\pi\)
\(234\) −43.3071 + 25.0034i −0.185073 + 0.106852i
\(235\) 72.3034 + 309.348i 0.307674 + 1.31638i
\(236\) −172.091 + 298.070i −0.729199 + 1.26301i
\(237\) 164.055 + 164.055i 0.692216 + 0.692216i
\(238\) 137.297 + 152.241i 0.576878 + 0.639668i
\(239\) 50.6675i 0.211998i 0.994366 + 0.105999i \(0.0338040\pi\)
−0.994366 + 0.105999i \(0.966196\pi\)
\(240\) −67.5917 72.0901i −0.281632 0.300375i
\(241\) 58.3080 + 100.992i 0.241942 + 0.419055i 0.961267 0.275618i \(-0.0888824\pi\)
−0.719326 + 0.694673i \(0.755549\pi\)
\(242\) −45.8390 + 171.074i −0.189417 + 0.706916i
\(243\) −4.03459 15.0573i −0.0166032 0.0619642i
\(244\) 389.057i 1.59449i
\(245\) −242.760 33.0541i −0.990857 0.134915i
\(246\) −299.853 −1.21891
\(247\) 28.4928 7.63463i 0.115356 0.0309094i
\(248\) −52.2129 13.9904i −0.210536 0.0564130i
\(249\) −211.474 + 122.094i −0.849292 + 0.490339i
\(250\) 61.4383 + 368.467i 0.245753 + 1.47387i
\(251\) 320.629 1.27741 0.638704 0.769452i \(-0.279471\pi\)
0.638704 + 0.769452i \(0.279471\pi\)
\(252\) 76.8941 69.3462i 0.305135 0.275183i
\(253\) 72.6621 72.6621i 0.287202 0.287202i
\(254\) −77.1488 44.5419i −0.303736 0.175362i
\(255\) −72.0962 44.7791i −0.282730 0.175604i
\(256\) −49.6319 85.9650i −0.193875 0.335801i
\(257\) −191.876 + 51.4131i −0.746600 + 0.200051i −0.612009 0.790850i \(-0.709639\pi\)
−0.134591 + 0.990901i \(0.542972\pi\)
\(258\) −239.840 + 239.840i −0.929612 + 0.929612i
\(259\) 172.600 266.242i 0.666407 1.02796i
\(260\) 131.613 + 39.8480i 0.506204 + 0.153261i
\(261\) −55.0782 + 95.3982i −0.211027 + 0.365510i
\(262\) −96.8516 + 361.455i −0.369663 + 1.37960i
\(263\) −15.3255 4.10646i −0.0582720 0.0156139i 0.229565 0.973293i \(-0.426270\pi\)
−0.287837 + 0.957679i \(0.592936\pi\)
\(264\) −56.0155 32.3406i −0.212180 0.122502i
\(265\) −58.3240 + 192.637i −0.220091 + 0.726933i
\(266\) −98.5313 + 50.3026i −0.370418 + 0.189108i
\(267\) 29.0821 + 29.0821i 0.108922 + 0.108922i
\(268\) −141.686 528.778i −0.528677 1.97305i
\(269\) −89.8942 + 51.9004i −0.334179 + 0.192938i −0.657695 0.753284i \(-0.728468\pi\)
0.323516 + 0.946223i \(0.395135\pi\)
\(270\) −40.9650 + 65.9553i −0.151722 + 0.244279i
\(271\) 78.5571 136.065i 0.289878 0.502084i −0.683902 0.729574i \(-0.739718\pi\)
0.973781 + 0.227490i \(0.0730518\pi\)
\(272\) −79.0736 79.0736i −0.290712 0.290712i
\(273\) 20.8470 64.3340i 0.0763627 0.235656i
\(274\) 109.500i 0.399634i
\(275\) −148.777 300.883i −0.541009 1.09412i
\(276\) 32.6820 + 56.6069i 0.118413 + 0.205097i
\(277\) 54.1211 201.983i 0.195383 0.729179i −0.796784 0.604264i \(-0.793467\pi\)
0.992167 0.124916i \(-0.0398660\pi\)
\(278\) −65.4729 244.348i −0.235514 0.878950i
\(279\) 58.3034i 0.208973i
\(280\) −97.0073 8.14441i −0.346455 0.0290872i
\(281\) 454.909 1.61889 0.809446 0.587194i \(-0.199768\pi\)
0.809446 + 0.587194i \(0.199768\pi\)
\(282\) 317.669 85.1192i 1.12649 0.301841i
\(283\) 99.1636 + 26.5708i 0.350401 + 0.0938898i 0.429727 0.902959i \(-0.358610\pi\)
−0.0793253 + 0.996849i \(0.525277\pi\)
\(284\) −518.731 + 299.489i −1.82652 + 1.05454i
\(285\) 33.4106 31.3258i 0.117230 0.109915i
\(286\) −223.801 −0.782522
\(287\) 301.138 271.578i 1.04926 0.946266i
\(288\) −95.9393 + 95.9393i −0.333122 + 0.333122i
\(289\) 167.108 + 96.4798i 0.578228 + 0.333840i
\(290\) 534.259 124.871i 1.84227 0.430591i
\(291\) 50.1026 + 86.7803i 0.172174 + 0.298214i
\(292\) 23.1802 6.21112i 0.0793843 0.0212710i
\(293\) 102.346 102.346i 0.349302 0.349302i −0.510547 0.859850i \(-0.670557\pi\)
0.859850 + 0.510547i \(0.170557\pi\)
\(294\) −26.1116 + 252.282i −0.0888150 + 0.858102i
\(295\) 164.690 + 307.719i 0.558270 + 1.04311i
\(296\) 63.0369 109.183i 0.212963 0.368862i
\(297\) 18.0565 67.3878i 0.0607963 0.226895i
\(298\) 94.1914 + 25.2385i 0.316079 + 0.0846930i
