Properties

Label 105.3.v.a.37.4
Level 105
Weight 3
Character 105.37
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.4
Character \(\chi\) \(=\) 105.37
Dual form 105.3.v.a.88.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.38023 + 0.637781i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(1.79464 - 1.03614i) q^{4} +(2.91424 - 4.06291i) q^{5} +4.26812 q^{6} +(-4.25379 + 5.55925i) q^{7} +(3.35897 - 3.35897i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-2.38023 + 0.637781i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(1.79464 - 1.03614i) q^{4} +(2.91424 - 4.06291i) q^{5} +4.26812 q^{6} +(-4.25379 + 5.55925i) q^{7} +(3.35897 - 3.35897i) q^{8} +(2.59808 + 1.50000i) q^{9} +(-4.34532 + 11.5293i) q^{10} +(4.95365 + 8.57997i) q^{11} +(-3.46698 + 0.928974i) q^{12} +(-14.1612 + 14.1612i) q^{13} +(6.57942 - 15.9453i) q^{14} +(-6.69697 + 5.49096i) q^{15} +(-9.99739 + 17.3160i) q^{16} +(-4.22139 + 15.7544i) q^{17} +(-7.14070 - 1.91334i) q^{18} +(23.3583 + 13.4859i) q^{19} +(1.02028 - 10.3110i) q^{20} +(9.60887 - 7.39389i) q^{21} +(-17.2630 - 17.2630i) q^{22} +(1.79608 + 6.70305i) q^{23} +(-7.12545 + 4.11388i) q^{24} +(-8.01443 - 23.6806i) q^{25} +(24.6752 - 42.7387i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(-1.87388 + 14.3844i) q^{28} -18.5702i q^{29} +(12.4383 - 17.3410i) q^{30} +(19.6183 + 33.9798i) q^{31} +(7.83442 - 29.2385i) q^{32} +(-4.44132 - 16.5752i) q^{33} -40.1915i q^{34} +(10.1902 + 33.4837i) q^{35} +6.21682 q^{36} +(42.8463 - 11.4806i) q^{37} +(-64.1994 - 17.2022i) q^{38} +(30.0404 - 17.3439i) q^{39} +(-3.85835 - 23.4360i) q^{40} -55.1266 q^{41} +(-18.1557 + 23.7275i) q^{42} +(-36.0471 + 36.0471i) q^{43} +(17.7800 + 10.2653i) q^{44} +(13.6658 - 6.18439i) q^{45} +(-8.55017 - 14.8093i) q^{46} +(24.5013 - 6.56509i) q^{47} +(24.4885 - 24.4885i) q^{48} +(-12.8106 - 47.2958i) q^{49} +(34.1792 + 51.2538i) q^{50} +(14.1250 - 24.4653i) q^{51} +(-10.7413 + 40.0872i) q^{52} +(15.4837 + 4.14884i) q^{53} +(11.0889 + 6.40217i) q^{54} +(49.2957 + 4.87786i) q^{55} +(4.38501 + 32.9617i) q^{56} +(-33.0337 - 33.0337i) q^{57} +(11.8437 + 44.2013i) q^{58} +(-36.0497 + 20.8133i) q^{59} +(-6.32927 + 16.7933i) q^{60} +(-51.6108 + 89.3925i) q^{61} +(-68.3677 - 68.3677i) q^{62} +(-19.3905 + 8.06268i) q^{63} -5.38813i q^{64} +(16.2665 + 98.8047i) q^{65} +(21.1427 + 36.6203i) q^{66} +(1.98123 - 7.39406i) q^{67} +(8.74787 + 32.6475i) q^{68} -12.0196i q^{69} +(-45.6103 - 73.2000i) q^{70} +58.5591 q^{71} +(13.7653 - 3.68841i) q^{72} +(-19.6506 - 5.26536i) q^{73} +(-94.6621 + 54.6532i) q^{74} +(2.79270 + 43.2111i) q^{75} +55.8931 q^{76} +(-68.7699 - 8.95880i) q^{77} +(-60.4416 + 60.4416i) q^{78} +(-47.2373 - 27.2725i) q^{79} +(41.2185 + 91.0814i) q^{80} +(4.50000 + 7.79423i) q^{81} +(131.214 - 35.1587i) q^{82} +(40.8378 - 40.8378i) q^{83} +(9.58340 - 23.2255i) q^{84} +(51.7067 + 63.0633i) q^{85} +(62.8103 - 108.791i) q^{86} +(-8.32477 + 31.0685i) q^{87} +(45.4590 + 12.1807i) q^{88} +(-49.6991 - 28.6938i) q^{89} +(-28.5834 + 23.4361i) q^{90} +(-18.4869 - 138.964i) q^{91} +(10.1686 + 10.1686i) q^{92} +(-17.5892 - 65.6439i) q^{93} +(-54.1316 + 31.2529i) q^{94} +(122.864 - 55.6015i) q^{95} +(-26.2145 + 45.4048i) q^{96} +(37.4558 + 37.4558i) q^{97} +(60.6565 + 104.405i) q^{98} +29.7219i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.38023 + 0.637781i −1.19012 + 0.318891i −0.798932 0.601422i \(-0.794601\pi\)
−0.391184 + 0.920312i \(0.627935\pi\)
\(3\) −1.67303 0.448288i −0.557678 0.149429i
\(4\) 1.79464 1.03614i 0.448660 0.259034i
\(5\) 2.91424 4.06291i 0.582848 0.812581i
\(6\) 4.26812 0.711353
\(7\) −4.25379 + 5.55925i −0.607684 + 0.794179i
\(8\) 3.35897 3.35897i 0.419871 0.419871i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) −4.34532 + 11.5293i −0.434532 + 1.15293i
\(11\) 4.95365 + 8.57997i 0.450331 + 0.779997i 0.998406 0.0564323i \(-0.0179725\pi\)
−0.548075 + 0.836429i \(0.684639\pi\)
\(12\) −3.46698 + 0.928974i −0.288915 + 0.0774145i
\(13\) −14.1612 + 14.1612i −1.08932 + 1.08932i −0.0937246 + 0.995598i \(0.529877\pi\)
−0.995598 + 0.0937246i \(0.970123\pi\)
\(14\) 6.57942 15.9453i 0.469959 1.13895i
\(15\) −6.69697 + 5.49096i −0.446464 + 0.366064i
\(16\) −9.99739 + 17.3160i −0.624837 + 1.08225i
\(17\) −4.22139 + 15.7544i −0.248317 + 0.926731i 0.723370 + 0.690460i \(0.242592\pi\)
−0.971687 + 0.236271i \(0.924075\pi\)
\(18\) −7.14070 1.91334i −0.396705 0.106297i
\(19\) 23.3583 + 13.4859i 1.22939 + 0.709787i 0.966902 0.255150i \(-0.0821247\pi\)
0.262485 + 0.964936i \(0.415458\pi\)
\(20\) 1.02028 10.3110i 0.0510142 0.515550i
\(21\) 9.60887 7.39389i 0.457565 0.352090i
\(22\) −17.2630 17.2630i −0.784680 0.784680i
\(23\) 1.79608 + 6.70305i 0.0780903 + 0.291437i 0.993916 0.110138i \(-0.0351294\pi\)
−0.915826 + 0.401575i \(0.868463\pi\)
\(24\) −7.12545 + 4.11388i −0.296894 + 0.171412i
\(25\) −8.01443 23.6806i −0.320577 0.947222i
\(26\) 24.6752 42.7387i 0.949046 1.64380i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) −1.87388 + 14.3844i −0.0669243 + 0.513727i
\(29\) 18.5702i 0.640350i −0.947358 0.320175i \(-0.896258\pi\)
0.947358 0.320175i \(-0.103742\pi\)
\(30\) 12.4383 17.3410i 0.414610 0.578032i
\(31\) 19.6183 + 33.9798i 0.632847 + 1.09612i 0.986967 + 0.160923i \(0.0514470\pi\)
−0.354120 + 0.935200i \(0.615220\pi\)
\(32\) 7.83442 29.2385i 0.244826 0.913702i
\(33\) −4.44132 16.5752i −0.134585 0.502279i
\(34\) 40.1915i 1.18210i
\(35\) 10.1902 + 33.4837i 0.291148 + 0.956678i
\(36\) 6.21682 0.172689
\(37\) 42.8463 11.4806i 1.15801 0.310288i 0.371839 0.928297i \(-0.378727\pi\)
0.786170 + 0.618010i \(0.212061\pi\)
\(38\) −64.1994 17.2022i −1.68946 0.452689i
\(39\) 30.0404 17.3439i 0.770268 0.444714i
\(40\) −3.85835 23.4360i −0.0964587 0.585901i
\(41\) −55.1266 −1.34455 −0.672275 0.740301i \(-0.734683\pi\)
−0.672275 + 0.740301i \(0.734683\pi\)
\(42\) −18.1557 + 23.7275i −0.432278 + 0.564941i
\(43\) −36.0471 + 36.0471i −0.838304 + 0.838304i −0.988636 0.150331i \(-0.951966\pi\)
0.150331 + 0.988636i \(0.451966\pi\)
\(44\) 17.7800 + 10.2653i 0.404091 + 0.233302i
\(45\) 13.6658 6.18439i 0.303684 0.137431i
\(46\) −8.55017 14.8093i −0.185873 0.321942i
\(47\) 24.5013 6.56509i 0.521303 0.139683i 0.0114339 0.999935i \(-0.496360\pi\)
0.509869 + 0.860252i \(0.329694\pi\)
\(48\) 24.4885 24.4885i 0.510177 0.510177i
\(49\) −12.8106 47.2958i −0.261440 0.965220i
\(50\) 34.1792 + 51.2538i 0.683585 + 1.02508i
\(51\) 14.1250 24.4653i 0.276962 0.479712i
\(52\) −10.7413 + 40.0872i −0.206564 + 0.770907i
\(53\) 15.4837 + 4.14884i 0.292145 + 0.0782800i 0.401915 0.915677i \(-0.368345\pi\)
−0.109770 + 0.993957i \(0.535011\pi\)
\(54\) 11.0889 + 6.40217i 0.205350 + 0.118559i
\(55\) 49.2957 + 4.87786i 0.896286 + 0.0886884i
\(56\) 4.38501 + 32.9617i 0.0783038 + 0.588602i
\(57\) −33.0337 33.0337i −0.579538 0.579538i
\(58\) 11.8437 + 44.2013i 0.204202 + 0.762091i
\(59\) −36.0497 + 20.8133i −0.611011 + 0.352767i −0.773361 0.633966i \(-0.781426\pi\)
0.162350 + 0.986733i \(0.448093\pi\)
\(60\) −6.32927 + 16.7933i −0.105488 + 0.279888i
\(61\) −51.6108 + 89.3925i −0.846078 + 1.46545i 0.0386035 + 0.999255i \(0.487709\pi\)
−0.884682 + 0.466196i \(0.845624\pi\)
\(62\) −68.3677 68.3677i −1.10270 1.10270i
\(63\) −19.3905 + 8.06268i −0.307786 + 0.127979i
\(64\) 5.38813i 0.0841895i
\(65\) 16.2665 + 98.8047i 0.250254 + 1.52007i
\(66\) 21.1427 + 36.6203i 0.320344 + 0.554853i
\(67\) 1.98123 7.39406i 0.0295706 0.110359i −0.949563 0.313576i \(-0.898473\pi\)
0.979134 + 0.203217i \(0.0651396\pi\)
\(68\) 8.74787 + 32.6475i 0.128645 + 0.480110i
\(69\) 12.0196i 0.174197i
\(70\) −45.6103 73.2000i −0.651575 1.04571i
\(71\) 58.5591 0.824776 0.412388 0.911008i \(-0.364695\pi\)
0.412388 + 0.911008i \(0.364695\pi\)
\(72\) 13.7653 3.68841i 0.191185 0.0512279i
\(73\) −19.6506 5.26536i −0.269186 0.0721282i 0.121701 0.992567i \(-0.461165\pi\)
−0.390887 + 0.920439i \(0.627832\pi\)
\(74\) −94.6621 + 54.6532i −1.27922 + 0.738557i
\(75\) 2.79270 + 43.2111i 0.0372361 + 0.576148i
\(76\) 55.8931 0.735435
\(77\) −68.7699 8.95880i −0.893116 0.116348i
\(78\) −60.4416 + 60.4416i −0.774893 + 0.774893i
\(79\) −47.2373 27.2725i −0.597940 0.345221i 0.170291 0.985394i \(-0.445529\pi\)
−0.768231 + 0.640173i \(0.778863\pi\)
\(80\) 41.2185 + 91.0814i 0.515231 + 1.13852i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 131.214 35.1587i 1.60017 0.428765i
\(83\) 40.8378 40.8378i 0.492022 0.492022i −0.416921 0.908943i \(-0.636891\pi\)
0.908943 + 0.416921i \(0.136891\pi\)
\(84\) 9.58340 23.2255i 0.114088 0.276494i
\(85\) 51.7067 + 63.0633i 0.608314 + 0.741921i
\(86\) 62.8103 108.791i 0.730352 1.26501i
\(87\) −8.32477 + 31.0685i −0.0956871 + 0.357109i
\(88\) 45.4590 + 12.1807i 0.516580 + 0.138417i
\(89\) −49.6991 28.6938i −0.558416 0.322402i 0.194093 0.980983i \(-0.437824\pi\)
−0.752510 + 0.658581i \(0.771157\pi\)
\(90\) −28.5834 + 23.4361i −0.317594 + 0.260401i
\(91\) −18.4869 138.964i −0.203153 1.52708i
\(92\) 10.1686 + 10.1686i 0.110528 + 0.110528i
\(93\) −17.5892 65.6439i −0.189132 0.705849i
\(94\) −54.1316 + 31.2529i −0.575868 + 0.332478i
\(95\) 122.864 55.6015i 1.29330 0.585279i
\(96\) −26.2145 + 45.4048i −0.273068 + 0.472967i
\(97\) 37.4558 + 37.4558i 0.386142 + 0.386142i 0.873309 0.487167i \(-0.161970\pi\)
−0.487167 + 0.873309i \(0.661970\pi\)
\(98\) 60.6565 + 104.405i 0.618944 + 1.06535i
\(99\) 29.7219i 0.300221i
\(100\) −38.9193 34.1940i −0.389193 0.341940i
\(101\) −63.1499 109.379i −0.625247 1.08296i −0.988493 0.151266i \(-0.951665\pi\)
0.363246 0.931693i \(-0.381668\pi\)
\(102\) −18.0174 + 67.2418i −0.176641 + 0.659233i
\(103\) −27.2007 101.514i −0.264085 0.985578i −0.962808 0.270186i \(-0.912915\pi\)
0.698724 0.715392i \(-0.253752\pi\)
\(104\) 95.1341i 0.914751i
\(105\) −2.03814 60.5875i −0.0194109 0.577024i
\(106\) −39.5008 −0.372649
\(107\) 32.6136 8.73879i 0.304800 0.0816709i −0.103177 0.994663i \(-0.532901\pi\)
0.407977 + 0.912992i \(0.366234\pi\)
\(108\) −10.4009 2.78692i −0.0963050 0.0258048i
\(109\) 35.1577 20.2983i 0.322548 0.186223i −0.329980 0.943988i \(-0.607042\pi\)
0.652528 + 0.757765i \(0.273709\pi\)
\(110\) −120.446 + 19.8294i −1.09497 + 0.180268i
\(111\) −76.8299 −0.692162
\(112\) −53.7371 129.237i −0.479796 1.15390i
\(113\) 106.341 106.341i 0.941068 0.941068i −0.0572893 0.998358i \(-0.518246\pi\)
0.998358 + 0.0572893i \(0.0182457\pi\)
\(114\) 99.6961 + 57.5596i 0.874527 + 0.504909i
\(115\) 32.4681 + 12.2370i 0.282331 + 0.106409i
\(116\) −19.2412 33.3268i −0.165873 0.287300i
\(117\) −58.0337 + 15.5501i −0.496014 + 0.132907i
\(118\) 72.5323 72.5323i 0.614680 0.614680i
\(119\) −69.6260 90.4838i −0.585092 0.760368i
\(120\) −4.05094 + 40.9389i −0.0337579 + 0.341157i
\(121\) 11.4228 19.7849i 0.0944033 0.163511i
\(122\) 65.8328 245.691i 0.539613 2.01386i
\(123\) 92.2286 + 24.7126i 0.749826 + 0.200915i
\(124\) 70.4154 + 40.6544i 0.567866 + 0.327858i
\(125\) −119.568 36.4489i −0.956543 0.291591i
\(126\) 41.0118 31.5580i 0.325490 0.250460i
\(127\) 128.619 + 128.619i 1.01275 + 1.01275i 0.999918 + 0.0128332i \(0.00408505\pi\)
0.0128332 + 0.999918i \(0.495915\pi\)
\(128\) 34.7741 + 129.779i 0.271673 + 1.01390i
\(129\) 76.4674 44.1485i 0.592771 0.342236i
\(130\) −101.734 224.804i −0.782569 1.72926i
\(131\) −59.4366 + 102.947i −0.453715 + 0.785857i −0.998613 0.0526451i \(-0.983235\pi\)
0.544899 + 0.838502i \(0.316568\pi\)
\(132\) −25.1448 25.1448i −0.190491 0.190491i