\(299\) 36.9711 + 21.3453i 0.123649 + 0.0713889i
\(300\) 209.359 41.8758i 0.697865 0.139586i
\(301\) 23.6435 458.092i 0.0785498 1.52190i
\(302\) 329.842 + 329.842i 1.09219 + 1.09219i
\(303\) −30.6278 114.304i −0.101082 0.377242i
\(304\) 52.2610 30.1729i 0.171911 0.0992529i
\(305\) 335.141 + 208.157i 1.09882 + 0.682481i
\(306\) −43.9300 + 76.0890i −0.143562 + 0.248657i
\(307\) 29.1999 + 29.1999i 0.0951137 + 0.0951137i 0.753063 0.657949i \(-0.228576\pi\)
−0.657949 + 0.753063i \(0.728576\pi\)
\(308\) 453.205 96.7072i 1.47144 0.313985i
\(309\) 219.772i 0.711236i
\(310\) −211.842 + 198.623i −0.683360 + 0.640719i
\(311\) −201.089 348.297i −0.646589 1.11992i −0.983932 0.178543i \(-0.942862\pi\)
0.337343 0.941382i \(-0.390472\pi\)
\(312\) 6.95477 25.9555i 0.0222909 0.0831909i
\(313\) 74.2751 + 277.198i 0.237301 + 0.885618i 0.977098 + 0.212788i \(0.0682545\pi\)
−0.739798 + 0.672829i \(0.765079\pi\)
\(314\) 198.790i 0.633091i
\(315\) −18.5955 103.340i −0.0590334 0.328064i
\(316\) −660.473 −2.09010
\(317\) −335.924 + 90.0106i −1.05970 + 0.283945i −0.746254 0.665662i \(-0.768149\pi\)
−0.313444 + 0.949607i \(0.601483\pi\)
\(318\) 201.263 + 53.9282i 0.632901 + 0.169585i
\(319\) −426.947 + 246.498i −1.33839 + 0.772721i
\(320\) 447.327 + 14.4058i 1.39790 + 0.0450180i
\(321\) −105.124 −0.327489
\(322\) −152.310 49.3549i −0.473011 0.153276i
\(323\) 36.6471 36.6471i 0.113458 0.113458i
\(324\) 38.4312 + 22.1882i 0.118615 + 0.0684822i
\(325\) 104.743 92.0542i 0.322285 0.283244i
\(326\) −87.3421 151.281i −0.267921 0.464052i
\(327\) −36.0436 + 9.65785i −0.110225 + 0.0295347i
\(328\) 113.933 113.933i 0.347358 0.347358i
\(329\) −241.938 + 373.199i −0.735373 + 1.13434i
\(330\) −306.362 + 163.964i −0.928371 + 0.496860i
\(331\) −36.2176 + 62.7307i −0.109419 + 0.189519i −0.915535 0.402239i \(-0.868232\pi\)
0.806116 + 0.591757i \(0.201566\pi\)
\(332\) 179.917 671.458i 0.541918 2.02246i
\(333\) 131.349 + 35.1950i 0.394443 + 0.105691i
\(334\) −340.464 196.567i −1.01935 0.588523i
\(335\) −531.305 160.861i −1.58598 0.480182i
\(336\) 7.13115 138.166i 0.0212236 0.411208i
\(337\) −255.737 255.737i −0.758865 0.758865i 0.217251 0.976116i \(-0.430291\pi\)
−0.976116 + 0.217251i \(0.930291\pi\)
\(338\) 106.651 + 398.028i 0.315536 + 1.17760i
\(339\) −26.2928 + 15.1802i −0.0775600 + 0.0447793i
\(340\) 235.265 54.9881i 0.691956 0.161730i
\(341\) 130.466 225.974i 0.382599 0.662680i
\(342\) −33.5256 33.5256i −0.0980282 0.0980282i
\(343\) −202.270 277.013i −0.589707 0.807617i
\(344\) 182.261i 0.529829i
\(345\) 66.2481 + 2.13346i 0.192023 + 0.00618394i
\(346\) 361.835 + 626.716i 1.04576 + 1.81132i
\(347\) −74.6974 + 278.775i −0.215266 + 0.803385i 0.770806 + 0.637070i \(0.219854\pi\)
−0.986073 + 0.166315i \(0.946813\pi\)
\(348\) −81.1625 302.902i −0.233225 0.870409i
\(349\) 480.492i 1.37677i 0.725347 + 0.688384i \(0.241680\pi\)
−0.725347 + 0.688384i \(0.758320\pi\)
\(350\) −312.131 + 419.616i −0.891802 + 1.19890i
\(351\) 28.9832 0.0825731
\(352\) −586.529 + 157.160i −1.66627 + 0.446477i
\(353\) −93.2268 24.9800i −0.264098 0.0707650i 0.124340 0.992240i \(-0.460319\pi\)
−0.388438 + 0.921475i \(0.626985\pi\)
\(354\) 312.905 180.656i 0.883912 0.510327i
\(355\) −19.5505 + 607.080i −0.0550718 + 1.71009i
\(356\) −117.082 −0.328882
\(357\) −24.7960 116.203i −0.0694565 0.325498i
\(358\) 558.742 558.742i 1.56073 1.56073i
\(359\) 280.865 + 162.157i 0.782353 + 0.451692i 0.837264 0.546799i \(-0.184154\pi\)
−0.0549104 + 0.998491i \(0.517487\pi\)
\(360\) −9.49543 40.6259i −0.0263762 0.112850i
\(361\) −166.516 288.415i −0.461264 0.798932i
\(362\) 825.626 221.226i 2.28073 0.611121i
\(363\) 72.5841 72.5841i 0.199956 0.199956i
\(364\) 87.5375 + 171.466i 0.240488 + 0.471060i
\(365\) 7.05173 23.2910i 0.0193198 0.0638110i