\(133\) −174.333 + 72.4885i −1.31078 + 0.545027i
\(134\) 18.8632i 0.140770i
\(135\) −25.6357 + 4.22048i −0.189894 + 0.0312628i
\(136\) 38.7392 + 67.0982i 0.284847 + 0.493369i
\(137\) −30.9311 + 115.436i −0.225774 + 0.842600i 0.756319 + 0.654203i \(0.226996\pi\)
−0.982093 + 0.188397i \(0.939671\pi\)
\(138\) 7.66587 + 28.6094i 0.0555498 + 0.207315i
\(139\) 141.309i 1.01661i 0.861176 + 0.508307i \(0.169729\pi\)
−0.861176 + 0.508307i \(0.830271\pi\)
\(140\) 52.9814 + 49.5329i 0.378439 + 0.353806i
\(141\) −43.9344 −0.311592
\(142\) −139.384 + 37.3479i −0.981580 + 0.263013i
\(143\) −191.652 51.3530i −1.34022 0.359112i
\(144\) −51.9480 + 29.9922i −0.360750 + 0.208279i
\(145\) −75.4488 54.1179i −0.520337 0.373227i
\(146\) 50.1311 0.343364
\(147\) 0.230370 + 84.8702i 0.00156714 + 0.577348i
\(148\) 64.9983 64.9983i 0.439177 0.439177i
\(149\) 138.446 + 79.9316i 0.929165 + 0.536453i 0.886547 0.462638i \(-0.153097\pi\)
0.0426173 + 0.999091i \(0.486430\pi\)
\(150\) −34.2065 101.071i −0.228044 0.673809i
\(151\) 36.6513 + 63.4819i 0.242724 + 0.420410i 0.961489 0.274843i \(-0.0886258\pi\)
−0.718765 + 0.695253i \(0.755292\pi\)
\(152\) 123.759 33.1611i 0.814203 0.218165i
\(153\) −34.5991 + 34.5991i −0.226138 + 0.226138i
\(154\) 169.402 22.5362i 1.10001 0.146339i
\(155\) 195.229 + 19.3181i 1.25954 + 0.124633i
\(156\) 35.9412 62.2520i 0.230392 0.399051i
\(157\) −21.2192 + 79.1910i −0.135154 + 0.504401i 0.864843 + 0.502042i \(0.167418\pi\)
−0.999997 + 0.00235945i \(0.999249\pi\)
\(158\) 129.830 + 34.7877i 0.821706 + 0.220175i
\(159\) −24.0448 13.8823i −0.151225 0.0873100i
\(160\) −95.9618 117.038i −0.599761 0.731490i
\(161\) −44.9041 18.5285i −0.278907 0.115084i
\(162\) −15.6821 15.6821i −0.0968028 0.0968028i
\(163\) −11.9897 44.7462i −0.0735564 0.274516i 0.919346 0.393451i \(-0.128719\pi\)
−0.992902 + 0.118934i \(0.962052\pi\)
\(164\) −98.9324 + 57.1187i −0.603246 + 0.348284i
\(165\) −80.2866 30.2595i −0.486586 0.183391i
\(166\) −71.1579 + 123.249i −0.428662 + 0.742464i
\(167\) 60.5283 + 60.5283i 0.362445 + 0.362445i 0.864712 0.502267i \(-0.167501\pi\)
−0.502267 + 0.864712i \(0.667501\pi\)
\(168\) 7.44007 57.1118i 0.0442861 0.339951i
\(169\) 232.079i 1.37325i
\(170\) −163.295 117.128i −0.960556 0.688987i
\(171\) 40.4578 + 70.0750i 0.236596 + 0.409795i
\(172\) −27.3419 + 102.041i −0.158964 + 0.593263i
\(173\) −28.2921 105.588i −0.163538 0.610333i −0.998222 0.0596036i \(-0.981016\pi\)
0.834684 0.550729i \(-0.185650\pi\)
\(174\) 79.2596i 0.455515i
\(175\) 165.738 + 56.1778i 0.947074 + 0.321016i
\(176\) −198.094 −1.12553
\(177\) 69.6426 18.6607i 0.393461 0.105428i
\(178\) 136.596 + 36.6007i 0.767391 + 0.205622i
\(179\) −218.631 + 126.227i −1.22140 + 0.705177i −0.965217 0.261451i \(-0.915799\pi\)
−0.256185 + 0.966628i \(0.582466\pi\)
\(180\) 18.1173 25.2584i 0.100652 0.140324i
\(181\) 119.101 0.658017 0.329008 0.944327i \(-0.393286\pi\)
0.329008 + 0.944327i \(0.393286\pi\)
\(182\) 132.632 + 318.977i 0.728748 + 1.75262i
\(183\) 126.420 126.420i 0.690820 0.690820i
\(184\) 28.5483 + 16.4824i 0.155154 + 0.0895782i
\(185\) 78.2196 207.538i 0.422809 1.12183i
\(186\) 83.7330 + 145.030i 0.450177 + 0.779730i
\(187\) −156.084 + 41.8225i −0.834673 + 0.223650i
\(188\) 37.1686 37.1686i 0.197705 0.197705i
\(189\) 36.0554 4.79658i 0.190769 0.0253787i
\(190\) −256.983 + 210.705i −1.35254 + 1.10897i
\(191\) 26.3773 45.6869i 0.138101 0.239198i −0.788677 0.614808i \(-0.789233\pi\)
0.926778 + 0.375610i \(0.122567\pi\)
\(192\) −2.41543 + 9.01451i −0.0125804 + 0.0469506i
\(193\) 177.369 + 47.5259i 0.919010 + 0.246248i 0.687162 0.726504i \(-0.258856\pi\)
0.231848 + 0.972752i \(0.425523\pi\)
\(194\) −113.042 65.2649i −0.582692 0.336417i
\(195\) 17.0785 172.596i 0.0875821 0.885106i
\(196\) −71.9952 71.6054i −0.367322 0.365334i
\(197\) −121.992 121.992i −0.619251 0.619251i 0.326088 0.945339i \(-0.394269\pi\)
−0.945339 + 0.326088i \(0.894269\pi\)
\(198\) −18.9561 70.7450i −0.0957377 0.357298i
\(199\) 80.9671 46.7464i 0.406870 0.234906i −0.282574 0.959245i \(-0.591188\pi\)
0.689444 + 0.724339i \(0.257855\pi\)
\(200\) −106.463 52.6221i −0.532313 0.263110i
\(201\) −6.62933 + 11.4823i −0.0329818 + 0.0571261i
\(202\) 220.071 + 220.071i 1.08946 + 1.08946i
\(203\) 103.236 + 78.9935i 0.508553 + 0.389131i
\(204\) 58.5419i 0.286970i
\(205\) −160.652 + 223.974i −0.783668 + 1.09256i
\(206\) 129.488 + 224.280i 0.628583 + 1.08874i
\(207\) −5.38823 + 20.1092i −0.0260301 + 0.0971457i
\(208\) −103.640 386.790i −0.498270 1.85957i
\(209\) 267.218i 1.27856i
\(210\) 43.4928 + 142.912i 0.207109 + 0.680536i
\(211\) 21.8880 0.103735 0.0518674 0.998654i \(-0.483483\pi\)
0.0518674 + 0.998654i \(0.483483\pi\)
\(212\) 32.0864 8.59753i 0.151351 0.0405544i
\(213\) −97.9713 26.2513i −0.459959 0.123246i
\(214\) −72.0545 + 41.6007i −0.336703 + 0.194396i
\(215\) 41.4062 + 251.506i 0.192587 + 1.16979i
\(216\) −24.6833 −0.114275
\(217\) −272.354 35.4801i −1.25509 0.163503i
\(218\) −70.7377 + 70.7377i −0.324485 + 0.324485i
\(219\) 30.5157 + 17.6182i 0.139341 + 0.0804485i
\(220\) 93.5222 42.3231i 0.425101 0.192378i
\(221\) −163.322 282.882i −0.739012 1.28001i
\(222\) 182.873 49.0007i 0.823753 0.220724i
\(223\) −88.4889 + 88.4889i −0.396811 + 0.396811i −0.877107 0.480295i \(-0.840529\pi\)
0.480295 + 0.877107i \(0.340529\pi\)
\(224\) 129.218 + 167.928i 0.576866 + 0.749677i
\(225\) 14.6987 73.5455i 0.0653277 0.326869i
\(226\) −185.294 + 320.938i −0.819883 + 1.42008i
\(227\) 4.21650 15.7362i 0.0185749 0.0693225i −0.956016 0.293314i \(-0.905242\pi\)
0.974591 + 0.223991i \(0.0719087\pi\)
\(228\) −93.5110 25.0562i −0.410136 0.109896i
\(229\) 345.781 + 199.637i 1.50996 + 0.871776i 0.999933 + 0.0116184i \(0.00369834\pi\)