\(366\) 204.210 353.702i 0.557950 0.966398i
\(367\) −66.7783 + 249.220i −0.181957 + 0.679074i 0.813304 + 0.581839i \(0.197667\pi\)
−0.995261 + 0.0972351i \(0.969000\pi\)
\(368\) 84.3589 + 22.6039i 0.229236 + 0.0614237i
\(369\) 150.507 + 86.8951i 0.407877 + 0.235488i
\(370\) −319.591 597.149i −0.863760 1.61392i
\(371\) −250.968 + 128.125i −0.676464 + 0.345352i
\(372\) 117.362 + 117.362i 0.315490 + 0.315490i
\(373\) 127.015 + 474.026i 0.340523 + 1.27085i 0.897756 + 0.440492i \(0.145196\pi\)
−0.557234 + 0.830356i \(0.688137\pi\)
\(374\) −340.531 + 196.605i −0.910510 + 0.525683i
\(375\) 75.9409 202.751i 0.202509 0.540669i
\(376\) −88.3607 + 153.045i −0.235002 + 0.407035i
\(377\) −144.823 144.823i −0.384145 0.384145i
\(378\) −106.305 + 22.6839i −0.281230 + 0.0600104i
\(379\) 177.802i 0.469134i −0.972100 0.234567i \(-0.924633\pi\)
0.972100 0.234567i \(-0.0753672\pi\)
\(380\) −4.19656 + 130.312i −0.0110436 + 0.342925i
\(381\) 25.8158 + 44.7143i 0.0677581 + 0.117360i
\(382\) 58.9436 219.981i 0.154303 0.575866i
\(383\) −119.288 445.189i −0.311457 1.16237i −0.927243 0.374460i \(-0.877828\pi\)
0.615786 0.787913i \(-0.288838\pi\)
\(384\) 149.987i 0.390592i
\(385\) 159.173 442.141i 0.413435 1.14842i
\(386\) −731.958 −1.89626
\(387\) 189.888 50.8803i 0.490667 0.131474i
\(388\) −275.540 73.8306i −0.710153 0.190285i
\(389\) 258.574 149.288i 0.664714 0.383773i −0.129357 0.991598i \(-0.541291\pi\)
0.794071 + 0.607825i \(0.207958\pi\)
\(390\) −98.7374 105.308i −0.253173 0.270022i
\(391\) 75.0058 0.191831
\(392\) −85.9367 105.780i −0.219226 0.269846i
\(393\) 153.360 153.360i 0.390230 0.390230i
\(394\) 498.053 + 287.551i 1.26409 + 0.729825i
\(395\) −353.372 + 568.944i −0.894614 + 1.44036i
\(396\) 99.3017 + 171.996i 0.250762 + 0.434332i
\(397\) 86.8147 23.2619i 0.218677 0.0585943i −0.147817 0.989015i \(-0.547225\pi\)
0.366494 + 0.930420i \(0.380558\pi\)
\(398\) 263.252 263.252i 0.661436 0.661436i
\(399\) 64.0337 + 3.30497i 0.160485 + 0.00828313i
\(400\) 158.236 237.364i 0.395591 0.593409i
\(401\) −48.6620 + 84.2851i −0.121352 + 0.210187i −0.920301 0.391211i \(-0.872056\pi\)
0.798949 + 0.601398i \(0.205390\pi\)
\(402\) −148.737 + 555.094i −0.369993 + 1.38083i
\(403\) 104.708 + 28.0565i 0.259822 + 0.0696190i
\(404\) 291.743 + 168.438i 0.722135 + 0.416925i
\(405\) 39.6752 21.2340i 0.0979634 0.0524295i
\(406\) 644.532 + 417.838i 1.58752 + 1.02916i
\(407\) 430.332 + 430.332i 1.05733 + 1.05733i
\(408\) −12.2193 45.6030i −0.0299492 0.111772i
\(409\) 232.510 134.240i 0.568485 0.328215i −0.188059 0.982158i \(-0.560220\pi\)
0.756544 + 0.653943i \(0.226886\pi\)
\(410\) −197.006 842.883i −0.480502 2.05581i
\(411\) 31.7322 54.9618i 0.0772074 0.133727i
\(412\) 442.392 + 442.392i 1.07377 + 1.07377i
\(413\) −150.625 + 464.830i −0.364710 + 1.12550i
\(414\) 68.6171i 0.165742i
\(415\) −482.146 514.234i −1.16180 1.23912i
\(416\) −126.132 218.466i −0.303201 0.525160i
\(417\) −37.9471 + 141.621i −0.0910003 + 0.339618i
\(418\) −54.9190 204.960i −0.131385 0.490336i
\(419\) 515.863i 1.23118i 0.788068 + 0.615588i \(0.211081\pi\)
−0.788068 + 0.615588i \(0.788919\pi\)
\(420\) 245.452 + 170.588i 0.584408 + 0.406161i
\(421\) −470.236 −1.11695 −0.558475 0.829521i \(-0.688613\pi\)
−0.558475 + 0.829521i \(0.688613\pi\)
\(422\) −73.7721 + 19.7672i −0.174815 + 0.0468417i
\(423\) −184.116 49.3338i −0.435263 0.116628i
\(424\) −96.9634 + 55.9819i −0.228687 + 0.132033i
\(425\) 78.5060 232.082i 0.184720 0.546075i
\(426\) 628.789 1.47603
\(427\) 115.265 + 540.172i 0.269941 + 1.26504i
\(428\) 211.610 211.610i 0.494416 0.494416i
\(429\) 112.334 + 64.8560i 0.261850 + 0.151179i
\(430\) −831.764 516.611i −1.93434 1.20142i
\(431\) −135.577 234.827i −0.314564 0.544841i 0.664781 0.747039i \(-0.268525\pi\)
−0.979345 + 0.202198i \(0.935192\pi\)
\(432\) 57.2724 15.3461i 0.132575 0.0355233i
\(433\) −135.694 + 135.694i −0.313381 + 0.313381i −0.846218 0.532837i \(-0.821126\pi\)
0.532837 + 0.846218i \(0.321126\pi\)
\(434\) −406.009 20.9554i −0.935506 0.0482842i
\(435\) −304.350 92.1469i −0.699656 0.211832i
\(436\) 53.1134 91.9950i 0.121820 0.210998i
\(437\) −10.4759 + 39.0966i −0.0239723 + 0.0894660i
\(438\) −24.3339 6.52024i −0.0555568 0.0148864i
\(439\) 406.331 + 234.596i 0.925584 + 0.534386i 0.885412 0.464806i \(-0.153876\pi\)
0.0401720 + 0.999193i \(0.487209\pi\)
\(440\) 54.1064 178.707i 0.122969 0.406153i
\(441\) 86.2158 119.062i 0.195501 0.269983i
\(442\) −115.510 115.510i −0.261335 0.261335i
\(443\) 79.5993 + 297.069i 0.179682 + 0.670584i 0.995707 + 0.0925661i \(0.0295070\pi\)
−0.816024 + 0.578018i \(0.803826\pi\)
\(444\) −335.247 + 193.555i −0.755061 + 0.435934i
\(445\) −62.6423 + 100.857i −0.140769 + 0.226644i
\(446\) −124.631 + 215.867i −0.279441 + 0.484006i
\(447\) −39.9641 39.9641i −0.0894052 0.0894052i
\(448\) 419.635 + 465.309i 0.936685 + 1.03864i
\(449\) 556.174i 1.23870i −0.785117 0.619348i \(-0.787397\pi\)
0.785117 0.619348i \(-0.212603\pi\)
\(450\) −212.314 71.8191i −0.471809 0.159598i
\(451\) 388.892 + 673.581i 0.862289 + 1.49353i
\(452\) 22.3693 83.4834i 0.0494896 0.184698i
\(453\) −69.9736 261.145i −0.154467 0.576479i
\(454\) 1231.18i 2.71186i
\(455\) 194.539 + 16.3328i 0.427558 + 0.0358964i
\(456\) 25.4771 0.0558708
\(457\) 496.047 132.915i 1.08544 0.290843i 0.328618 0.944463i \(-0.393417\pi\)
0.756823 + 0.653620i \(0.226750\pi\)
\(458\) −1085.17 290.772i −2.36938 0.634872i
\(459\) 44.1001 25.4612i 0.0960786 0.0554710i
\(460\) −137.649 + 129.060i −0.299237 + 0.280565i
\(461\) −140.261 −0.304254 −0.152127 0.988361i \(-0.548612\pi\)
−0.152127 + 0.988361i \(0.548612\pi\)
\(462\) −462.781 149.961i −1.00169 0.324591i
\(463\) −440.572 + 440.572i −0.951560 + 0.951560i −0.998880 0.0473198i \(-0.984932\pi\)
0.0473198 + 0.998880i \(0.484932\pi\)
\(464\) −362.859 209.497i −0.782024 0.451502i
\(465\) 163.890 38.3058i 0.352452 0.0823781i
\(466\) 36.2859 + 62.8490i 0.0778667 + 0.134869i
\(467\) −428.655 + 114.858i −0.917892 + 0.245948i −0.686684 0.726956i \(-0.740934\pi\)
−0.231208 + 0.972904i \(0.574268\pi\)
\(468\) −58.3419 + 58.3419i −0.124662 + 0.124662i
\(469\) −353.377 692.185i −0.753470 1.47587i
\(470\) 447.980 + 837.041i 0.953150 + 1.78094i
\(471\) −57.6080 + 99.7800i −0.122310 + 0.211847i
\(472\) −50.2500 + 187.535i −0.106462 + 0.397321i
\(473\) 849.829 + 227.711i 1.79668 + 0.481419i
\(474\) 600.453 + 346.672i 1.26678 + 0.731375i
\(475\) 110.008 + 73.3355i 0.231595 + 0.154391i
\(476\) 283.825 + 183.998i 0.596270 + 0.386551i
\(477\) −85.3929 85.3929i −0.179021 0.179021i
\(478\) 39.1894 + 146.257i 0.0819862 + 0.305977i
\(479\) −190.500 + 109.985i −0.397703 + 0.229614i −0.685492 0.728080i \(-0.740413\pi\)
0.287789 + 0.957694i \(0.407080\pi\)
\(480\) −332.717 206.652i −0.693161 0.430524i
\(481\) −126.415 + 218.957i −0.262816 + 0.455211i
\(482\) 246.426 + 246.426i 0.511257 + 0.511257i
\(483\) 62.1469 + 68.9112i 0.128669 + 0.142673i
\(484\) 292.217i 0.603755i
\(485\) −211.021 + 197.853i −0.435095 + 0.407945i
\(486\) −23.2925 40.3438i −0.0479270 0.0830120i
\(487\) −100.187 + 373.904i −0.205723 + 0.767770i 0.783504 + 0.621386i \(0.213430\pi\)
−0.989228 + 0.146384i \(0.953237\pi\)
\(488\) 56.8016 + 211.987i 0.116397 + 0.434399i
\(489\) 101.244i 0.207044i
\(490\) −726.318 + 92.3518i −1.48228 + 0.188473i
\(491\) 285.045 0.580539 0.290269 0.956945i \(-0.406255\pi\)
0.290269 + 0.956945i \(0.406255\pi\)
\(492\) −477.880 + 128.048i −0.971301 + 0.260259i
\(493\) −347.583 93.1347i −0.705037 0.188914i
\(494\) 76.3423 44.0763i 0.154539 0.0892232i
\(495\) 201.290 + 6.48235i 0.406646 + 0.0130957i