0.510028 + 0.860158i \(0.329635\pi\)
\(230\) −85.0861 8.41936i −0.369940 0.0366059i
\(231\) 111.038 + 45.8171i 0.480685 + 0.198342i
\(232\) −62.3766 62.3766i −0.268865 0.268865i
\(233\) −46.2513 172.612i −0.198503 0.740825i −0.991332 0.131380i \(-0.958059\pi\)
0.792829 0.609445i \(-0.208607\pi\)
\(234\) 128.216 74.0256i 0.547932 0.316349i
\(235\) 44.7291 118.679i 0.190337 0.505015i
\(236\) −43.1308 + 74.7047i −0.182758 + 0.316545i
\(237\) 66.8036 + 66.8036i 0.281872 + 0.281872i
\(238\) 223.435 + 170.966i 0.938802 + 0.718346i
\(239\) 372.693i 1.55938i −0.626164 0.779692i \(-0.715376\pi\)
0.626164 0.779692i \(-0.284624\pi\)
\(240\) −28.1292 170.860i −0.117205 0.711916i
\(241\) 0.499495 + 0.865151i 0.00207259 + 0.00358984i 0.867060 0.498204i \(-0.166007\pi\)
−0.864987 + 0.501794i \(0.832674\pi\)
\(242\) −14.5705 + 54.3778i −0.0602087 + 0.224702i
\(243\) −4.03459 15.0573i −0.0166032 0.0619642i
\(244\) 213.903i 0.876652i
\(245\) −229.491 85.7830i −0.936699 0.350135i
\(246\) −235.287 −0.956450
\(247\) −521.759 + 139.805i −2.11239 + 0.566012i
\(248\) 180.034 + 48.2401i 0.725945 + 0.194516i
\(249\) −86.6301 + 50.0159i −0.347912 + 0.200867i
\(250\) 307.846 + 10.4987i 1.23138 + 0.0419946i
\(251\) −40.4760 −0.161259 −0.0806296 0.996744i \(-0.525693\pi\)
−0.0806296 + 0.996744i \(0.525693\pi\)
\(252\) −26.4450 + 34.5609i −0.104941 + 0.137146i
\(253\) −48.6148 + 48.6148i −0.192153 + 0.192153i
\(254\) −388.175 224.113i −1.52825 0.882334i
\(255\) −58.2365 128.686i −0.228378 0.504653i
\(256\) −154.765 268.060i −0.604550 1.04711i
\(257\) 485.965 130.214i 1.89091 0.506669i 0.892457 0.451133i \(-0.148980\pi\)
0.998457 0.0555353i \(-0.0176865\pi\)
\(258\) −153.853 + 153.853i −0.596330 + 0.596330i
\(259\) −118.435 + 287.030i −0.457280 + 1.10822i
\(260\) 131.568 + 160.465i 0.506030 + 0.617172i
\(261\) 27.8552 48.2467i 0.106725 0.184853i
\(262\) 75.8151 282.946i 0.289371 1.07995i
\(263\) 302.228 + 80.9818i 1.14916 + 0.307916i 0.782627 0.622491i \(-0.213879\pi\)
0.366530 + 0.930406i \(0.380546\pi\)
\(264\) −70.5939 40.7574i −0.267401 0.154384i
\(265\) 61.9795 50.8180i 0.233885 0.191766i
\(266\) 368.722 283.726i 1.38617 1.06664i
\(267\) 70.2851 + 70.2851i 0.263240 + 0.263240i
\(268\) −4.10565 15.3225i −0.0153196 0.0571735i
\(269\) 274.266 158.348i 1.01958 0.588653i 0.105596 0.994409i \(-0.466325\pi\)
0.913981 + 0.405756i \(0.132992\pi\)
\(270\) 58.3271 26.3957i 0.216026 0.0977618i
\(271\) 83.6427 144.873i 0.308645 0.534588i −0.669421 0.742883i \(-0.733458\pi\)
0.978066 + 0.208295i \(0.0667913\pi\)
\(272\) −230.601 230.601i −0.847797 0.847797i
\(273\) −31.3668 + 240.779i −0.114897 + 0.881976i
\(274\) 294.492i 1.07479i
\(275\) 163.478 186.069i 0.594464 0.676613i
\(276\) −12.4539 21.5708i −0.0451229 0.0781552i
\(277\) 67.5940 252.264i 0.244022 0.910701i −0.729851 0.683606i \(-0.760411\pi\)
0.973873 0.227095i \(-0.0729227\pi\)
\(278\) −90.1245 336.349i −0.324189 1.20989i
\(279\) 117.710i 0.421898i
\(280\) 146.699 + 78.2424i 0.523926 + 0.279437i
\(281\) −288.113 −1.02531 −0.512657 0.858594i \(-0.671339\pi\)
−0.512657 + 0.858594i \(0.671339\pi\)
\(282\) 104.574 28.0206i 0.370830 0.0993637i
\(283\) −311.860 83.5625i −1.10198 0.295274i −0.338408 0.941000i \(-0.609888\pi\)
−0.763570 + 0.645726i \(0.776555\pi\)
\(284\) 105.093 60.6752i 0.370044 0.213645i
\(285\) −230.481 + 37.9448i −0.808705 + 0.133140i
\(286\) 488.929 1.70954
\(287\) 234.497 306.463i 0.817062 1.06781i
\(288\) 64.2121 64.2121i 0.222959 0.222959i
\(289\) 19.8992 + 11.4888i 0.0688555 + 0.0397538i
\(290\) 214.101 + 80.6932i 0.738280 + 0.278253i
\(291\) −45.8738 79.4558i −0.157642 0.273044i
\(292\) −40.7214 + 10.9113i −0.139457 + 0.0373673i
\(293\) 98.1765 98.1765i 0.335074 0.335074i −0.519436 0.854509i \(-0.673858\pi\)
0.854509 + 0.519436i \(0.173858\pi\)
\(294\) −54.6770 201.864i −0.185976 0.686612i
\(295\) −20.4949 + 207.121i −0.0694741 + 0.702106i
\(296\) 105.356 182.483i 0.355934 0.616496i
\(297\) 13.3240 49.7257i 0.0448618 0.167426i
\(298\) −380.511 101.958i −1.27688 0.342140i
\(299\) −120.358 69.4886i −0.402535 0.232403i
\(300\) 49.7845 + 74.6548i 0.165948 + 0.248849i
\(301\) −47.0581 353.731i −0.156339 1.17519i
\(302\) −127.726 127.726i −0.422934 0.422934i
\(303\) 56.6187 + 211.304i 0.186860 + 0.697372i
\(304\) −467.045 + 269.648i −1.53633 + 0.887001i
\(305\) 212.787 + 470.201i 0.697663 + 1.54164i
\(306\) 60.2873 104.421i 0.197017 0.341244i
\(307\) −38.0161 38.0161i −0.123831 0.123831i 0.642475 0.766306i \(-0.277907\pi\)
−0.766306 + 0.642475i \(0.777907\pi\)
\(308\) −132.700 + 55.1772i −0.430844 + 0.179147i
\(309\) 182.031i 0.589096i
\(310\) −477.011 + 78.5319i −1.53875 + 0.253329i
\(311\) 182.194 + 315.569i 0.585832 + 1.01469i 0.994771 + 0.102129i \(0.0325656\pi\)
−0.408939 + 0.912562i \(0.634101\pi\)
\(312\) 42.6475 159.162i 0.136691 0.510136i
\(313\) 61.0959 + 228.013i 0.195195 + 0.728476i 0.992216 + 0.124526i \(0.0397409\pi\)
−0.797022 + 0.603951i \(0.793592\pi\)
\(314\) 202.026i 0.643396i
\(315\) −23.7508 + 102.279i −0.0753992 + 0.324694i
\(316\) −113.032 −0.357696
\(317\) −306.481 + 82.1214i −0.966818 + 0.259058i −0.707484 0.706730i \(-0.750170\pi\)
−0.259334 + 0.965788i \(0.583503\pi\)
\(318\) 66.0861 + 17.7077i 0.207818 + 0.0556847i
\(319\) 159.331 91.9900i 0.499471 0.288370i
\(320\) −21.8915 15.7023i −0.0684108 0.0490696i
\(321\) −58.4811 −0.182184
\(322\) 118.699 + 15.4632i 0.368632 + 0.0480224i
\(323\) −311.068 + 311.068i −0.963059 + 0.963059i
\(324\) 16.1518 + 9.32523i 0.0498511 + 0.0287816i
\(325\) 448.839 + 221.851i 1.38104 + 0.682619i
\(326\) 57.0765 + 98.8595i 0.175081 + 0.303250i
\(327\) −67.9195 + 18.1990i −0.207705 + 0.0556544i