\(496\) 221.764 0.447106
\(497\) −631.484 + 569.498i −1.27059 + 1.14587i
\(498\) −516.005 + 516.005i −1.03615 + 1.03615i
\(499\) 439.080 + 253.503i 0.879920 + 0.508022i 0.870632 0.491935i \(-0.163710\pi\)
0.00928793 + 0.999957i \(0.497044\pi\)
\(500\) 255.263 + 560.995i 0.510527 + 1.12199i
\(501\) 113.927 + 197.328i 0.227400 + 0.393868i
\(502\) 925.530 247.995i 1.84368 0.494014i
\(503\) 261.451 261.451i 0.519784 0.519784i −0.397722 0.917506i \(-0.630199\pi\)
0.917506 + 0.397722i \(0.130199\pi\)
\(504\) 31.7731 49.0113i 0.0630418 0.0972446i
\(505\) 301.186 161.193i 0.596408 0.319195i
\(506\) 153.545 265.948i 0.303449 0.525589i
\(507\) 61.8135 230.691i 0.121920 0.455012i
\(508\) −141.974 38.0419i −0.279477 0.0748856i
\(509\) 9.46947 + 5.46720i 0.0186041 + 0.0107411i 0.509273 0.860605i \(-0.329914\pi\)
−0.490669 + 0.871346i \(0.663248\pi\)
\(510\) −242.748 73.4958i −0.475976 0.144109i
\(511\) 30.3436 15.4911i 0.0593808 0.0303153i
\(512\) −454.686 454.686i −0.888059 0.888059i
\(513\) 7.11223 + 26.5432i 0.0138640 + 0.0517411i
\(514\) −514.104 + 296.818i −1.00020 + 0.577467i
\(515\) 617.777 144.392i 1.19957 0.280373i
\(516\) −279.816 + 484.656i −0.542280 + 0.939256i
\(517\) −603.209 603.209i −1.16675 1.16675i
\(518\) 292.298 902.033i 0.564282 1.74138i
\(519\) 419.428i 0.808146i
\(520\) 77.5302 + 2.49679i 0.149096 + 0.00480152i
\(521\) 71.2494 + 123.408i 0.136755 + 0.236867i 0.926267 0.376869i \(-0.122999\pi\)
−0.789511 + 0.613736i \(0.789666\pi\)
\(522\) −85.2018 + 317.977i −0.163222 + 0.609152i
\(523\) 8.25954 + 30.8250i 0.0157926 + 0.0589389i 0.973372 0.229229i \(-0.0736205\pi\)
−0.957580 + 0.288168i \(0.906954\pi\)
\(524\) 617.416i 1.17827i
\(525\) 278.271 120.167i 0.530040 0.228890i
\(526\) −47.4149 −0.0901424
\(527\) 183.968 49.2942i 0.349086 0.0935374i
\(528\) 256.318 + 68.6802i 0.485451 + 0.130076i
\(529\) 407.397 235.211i 0.770127 0.444633i
\(530\) −19.3604 + 601.179i −0.0365291 + 1.13430i
\(531\) −209.411 −0.394371
\(532\) −135.550 + 122.244i −0.254793 + 0.229783i
\(533\) −228.483 + 228.483i −0.428673 + 0.428673i
\(534\) 106.442 + 61.4545i 0.199330 + 0.115083i
\(535\) −69.0672 295.502i −0.129098 0.552341i
\(536\) −154.401 267.431i −0.288062 0.498938i
\(537\) −442.372 + 118.533i −0.823784 + 0.220732i
\(538\) −219.346 + 219.346i −0.407706 + 0.407706i
\(539\) 600.585 268.539i 1.11426 0.498218i
\(540\) −37.1214 + 122.607i −0.0687433 + 0.227051i
\(541\) −86.8285 + 150.391i −0.160496 + 0.277988i −0.935047 0.354524i \(-0.884643\pi\)
0.774551 + 0.632512i \(0.217976\pi\)
\(542\) 121.522 453.526i 0.224210 0.836764i
\(543\) −478.521 128.219i −0.881253 0.236131i
\(544\) −383.838 221.609i −0.705584 0.407369i
\(545\) −50.8291 94.9729i −0.0932643 0.174262i
\(546\) 10.4171 201.831i 0.0190789 0.369654i
\(547\) 95.8716 + 95.8716i 0.175268 + 0.175268i 0.789289 0.614021i \(-0.210449\pi\)
−0.614021 + 0.789289i \(0.710449\pi\)
\(548\) 46.7602 + 174.511i 0.0853289 + 0.318452i
\(549\) −205.000 + 118.357i −0.373407 + 0.215586i
\(550\) −662.183 753.457i −1.20397 1.36992i
\(551\) 97.0925 168.169i 0.176211 0.305207i
\(552\) 26.0721 + 26.0721i 0.0472320 + 0.0472320i
\(553\) −917.009 + 195.676i −1.65824 + 0.353845i
\(554\) 624.904i 1.12799i
\(555\) −12.6351 + 392.346i −0.0227660 + 0.706929i
\(556\) −208.690 361.462i −0.375342 0.650112i
\(557\) 12.5270 46.7512i 0.0224900 0.0839340i −0.953769 0.300542i \(-0.902833\pi\)
0.976259 + 0.216608i \(0.0694992\pi\)
\(558\) −45.0955 168.299i −0.0808163 0.301611i
\(559\) 365.508i 0.653860i
\(560\) 393.068 70.7304i 0.701907 0.126304i
\(561\) 227.899 0.406238
\(562\) 1313.14 351.855i 2.33655 0.626076i
\(563\) 272.294 + 72.9609i 0.483648 + 0.129593i 0.492401 0.870369i \(-0.336119\pi\)
−0.00875281 + 0.999962i \(0.502786\pi\)
\(564\) 469.925 271.312i 0.833201 0.481049i
\(565\) −59.9460 63.9355i −0.106099 0.113160i
\(566\) 306.797 0.542045
\(567\) 59.9320 + 19.4206i 0.105700 + 0.0342514i
\(568\) −238.918 + 238.918i −0.420629 + 0.420629i
\(569\) −466.721 269.461i −0.820247 0.473570i 0.0302544 0.999542i \(-0.490368\pi\)
−0.850502 + 0.525972i \(0.823702\pi\)
\(570\) 72.2137 116.267i 0.126691 0.203977i
\(571\) 150.339 + 260.394i 0.263290 + 0.456032i 0.967114 0.254342i \(-0.0818590\pi\)
−0.703824 + 0.710374i \(0.748526\pi\)
\(572\) −356.676 + 95.5709i −0.623559 + 0.167082i
\(573\) −93.3347 + 93.3347i −0.162888 + 0.162888i
\(574\) 659.210 1016.86i 1.14845 1.77153i
\(575\) 37.5284 + 187.625i 0.0652668 + 0.326304i
\(576\) −134.268 + 232.559i −0.233104 + 0.403748i
\(577\) 72.3090 269.861i 0.125319 0.467697i −0.874532 0.484968i \(-0.838831\pi\)
0.999851 + 0.0172714i \(0.00549794\pi\)
\(578\) 556.998 + 149.247i 0.963664 + 0.258213i
\(579\) 367.396 + 212.116i 0.634535 + 0.366349i
\(580\) 798.132 427.156i 1.37609 0.736477i
\(581\) 50.8680 985.565i 0.0875524 1.69633i
\(582\) 211.748 + 211.748i 0.363828 + 0.363828i
\(583\) −139.884 522.053i −0.239938 0.895460i
\(584\) 11.7235 6.76855i 0.0200744 0.0115900i
\(585\) 19.0422 + 81.4714i 0.0325507 + 0.139267i
\(586\) 216.271 374.592i 0.369062 0.639235i
\(587\) −210.055 210.055i −0.357845 0.357845i 0.505173 0.863018i \(-0.331429\pi\)
−0.863018 + 0.505173i \(0.831429\pi\)
\(588\) 66.1187 + 413.216i 0.112447 + 0.702749i
\(589\) 102.778i 0.174496i
\(590\) 713.403 + 760.881i 1.20916 + 1.28963i
\(591\) −166.660 288.664i −0.281997 0.488434i
\(592\) −133.869 + 499.605i −0.226129 + 0.843927i
\(593\) −271.762 1014.23i −0.458284 1.71034i −0.678250 0.734831i \(-0.737261\pi\)
0.219966 0.975508i \(-0.429405\pi\)
\(594\) 208.488i 0.350989i
\(595\) 310.354 146.047i 0.521603 0.245458i
\(596\) 160.892 0.269953
\(597\) −208.424 + 55.8470i −0.349119 + 0.0935461i
\(598\) 123.231 + 33.0196i 0.206071 + 0.0552167i
\(599\) −516.500 + 298.201i −0.862270 + 0.497832i −0.864772 0.502165i \(-0.832537\pi\)
0.00250190 + 0.999997i \(0.499204\pi\)
\(600\) 107.961 53.3831i 0.179934 0.0889719i
\(601\) −480.552 −0.799588 −0.399794 0.916605i \(-0.630918\pi\)
−0.399794 + 0.916605i \(0.630918\pi\)
\(602\) −286.068 1340.62i −0.475196 2.22694i
\(603\) 235.519 235.519i 0.390578 0.390578i
\(604\) 666.528 + 384.820i 1.10352 + 0.637119i
\(605\) 251.722 + 156.345i 0.416069 + 0.258421i
\(606\) −176.821 306.262i −0.291783 0.505383i
\(607\) 822.130 220.289i 1.35441 0.362914i 0.492652 0.870226i \(-0.336028\pi\)
0.861762 + 0.507312i \(0.169361\pi\)
\(608\) 169.123 169.123i 0.278163 0.278163i
\(609\) −202.427 396.508i −0.332393 0.651081i
\(610\) 1128.42 + 341.647i 1.84987 + 0.560077i
\(611\) 177.199 306.918i 0.290015 0.502320i
\(612\) −37.5193 + 140.024i −0.0613060 + 0.228797i
\(613\) 1030.27 + 276.060i 1.68070 + 0.450343i 0.967964 0.251089i \(-0.0807885\pi\)
0.712737 + 0.701431i \(0.247455\pi\)
\(614\) 106.874 + 61.7035i 0.174061 + 0.100494i
\(615\) −145.377 + 480.164i −0.236386 + 0.780754i
\(616\) 232.820 118.860i 0.377955 0.192955i
\(617\) −270.729 270.729i −0.438783 0.438783i 0.452819 0.891602i \(-0.350418\pi\)
−0.891602 + 0.452819i \(0.850418\pi\)
\(618\) −169.986 634.395i −0.275057 1.02653i
\(619\) 136.247 78.6625i 0.220109 0.127080i −0.385892 0.922544i \(-0.626106\pi\)
0.606001 + 0.795464i \(0.292773\pi\)
\(620\) −252.796 + 407.012i −0.407736 + 0.656471i
\(621\) −19.8847 + 34.4414i −0.0320205 + 0.0554611i
\(622\) −849.859 849.859i −1.36633 1.36633i
\(623\) −162.558 + 34.6875i −0.260928 + 0.0556782i
\(624\) 110.241i 0.176669i
\(625\) 619.825 + 80.2602i 0.991720 + 0.128416i
\(626\) 428.805 + 742.712i 0.684992 + 1.18644i
\(627\) −31.8302 + 118.792i −0.0507659 + 0.189461i
\(628\) −84.8905 316.816i −0.135176 0.504483i