\(328\) −185.169 + 185.169i −0.564539 + 0.564539i
\(329\) −67.7262 + 164.135i −0.205855 + 0.498891i
\(330\) 210.400 + 20.8193i 0.637575 + 0.0630887i
\(331\) 258.974 448.556i 0.782399 1.35515i −0.148142 0.988966i \(-0.547329\pi\)
0.930541 0.366189i \(-0.119338\pi\)
\(332\) 30.9756 115.603i 0.0933001 0.348201i
\(333\) 128.539 + 34.4419i 0.386003 + 0.103429i
\(334\) −182.675 105.468i −0.546932 0.315771i
\(335\) −24.2676 29.5976i −0.0724406 0.0883511i
\(336\) 31.9688 + 240.307i 0.0951453 + 0.715198i
\(337\) 153.115 + 153.115i 0.454348 + 0.454348i 0.896795 0.442447i \(-0.145889\pi\)
−0.442447 + 0.896795i \(0.645889\pi\)
\(338\) 148.016 + 552.402i 0.437916 + 1.63432i
\(339\) −225.583 + 130.240i −0.665436 + 0.384190i
\(340\) 158.137 + 59.6008i 0.465109 + 0.175296i
\(341\) −194.364 + 336.648i −0.569982 + 0.987237i
\(342\) −140.992 140.992i −0.412256 0.412256i
\(343\) 317.422 + 129.969i 0.925430 + 0.378919i
\(344\) 242.162i 0.703960i
\(345\) −48.8345 35.0279i −0.141549 0.101530i
\(346\) 134.684 + 233.279i 0.389259 + 0.674216i
\(347\) −106.451 + 397.282i −0.306777 + 1.14491i 0.624629 + 0.780922i \(0.285250\pi\)
−0.931405 + 0.363984i \(0.881416\pi\)
\(348\) 17.2512 + 64.3823i 0.0495724 + 0.185007i
\(349\) 338.935i 0.971160i −0.874192 0.485580i \(-0.838609\pi\)
0.874192 0.485580i \(-0.161391\pi\)
\(350\) −430.324 28.0118i −1.22950 0.0800337i
\(351\) 104.063 0.296476
\(352\) 289.674 77.6179i 0.822937 0.220505i
\(353\) −452.404 121.221i −1.28160 0.343403i −0.447135 0.894466i \(-0.647556\pi\)
−0.834464 + 0.551063i \(0.814222\pi\)
\(354\) −153.864 + 88.8335i −0.434644 + 0.250942i
\(355\) 170.655 237.920i 0.480719 0.670198i
\(356\) −118.923 −0.334052
\(357\) 75.9237 + 182.595i 0.212672 + 0.511470i
\(358\) 439.887 439.887i 1.22874 1.22874i
\(359\) 303.691 + 175.336i 0.845935 + 0.488401i 0.859277 0.511510i \(-0.170914\pi\)
−0.0133422 + 0.999911i \(0.504247\pi\)
\(360\) 25.1298 66.6761i 0.0698049 0.185211i
\(361\) 183.241 + 317.383i 0.507594 + 0.879178i
\(362\) −283.488 + 75.9604i −0.783116 + 0.209835i
\(363\) −27.9800 + 27.9800i −0.0770800 + 0.0770800i
\(364\) −177.163 230.236i −0.486713 0.632517i
\(365\) −78.6591 + 64.4940i −0.215504 + 0.176696i
\(366\) −220.281 + 381.537i −0.601860 + 1.04245i
\(367\) 104.910 391.530i 0.285859 1.06684i −0.662351 0.749194i \(-0.730441\pi\)
0.948210 0.317645i \(-0.102892\pi\)
\(368\) −134.026 35.9122i −0.364201 0.0975874i
\(369\) −143.223 82.6899i −0.388138 0.224092i
\(370\) −53.8170 + 543.876i −0.145451 + 1.46993i
\(371\) −88.9287 + 68.4294i −0.239700 + 0.184446i
\(372\) −99.5824 99.5824i −0.267695 0.267695i
\(373\) 19.7292 + 73.6304i 0.0528933 + 0.197401i 0.987317 0.158764i \(-0.0507509\pi\)
−0.934423 + 0.356165i \(0.884084\pi\)
\(374\) 344.842 199.095i 0.922038 0.532339i
\(375\) 183.701 + 114.581i 0.489870 + 0.305549i
\(376\) 60.2471 104.351i 0.160232 0.277529i
\(377\) 262.976 + 262.976i 0.697548 + 0.697548i
\(378\) −82.7611 + 34.4124i −0.218945 + 0.0910382i
\(379\) 503.251i 1.32784i −0.747804 0.663919i \(-0.768892\pi\)
0.747804 0.663919i \(-0.231108\pi\)
\(380\) 162.886 227.088i 0.428647 0.597601i
\(381\) −157.526 272.843i −0.413454 0.716123i
\(382\) −33.6459 + 125.568i −0.0880784 + 0.328713i
\(383\) 193.815 + 723.327i 0.506044 + 1.88858i 0.456311 + 0.889820i \(0.349170\pi\)
0.0497332 + 0.998763i \(0.484163\pi\)
\(384\) 232.713i 0.606024i
\(385\) −236.811 + 253.298i −0.615093 + 0.657917i
\(386\) −452.490 −1.17226
\(387\) −147.724 + 39.5824i −0.381715 + 0.102280i
\(388\) 106.029 + 28.4104i 0.273271 + 0.0732227i
\(389\) −385.145 + 222.364i −0.990091 + 0.571629i −0.905301 0.424770i \(-0.860355\pi\)
−0.0847892 + 0.996399i \(0.527022\pi\)
\(390\) 69.4274 + 421.710i 0.178019 + 1.08131i
\(391\) −113.185 −0.289475
\(392\) −201.895 115.835i −0.515039 0.295497i
\(393\) 145.589 145.589i 0.370456 0.370456i
\(394\) 368.175 + 212.566i 0.934454 + 0.539507i
\(395\) −248.466 + 112.442i −0.629028 + 0.284664i
\(396\) 30.7959 + 53.3401i 0.0777674 + 0.134697i
\(397\) −652.508 + 174.839i −1.64360 + 0.440400i −0.957810 0.287403i \(-0.907208\pi\)
−0.685786 + 0.727803i \(0.740542\pi\)
\(398\) −162.906 + 162.906i −0.409313 + 0.409313i
\(399\) 324.161 43.1242i 0.812433 0.108081i
\(400\) 490.176 + 97.9659i 1.22544 + 0.244915i
\(401\) 195.581 338.757i 0.487734 0.844780i −0.512167 0.858886i \(-0.671157\pi\)
0.999901 + 0.0141063i \(0.00449034\pi\)
\(402\) 8.45613 31.5587i 0.0210352 0.0785043i
\(403\) −759.013 203.377i −1.88341 0.504657i
\(404\) −226.663 130.864i −0.561047 0.323920i
\(405\) 44.7813 + 4.43115i 0.110571 + 0.0109411i
\(406\) −296.107 122.181i −0.729327 0.300938i
\(407\) 310.749 + 310.749i 0.763511 + 0.763511i
\(408\) −34.7326 129.624i −0.0851289 0.317705i
\(409\) −150.958 + 87.1558i −0.369091 + 0.213095i −0.673061 0.739587i \(-0.735021\pi\)
0.303970 + 0.952682i \(0.401688\pi\)
\(410\) 239.543 635.572i 0.584250 1.55017i
\(411\) 103.497 179.263i 0.251818 0.436162i
\(412\) −153.998 153.998i −0.373782 0.373782i
\(413\) 37.6414 288.944i 0.0911414 0.699623i
\(414\) 51.3010i 0.123915i
\(415\) −46.9091 284.931i −0.113034 0.686581i
\(416\) 303.107 + 524.996i 0.728622 + 1.26201i
\(417\) 63.3473 236.415i 0.151912 0.566943i
\(418\) −170.427 636.042i −0.407720 1.52163i
\(419\) 190.392i 0.454396i −0.973849 0.227198i \(-0.927044\pi\)
0.973849 0.227198i \(-0.0729564\pi\)
\(420\) −66.4346 106.621i −0.158178 0.253860i
\(421\) 581.913 1.38222 0.691108 0.722751i \(-0.257123\pi\)
0.691108 + 0.722751i \(0.257123\pi\)
\(422\) −52.0986 + 13.9598i −0.123456 + 0.0330800i
\(423\) 73.5038 + 19.6953i 0.173768 + 0.0465609i
\(424\) 65.9451 38.0734i 0.155531 0.0897958i
\(425\) 406.906 26.2980i 0.957426 0.0618777i
\(426\) 249.937 0.586707