\(629\) 444.212i 0.706219i
\(630\) −133.608 283.919i −0.212076 0.450666i
\(631\) −131.406 −0.208250 −0.104125 0.994564i \(-0.533204\pi\)
−0.104125 + 0.994564i \(0.533204\pi\)
\(632\) −359.874 + 96.4279i −0.569421 + 0.152576i
\(633\) 42.7572 + 11.4568i 0.0675470 + 0.0180992i
\(634\) −900.060 + 519.650i −1.41965 + 0.819637i
\(635\) −108.730 + 101.946i −0.171229 + 0.160545i
\(636\) 343.785 0.540542
\(637\) 172.338 + 212.131i 0.270546 + 0.333016i
\(638\) −1041.77 + 1041.77i −1.63287 + 1.63287i
\(639\) −315.612 182.219i −0.493915 0.285162i
\(640\) 421.613 98.5428i 0.658770 0.153973i
\(641\) −128.958 223.362i −0.201182 0.348458i 0.747727 0.664006i \(-0.231145\pi\)
−0.948910 + 0.315548i \(0.897812\pi\)
\(642\) −303.451 + 81.3094i −0.472665 + 0.126650i
\(643\) 778.940 778.940i 1.21142 1.21142i 0.240854 0.970561i \(-0.422573\pi\)
0.970561 0.240854i \(-0.0774274\pi\)
\(644\) −263.814 13.6162i −0.409650 0.0211432i
\(645\) 267.782 + 500.345i 0.415166 + 0.775728i
\(646\) 77.4404 134.131i 0.119877 0.207633i
\(647\) 98.6974 368.344i 0.152546 0.569310i −0.846757 0.531980i \(-0.821448\pi\)
0.999303 0.0373301i \(-0.0118853\pi\)
\(648\) 24.1795 + 6.47889i 0.0373141 + 0.00999829i
\(649\) −811.641 468.601i −1.25060 0.722035i
\(650\) 231.150 346.738i 0.355615 0.533444i
\(651\) 197.718 + 128.177i 0.303714 + 0.196892i
\(652\) −203.801 203.801i −0.312578 0.312578i
\(653\) 291.908 + 1089.41i 0.447026 + 1.66832i 0.710532 + 0.703665i \(0.248454\pi\)
−0.263506 + 0.964658i \(0.584879\pi\)
\(654\) −96.5735 + 55.7567i −0.147666 + 0.0852550i
\(655\) 531.854 + 330.336i 0.811990 + 0.504329i
\(656\) −330.517 + 572.472i −0.503836 + 0.872670i
\(657\) 10.3245 + 10.3245i 0.0157146 + 0.0157146i
\(658\) −409.723 + 1264.41i −0.622679 + 1.92159i
\(659\) 737.560i 1.11921i 0.828759 + 0.559605i \(0.189047\pi\)
−0.828759 + 0.559605i \(0.810953\pi\)
\(660\) −418.236 + 392.139i −0.633691 + 0.594150i
\(661\) −166.939 289.147i −0.252555 0.437439i 0.711673 0.702511i \(-0.247938\pi\)
−0.964229 + 0.265072i \(0.914604\pi\)
\(662\) −56.0259 + 209.092i −0.0846313 + 0.315848i
\(663\) 24.5046 + 91.4524i 0.0369602 + 0.137937i
\(664\) 392.127i 0.590553i
\(665\) 32.7804 + 182.170i 0.0492939 + 0.273939i
\(666\) 406.376 0.610174
\(667\) 271.456 72.7365i 0.406981 0.109050i
\(668\) −626.543 167.882i −0.937939 0.251320i
\(669\) 125.113 72.2341i 0.187015 0.107973i
\(670\) −1658.09 53.3972i −2.47476 0.0796973i
\(671\) −1059.40 −1.57883
\(672\) −114.431 536.266i −0.170284 0.798014i
\(673\) −183.139 + 183.139i −0.272123 + 0.272123i −0.829954 0.557831i \(-0.811634\pi\)
0.557831 + 0.829954i \(0.311634\pi\)
\(674\) −936.016 540.409i −1.38875 0.801794i
\(675\) 85.7554 + 97.5757i 0.127045 + 0.144557i
\(676\) 339.943 + 588.799i 0.502875 + 0.871005i
\(677\) −806.946 + 216.220i −1.19194 + 0.319380i −0.799654 0.600461i \(-0.794984\pi\)
−0.392290 + 0.919842i \(0.628317\pi\)
\(678\) −64.1557 + 64.1557i −0.0946249 + 0.0946249i
\(679\) −404.436 20.8742i −0.595635 0.0307425i
\(680\) 120.161 64.3098i 0.176708 0.0945733i
\(681\) −356.788 + 617.975i −0.523918 + 0.907452i
\(682\) 201.821 753.208i 0.295926 1.10441i
\(683\) −909.178 243.613i −1.33115 0.356681i −0.478008 0.878355i \(-0.658641\pi\)
−0.853145 + 0.521674i \(0.825308\pi\)
\(684\) −67.7469 39.1137i −0.0990452 0.0571838i
\(685\) 175.346 + 53.0887i 0.255979 + 0.0775017i
\(686\) −798.131 643.177i −1.16346 0.937576i
\(687\) 460.424 + 460.424i 0.670195 + 0.670195i
\(688\) 193.530 + 722.263i 0.281293 + 1.04980i
\(689\) 194.451 112.266i 0.282222 0.162941i
\(690\) 192.882 45.0820i 0.279539 0.0653362i
\(691\) −409.191 + 708.740i −0.592172 + 1.02567i 0.401767 + 0.915742i \(0.368396\pi\)
−0.993939 + 0.109931i \(0.964937\pi\)
\(692\) 844.291 + 844.291i 1.22007 + 1.22007i