\(427\) −277.414 667.174i −0.649681 1.56247i
\(428\) 49.4751 49.4751i 0.115596 0.115596i
\(429\) 297.619 + 171.831i 0.693751 + 0.400537i
\(430\) −258.962 572.234i −0.602237 1.33078i
\(431\) 286.895 + 496.916i 0.665649 + 1.15294i 0.979109 + 0.203336i \(0.0651785\pi\)
−0.313460 + 0.949601i \(0.601488\pi\)
\(432\) 100.356 26.8902i 0.232305 0.0622459i
\(433\) 267.818 267.818i 0.618518 0.618518i −0.326633 0.945151i \(-0.605914\pi\)
0.945151 + 0.326633i \(0.105914\pi\)
\(434\) 670.895 89.2515i 1.54584 0.205649i
\(435\) 101.968 + 124.364i 0.234409 + 0.285894i
\(436\) 42.0637 72.8564i 0.0964763 0.167102i
\(437\) −48.4436 + 180.794i −0.110855 + 0.413716i
\(438\) −83.8710 22.4732i −0.191486 0.0513086i
\(439\) 334.556 + 193.156i 0.762086 + 0.439991i 0.830044 0.557698i \(-0.188315\pi\)
−0.0679581 + 0.997688i \(0.521648\pi\)
\(440\) 181.967 149.198i 0.413562 0.339087i
\(441\) 37.6608 142.094i 0.0853987 0.322208i
\(442\) 569.160 + 569.160i 1.28769 + 1.28769i
\(443\) −125.217 467.317i −0.282657 1.05489i −0.950534 0.310619i \(-0.899464\pi\)
0.667877 0.744271i \(-0.267203\pi\)
\(444\) −137.882 + 79.6063i −0.310545 + 0.179293i
\(445\) −261.415 + 118.302i −0.587449 + 0.265848i
\(446\) 154.188 267.061i 0.345712 0.598791i
\(447\) −195.792 195.792i −0.438012 0.438012i
\(448\) 29.9540 + 22.9200i 0.0668615 + 0.0511606i
\(449\) 213.080i 0.474566i −0.971441 0.237283i \(-0.923743\pi\)
0.971441 0.237283i \(-0.0762569\pi\)
\(450\) 11.9196 + 184.430i 0.0264880 + 0.409845i
\(451\) −273.078 472.984i −0.605494 1.04875i
\(452\) 80.6599 301.027i 0.178451 0.665989i
\(453\) −32.8607 122.638i −0.0725401 0.270723i
\(454\) 40.1450i 0.0884252i
\(455\) −618.475 329.865i −1.35929 0.724977i
\(456\) −221.918 −0.486663
\(457\) 740.545 198.429i 1.62045 0.434198i 0.669316 0.742978i \(-0.266587\pi\)
0.951134 + 0.308780i \(0.0999206\pi\)
\(458\) −950.364 254.649i −2.07503 0.556003i
\(459\) 73.3959 42.3751i 0.159904 0.0923205i
\(460\) 70.9477 11.6803i 0.154234 0.0253921i
\(461\) 332.527 0.721317 0.360659 0.932698i \(-0.382552\pi\)
0.360659 + 0.932698i \(0.382552\pi\)
\(462\) −293.518 38.2372i −0.635321 0.0827645i
\(463\) −394.630 + 394.630i −0.852332 + 0.852332i −0.990420 0.138088i \(-0.955904\pi\)
0.138088 + 0.990420i \(0.455904\pi\)
\(464\) 321.561 + 185.653i 0.693018 + 0.400114i
\(465\) −317.965 119.839i −0.683795 0.257717i
\(466\) 220.178 + 381.359i 0.472484 + 0.818367i
\(467\) −594.918 + 159.408i −1.27392 + 0.341345i −0.831530 0.555480i \(-0.812534\pi\)
−0.442386 + 0.896825i \(0.645868\pi\)
\(468\) −88.0376 + 88.0376i −0.188114 + 0.188114i
\(469\) 32.6777 + 42.4670i 0.0696753 + 0.0905479i
\(470\) −30.7747 + 311.010i −0.0654782 + 0.661723i
\(471\) 71.0007 122.977i 0.150745 0.261097i
\(472\) −51.1786 + 191.001i −0.108429 + 0.404663i
\(473\) −487.847 130.718i −1.03139 0.276360i
\(474\) −201.614 116.402i −0.425346 0.245574i
\(475\) 132.151 661.221i 0.278212 1.39204i
\(476\) −218.707 90.2439i −0.459469 0.189588i
\(477\) 34.0045 + 34.0045i 0.0712883 + 0.0712883i
\(478\) 237.696 + 887.095i 0.497273 + 1.85585i
\(479\) 219.614 126.794i 0.458484 0.264706i −0.252923 0.967487i \(-0.581392\pi\)
0.711407 + 0.702781i \(0.248058\pi\)
\(480\) 108.080 + 238.827i 0.225167 + 0.497557i
\(481\) −444.176 + 769.335i −0.923442 + 1.59945i
\(482\) −1.74069 1.74069i −0.00361139 0.00361139i
\(483\) 66.8199 + 51.1288i 0.138343 + 0.105857i
\(484\) 47.3423i 0.0978147i
\(485\) 261.335 43.0244i 0.538834 0.0887100i
\(486\) 19.2065 + 33.2667i 0.0395196 + 0.0684499i
\(487\) 107.670 401.832i 0.221089 0.825116i −0.762845 0.646582i \(-0.776198\pi\)
0.983934 0.178534i \(-0.0571355\pi\)
\(488\) 126.908 + 473.626i 0.260057 + 0.970545i
\(489\) 80.2366i 0.164083i
\(490\) 600.954 + 57.8182i 1.22644 + 0.117996i
\(491\) −283.991 −0.578392 −0.289196 0.957270i \(-0.593388\pi\)
−0.289196 + 0.957270i \(0.593388\pi\)
\(492\) 191.123 51.2112i 0.388461 0.104088i
\(493\) 292.562 + 78.3918i 0.593433 + 0.159010i
\(494\) 1152.74 665.537i 2.33349 1.34724i
\(495\) 120.757 + 86.6166i 0.243954 + 0.174983i
\(496\) −784.525 −1.58170
\(497\) −249.098 + 325.545i −0.501203 + 0.655020i
\(498\) 174.300 174.300i 0.350001 0.350001i
\(499\) −716.123 413.454i −1.43512 0.828565i −0.437612 0.899164i \(-0.644176\pi\)
−0.997505 + 0.0705988i \(0.977509\pi\)
\(500\) −252.347 + 58.4760i −0.504695 + 0.116952i
\(501\) −74.1318 128.400i −0.147968 0.256287i
\(502\) 96.3424 25.8149i 0.191917 0.0514240i
\(503\) 118.670 118.670i 0.235924 0.235924i −0.579236 0.815160i \(-0.696649\pi\)
0.815160 + 0.579236i \(0.196649\pi\)
\(504\) −38.0500 + 92.2146i −0.0754960 + 0.182965i
\(505\) −628.430 62.1838i −1.24442 0.123136i
\(506\) 84.7090 146.720i 0.167409 0.289961i
\(507\) −104.038 + 388.276i −0.205203 + 0.765830i
\(508\) 364.093 + 97.5583i 0.716718 + 0.192044i
\(509\) −154.005 88.9151i −0.302565 0.174686i 0.341030 0.940052i \(-0.389224\pi\)
−0.643594 + 0.765367i \(0.722558\pi\)
\(510\) 220.690 + 269.161i 0.432726 + 0.527767i
\(511\) 112.861 86.8448i 0.220863 0.169951i
\(512\) 159.321 + 159.321i 0.311175 + 0.311175i
\(513\) −36.2735 135.375i −0.0707086 0.263888i
\(514\) −1073.66 + 619.879i −2.08883 + 1.20599i
\(515\) −491.713 185.323i −0.954783 0.359851i
\(516\) 91.4877 158.461i 0.177302 0.307096i
\(517\) 177.699 + 177.699i 0.343711 + 0.343711i
\(518\) 98.8418 758.734i 0.190814 1.46474i
\(519\) 189.334i 0.364806i
\(520\) 386.521 + 277.243i 0.743310 + 0.533160i
\(521\) 376.277 + 651.731i 0.722221 + 1.25092i 0.960108 + 0.279631i \(0.0902120\pi\)
−0.237887 + 0.971293i \(0.576455\pi\)
\(522\) −35.5311 + 132.604i −0.0680672 + 0.254030i
\(523\) 141.063 + 526.453i 0.269718 + 1.00660i 0.959299 + 0.282393i \(0.0911284\pi\)
−0.689580 + 0.724209i \(0.742205\pi\)
\(524\) 246.338i 0.470110i
\(525\) −252.101 168.286i −0.480192 0.320544i
\(526\) −771.022 −1.46582
\(527\) −618.149 + 165.633i −1.17296 + 0.314293i
\(528\) 331.418 + 88.8031i 0.627685 + 0.168188i
\(529\) 416.422 240.422i 0.787188 0.454483i
\(530\) −115.115 + 160.488i −0.217198 + 0.302808i
\(531\) −124.880 −0.235178
\(532\) −237.757 + 310.724i −0.446912 + 0.584067i
\(533\) 780.658 780.658i 1.46465 1.46465i
\(534\) −212.121 122.468i −0.397231 0.229341i
\(535\) 59.5389 157.973i 0.111288 0.295277i
\(536\) −18.1815 31.4913i −0.0339208 0.0587525i
\(537\) 422.363 113.172i 0.786522 0.210748i
\(538\) −551.826 + 551.826i −1.02570 + 1.02570i
\(539\) 342.337 344.201i 0.635134 0.638591i
\(540\) −41.6338 + 34.1363i −0.0770997 + 0.0632154i
\(541\) −30.4507 + 52.7421i −0.0562859 + 0.0974901i −0.892795 0.450462i \(-0.851259\pi\)
0.836510 + 0.547952i \(0.184593\pi\)
\(542\) −106.692 + 398.178i −0.196848 + 0.734646i
\(543\) −199.260 53.3915i −0.366961 0.0983269i
\(544\) 427.563 + 246.854i 0.785962 + 0.453775i
\(545\) 19.9878 201.997i 0.0366748 0.370636i
\(546\) −78.9043 593.116i −0.144513 1.08629i
\(547\) 219.616 + 219.616i 0.401492 + 0.401492i 0.878759 0.477266i \(-0.158372\pi\)
−0.477266 + 0.878759i \(0.658372\pi\)
\(548\) 64.0976 + 239.215i 0.116966 + 0.436524i
\(549\) −268.177 + 154.832i −0.488483 + 0.282026i
\(550\) −270.444 + 547.150i −0.491716 + 0.994818i
\(551\) 250.436 433.768i 0.454512 0.787238i
\(552\) −40.3734 40.3734i −0.0731403 0.0731403i
\(553\) 352.552 146.593i 0.637526 0.265086i
\(554\) 643.557i 1.16166i
\(555\) −223.901 + 312.153i −0.403425 + 0.562438i
\(556\) 146.416 + 253.600i 0.263338 + 0.456115i
\(557\) 257.028 959.243i 0.461451 1.72216i −0.206943 0.978353i \(-0.566352\pi\)
0.668395 0.743807i \(-0.266982\pi\)
\(558\) −75.0729 280.176i −0.134539 0.502108i
\(559\) 1020.94i 1.82637i
\(560\) −681.679 158.297i −1.21728 0.282673i
\(561\) 279.882 0.498898
\(562\) 685.776 183.753i 1.22024 0.326963i
\(563\) 275.338 + 73.7765i 0.489055 + 0.131042i 0.494916 0.868941i \(-0.335199\pi\)
−0.00586099 + 0.999983i \(0.501866\pi\)
\(564\) −78.8465 + 45.5221i −0.139799 + 0.0807129i
\(565\) −122.150 741.955i −0.216195 1.31319i
\(566\) 795.593 1.40564
\(567\) −62.4721 8.13837i −0.110180 0.0143534i
\(568\) 196.698 196.698i 0.346300 0.346300i
\(569\) 231.224 + 133.497i 0.406368 + 0.234617i 0.689228 0.724544i \(-0.257950\pi\)
−0.282860 + 0.959161i \(0.591283\pi\)
\(570\) 524.397 237.314i 0.919996 0.416340i
\(571\) 104.149 + 180.391i 0.182397 + 0.315921i 0.942696 0.333652i \(-0.108281\pi\)
−0.760299 + 0.649573i \(0.774948\pi\)
\(572\) −397.155 + 106.417i −0.694328 + 0.186045i
\(573\) −64.6110 + 64.6110i −0.112759 + 0.112759i
\(574\) −362.701 + 879.010i −0.631883 + 1.53138i
\(575\) 144.338 96.2533i 0.251022 0.167397i
\(576\) 8.08219 13.9988i 0.0140316 0.0243034i
\(577\) −41.0956 + 153.371i −0.0712228 + 0.265807i −0.992350 0.123454i \(-0.960603\pi\)
0.921128 + 0.389261i \(0.127270\pi\)
\(578\) −54.6922 14.6547i −0.0946232 0.0253542i
\(579\) −275.439 159.025i −0.475715 0.274654i
\(580\) −191.477 18.9468i −0.330133 0.0326670i
\(581\) 53.3122 + 400.743i 0.0917594 + 0.689747i
\(582\) 159.866 + 159.866i 0.274684 + 0.274684i
\(583\) 41.1038 + 153.401i 0.0705039 + 0.263124i
\(584\) −83.6919 + 48.3196i −0.143308 + 0.0827390i
\(585\) −105.945 + 281.102i −0.181103 + 0.480516i
\(586\) −171.068 + 296.298i −0.291925 + 0.505628i
\(587\) 20.2654 + 20.2654i 0.0345236 + 0.0345236i 0.724158 0.689634i \(-0.242229\pi\)
−0.689634 + 0.724158i \(0.742229\pi\)
\(588\) 88.3505 + 152.073i 0.150256 + 0.258627i
\(589\) 1058.28i 1.79674i
\(590\) −83.3156 506.068i −0.141213 0.857743i
\(591\) 149.410 + 258.785i 0.252808 + 0.437877i
\(592\) −229.553 + 856.703i −0.387758 + 1.44713i
\(593\) −189.157 705.944i −0.318983 1.19046i −0.920223 0.391393i \(-0.871993\pi\)
0.601240 0.799068i \(-0.294673\pi\)
\(594\) 126.856i 0.213563i
\(595\) −570.534 + 19.1926i −0.958881 + 0.0322564i
\(596\) 331.280 0.555839
\(597\) −156.416 + 41.9116i −0.262004 + 0.0702037i
\(598\) 330.798 + 88.6371i 0.553174 + 0.148223i
\(599\) −728.928 + 420.847i −1.21691 + 0.702583i −0.964256 0.264974i \(-0.914637\pi\)
−0.252653 + 0.967557i \(0.581303\pi\)
\(600\) 154.526 + 135.764i 0.257543 + 0.226274i
\(601\) −374.471 −0.623079 −0.311540 0.950233i \(-0.600845\pi\)
−0.311540 + 0.950233i \(0.600845\pi\)
\(602\) 337.613 + 811.950i 0.560818 + 1.34875i
\(603\) 16.2385 16.2385i 0.0269295 0.0269295i
\(604\) 131.552 + 75.9515i 0.217801 + 0.125747i
\(605\) −47.0953 104.068i −0.0778435 0.172013i
\(606\) −269.531 466.842i −0.444771 0.770366i
\(607\) 488.562 130.910i 0.804880 0.215667i 0.167155 0.985931i \(-0.446542\pi\)
0.637725 + 0.770264i \(0.279875\pi\)
\(608\) 577.307 577.307i 0.949519 0.949519i
\(609\) −137.306 178.438i −0.225461 0.293002i
\(610\) −806.368 983.475i −1.32192 1.61225i
\(611\) −253.997 + 439.937i −0.415708 + 0.720027i
\(612\) −26.2436 + 97.9424i −0.0428817 + 0.160037i
\(613\) 660.473 + 176.973i 1.07744 + 0.288700i 0.753548 0.657393i \(-0.228341\pi\)
0.323896 + 0.946093i \(0.395007\pi\)
\(614\) 114.733 + 66.2412i 0.186862 + 0.107885i
\(615\) 369.181 302.698i 0.600294 0.492192i
\(616\) −261.089 + 200.904i −0.423845 + 0.326143i
\(617\) 5.21905 + 5.21905i 0.00845875 + 0.00845875i 0.711324 0.702865i \(-0.248096\pi\)
−0.702865 + 0.711324i \(0.748096\pi\)
\(618\) −116.096 433.276i −0.187857 0.701093i
\(619\) −803.223 + 463.741i −1.29761 + 0.749178i −0.979991 0.199040i \(-0.936218\pi\)
−0.317622 + 0.948217i \(0.602884\pi\)
\(620\) 370.382 167.615i 0.597391 0.270347i
\(621\) 18.0294 31.2278i 0.0290328 0.0502863i
\(622\) −634.928 634.928i −1.02078 1.02078i
\(623\) 370.925 154.232i 0.595386 0.247564i