\(693\) 188.828 + 209.381i 0.272480 + 0.302137i
\(694\) 862.487i 1.24278i
\(695\) −423.026 13.6232i −0.608670 0.0196017i
\(696\) −88.4465 153.194i −0.127078 0.220106i
\(697\) −146.936 + 548.371i −0.210812 + 0.786760i
\(698\) 371.643 + 1386.99i 0.532439 + 1.98709i
\(699\) 42.0616i 0.0601739i
\(700\) −318.257 + 802.040i −0.454652 + 1.14577i
\(701\) 480.047 0.684803 0.342402 0.939554i \(-0.388760\pi\)
0.342402 + 0.939554i \(0.388760\pi\)
\(702\) 83.6629 22.4174i 0.119178 0.0319336i
\(703\) −231.545 62.0422i −0.329366 0.0882535i
\(704\) −1040.80 + 600.905i −1.47841 + 0.853558i
\(705\) 17.7110 549.962i 0.0251220 0.780088i
\(706\) −288.430 −0.408541
\(707\) 454.962 + 147.427i 0.643510 + 0.208525i
\(708\) 421.535 421.535i 0.595389 0.595389i
\(709\) −1211.17 699.271i −1.70828 0.986278i −0.936688 0.350166i \(-0.886125\pi\)
−0.771597 0.636112i \(-0.780542\pi\)
\(710\) 413.120 + 1767.52i 0.581859 + 2.48947i
\(711\) −200.926 348.014i −0.282596 0.489471i
\(712\) −63.7948 + 17.0938i −0.0895994 + 0.0240081i
\(713\) −105.178 + 105.178i −0.147515 + 0.147515i
\(714\) −161.455 316.253i −0.226127 0.442931i
\(715\) −108.505 + 358.380i −0.151756 + 0.501231i
\(716\) 651.874 1129.08i 0.910438 1.57693i
\(717\) 22.7136 84.7684i 0.0316787 0.118226i
\(718\) 936.168 + 250.845i 1.30385 + 0.349367i
\(719\) 742.957 + 428.946i 1.03332 + 0.596587i 0.917934 0.396734i \(-0.129856\pi\)
0.115386 + 0.993321i \(0.463190\pi\)
\(720\) 80.7661 + 150.910i 0.112175 + 0.209597i
\(721\) 745.289 + 483.157i 1.03369 + 0.670120i
\(722\) −703.744 703.744i −0.974715 0.974715i
\(723\) −52.2775 195.102i −0.0723063 0.269851i
\(724\) 1221.34 705.142i 1.68694 0.973953i
\(725\) 59.0635 916.067i 0.0814669 1.26354i
\(726\) 153.380 265.663i 0.211268 0.365926i
\(727\) 8.47406 + 8.47406i 0.0116562 + 0.0116562i 0.712911 0.701255i \(-0.247376\pi\)
−0.701255 + 0.712911i \(0.747376\pi\)
\(728\) 72.7305 + 80.6468i 0.0999046 + 0.110779i
\(729\) 27.0000i 0.0370370i
\(730\) 2.34079 72.6862i 0.00320656 0.0995701i
\(731\) 321.092 + 556.147i 0.439250 + 0.760804i
\(732\) 174.409 650.905i 0.238264 0.889214i
\(733\) −288.580 1076.99i −0.393697 1.46930i −0.823989 0.566606i \(-0.808256\pi\)
0.430292 0.902690i \(-0.358411\pi\)
\(734\) 771.050i 1.05048i
\(735\) 391.328 + 164.127i 0.532419 + 0.223302i
\(736\) 346.145 0.470306
\(737\) 1439.85 385.807i 1.95367 0.523483i
\(738\) 501.663 + 134.420i 0.679761 + 0.182141i
\(739\) −635.156 + 366.708i −0.859481 + 0.496221i −0.863838 0.503769i \(-0.831946\pi\)
0.00435760 + 0.999991i \(0.498613\pi\)
\(740\) −764.341 815.209i −1.03289 1.10163i
\(741\) −51.0919 −0.0689500
\(742\) −625.345 + 563.962i −0.842784 + 0.760056i
\(743\) −342.256 + 342.256i −0.460641 + 0.460641i −0.898865 0.438225i \(-0.855607\pi\)
0.438225 + 0.898865i \(0.355607\pi\)
\(744\) 81.0822 + 46.8128i 0.108981 + 0.0629205i
\(745\) 86.0820 138.595i 0.115546 0.186034i
\(746\) 733.284 + 1270.08i 0.982954 + 1.70253i
\(747\) 408.536 109.467i 0.546902 0.146542i
\(748\) −458.752 + 458.752i −0.613304 + 0.613304i
\(749\) 231.109 356.495i 0.308557 0.475961i
\(750\) 62.3908 643.999i 0.0831878 0.858665i
\(751\) −217.704 + 377.075i −0.289886 + 0.502097i −0.973782 0.227482i \(-0.926951\pi\)
0.683897 + 0.729579i \(0.260284\pi\)
\(752\) 187.648 700.310i 0.249531 0.931264i
\(753\) −536.424 143.734i −0.712382 0.190882i
\(754\) −530.061 306.031i −0.702999 0.405877i
\(755\) 688.103 368.270i 0.911395 0.487774i
\(756\) −159.733 + 81.5477i −0.211287 + 0.107867i
\(757\) 136.675 + 136.675i 0.180548 + 0.180548i 0.791595 0.611047i \(-0.209251\pi\)
−0.611047 + 0.791595i \(0.709251\pi\)
\(758\) −137.523 513.243i −0.181429 0.677101i
\(759\) −154.140 + 88.9926i −0.203083 + 0.117250i
\(760\) 16.7387 + 71.6159i 0.0220246 + 0.0942315i
\(761\) 191.516 331.716i 0.251664 0.435895i −0.712320