\(624\) 693.573i 1.11150i
\(625\) −496.538 + 379.573i −0.794460 + 0.607316i
\(626\) −290.845 503.758i −0.464609 0.804726i
\(627\) 119.791 447.065i 0.191054 0.713022i
\(628\) 43.9719 + 164.105i 0.0700189 + 0.261314i
\(629\) 723.484i 1.15021i
\(630\) −8.69902 258.595i −0.0138080 0.410468i
\(631\) −659.617 −1.04535 −0.522676 0.852531i \(-0.675066\pi\)
−0.522676 + 0.852531i \(0.675066\pi\)
\(632\) −250.276 + 67.0613i −0.396006 + 0.106110i
\(633\) −36.6194 9.81213i −0.0578505 0.0155010i
\(634\) 677.121 390.936i 1.06801 0.616619i
\(635\) 897.396 147.741i 1.41322 0.232663i
\(636\) −57.5358 −0.0904650
\(637\) 851.177 + 488.352i 1.33623 + 0.766643i
\(638\) −320.576 + 320.576i −0.502470 + 0.502470i
\(639\) 152.141 + 87.8387i 0.238092 + 0.137463i
\(640\) 628.619 + 236.922i 0.982218 + 0.370191i
\(641\) −115.909 200.760i −0.180825 0.313198i 0.761337 0.648357i \(-0.224543\pi\)
−0.942162 + 0.335159i \(0.891210\pi\)
\(642\) 139.199 37.2982i 0.216820 0.0580968i
\(643\) −207.642 + 207.642i −0.322927 + 0.322927i −0.849889 0.526962i \(-0.823331\pi\)
0.526962 + 0.849889i \(0.323331\pi\)
\(644\) −99.7848 + 13.2747i −0.154945 + 0.0206129i
\(645\) 43.4730 439.339i 0.0674001 0.681146i
\(646\) 542.021 938.808i 0.839042 1.45326i
\(647\) 119.193 444.834i 0.184224 0.687534i −0.810571 0.585640i \(-0.800843\pi\)
0.994795 0.101894i \(-0.0324902\pi\)
\(648\) 41.2960 + 11.0652i 0.0637283 + 0.0170760i
\(649\) −357.154 206.203i −0.550315 0.317725i
\(650\) −1209.83 241.796i −1.86128 0.371994i
\(651\) 439.752 + 181.452i 0.675503 + 0.278729i
\(652\) −67.8803 67.8803i −0.104111 0.104111i
\(653\) 211.888 + 790.779i 0.324485 + 1.21099i 0.914829 + 0.403842i \(0.132325\pi\)
−0.590344 + 0.807152i \(0.701008\pi\)
\(654\) 150.057 86.6356i 0.229445 0.132470i
\(655\) 245.053 + 541.498i 0.374126 + 0.826715i
\(656\) 551.122 954.571i 0.840125 1.45514i
\(657\) −43.1557 43.1557i −0.0656860 0.0656860i
\(658\) 56.5217 433.874i 0.0858992 0.659383i
\(659\) 472.040i 0.716297i −0.933665 0.358149i \(-0.883408\pi\)
0.933665 0.358149i \(-0.116592\pi\)
\(660\) −175.439 + 28.8830i −0.265816 + 0.0437621i
\(661\) 20.0334 + 34.6989i 0.0303078 + 0.0524946i 0.880781 0.473523i \(-0.157018\pi\)
−0.850474 + 0.526018i \(0.823685\pi\)
\(662\) −330.338 + 1232.84i −0.499000 + 1.86229i
\(663\) 146.430 + 546.485i 0.220860 + 0.824261i
\(664\) 274.346i 0.413172i
\(665\) −213.534 + 919.549i −0.321104 + 1.38278i
\(666\) −327.919 −0.492371
\(667\) 124.477 33.3534i 0.186622 0.0500052i
\(668\) 171.342 + 45.9110i 0.256500 + 0.0687291i
\(669\) 187.713 108.376i 0.280588 0.161998i
\(670\) 76.6394 + 54.9718i 0.114387 + 0.0820475i
\(671\) −1022.65 −1.52406
\(672\) −140.906 338.875i −0.209681 0.504279i
\(673\) −170.430 + 170.430i −0.253239 + 0.253239i −0.822297 0.569059i \(-0.807308\pi\)
0.569059 + 0.822297i \(0.307308\pi\)
\(674\) −462.104 266.796i −0.685614 0.395839i
\(675\) −57.5610 + 116.455i −0.0852756 + 0.172526i
\(676\) −240.465 416.498i −0.355718 0.616122i
\(677\) 873.260 233.989i 1.28990 0.345627i 0.452276 0.891878i \(-0.350612\pi\)
0.837621 + 0.546251i \(0.183946\pi\)
\(678\) 453.875 453.875i 0.669432 0.669432i
\(679\) −367.555 + 48.8972i −0.541319 + 0.0720135i
\(680\) 385.509 + 38.1465i 0.566925 + 0.0560978i
\(681\) −14.1087 + 24.4370i −0.0207176 + 0.0358840i
\(682\) 247.923 925.262i 0.363524 1.35669i
\(683\) −370.963 99.3993i −0.543138 0.145533i −0.0231896 0.999731i \(-0.507382\pi\)
−0.519948 + 0.854198i \(0.674049\pi\)
\(684\) 145.215 + 83.8396i 0.212302 + 0.122573i
\(685\) 378.866 + 462.079i 0.553090 + 0.674568i
\(686\) −838.431 106.911i −1.22220 0.155846i
\(687\) −489.008 489.008i −0.711802 0.711802i
\(688\) −263.814 984.567i −0.383451 1.43106i
\(689\) −278.020 + 160.515i −0.403512 + 0.232968i
\(690\) 138.578 + 52.2289i 0.200837 + 0.0756941i
\(691\) −143.113 + 247.880i −0.207111 + 0.358726i −0.950803 0.309796i \(-0.899739\pi\)
0.743693 + 0.668522i \(0.233073\pi\)
\(692\) −160.177 160.177i −0.231470 0.231470i
\(693\) −165.231 126.431i −0.238429 0.182439i
\(694\) 1013.52i 1.46040i
\(695\) 574.127 + 411.809i 0.826082 + 0.592531i
\(696\) 76.3955 + 132.321i 0.109764 + 0.190116i
\(697\) 232.711 868.488i 0.333875 1.24604i
\(698\) 216.166 + 806.743i 0.309694 + 1.15579i
\(699\) 309.520i 0.442803i
\(700\) 355.648 70.9080i 0.508068 0.101297i
\(701\) −737.080 −1.05147 −0.525735 0.850648i \(-0.676210\pi\)
−0.525735 + 0.850648i \(0.676210\pi\)
\(702\) −247.694 + 66.3695i −0.352841 + 0.0945435i
\(703\) 1155.65 + 309.655i 1.64388 + 0.440476i
\(704\) 46.2299 26.6909i 0.0656675 0.0379132i
\(705\) −128.035 + 178.502i −0.181611 + 0.253194i
\(706\) 1154.14 1.63476
\(707\) 876.691 + 114.208i 1.24002 + 0.161539i
\(708\) 105.648 105.648i 0.149221 0.149221i
\(709\) 777.250 + 448.745i 1.09626 + 0.632927i 0.935237 0.354023i \(-0.115187\pi\)
0.161025 + 0.986950i \(0.448520\pi\)
\(710\) −254.458 + 675.146i −0.358391 + 0.950910i
\(711\) −81.8174 141.712i −0.115074 0.199313i
\(712\) −263.319 + 70.5562i −0.369830 + 0.0990958i
\(713\) −192.533 + 192.533i −0.270032 + 0.270032i
\(714\) −297.172 386.195i −0.416207 0.540890i
\(715\) −767.162 + 629.010i −1.07295 + 0.879734i
\(716\) −261.576 + 453.063i −0.365330 + 0.632769i
\(717\) −167.073 + 623.527i −0.233017 + 0.869633i
\(718\) −834.680 223.652i −1.16251 0.311493i
\(719\) 86.3910 + 49.8778i 0.120154 + 0.0693711i 0.558873 0.829254i \(-0.311234\pi\)
−0.438718 + 0.898625i \(0.644567\pi\)
\(720\) −29.5333 + 298.464i −0.0410185 + 0.414533i
\(721\) 680.051 + 280.606i 0.943205 + 0.389189i
\(722\) −638.578 638.578i −0.884457 0.884457i
\(723\) −0.447835 1.67134i −0.000619412 0.00231168i
\(724\) 213.744 123.405i 0.295226 0.170449i
\(725\) −439.752 + 148.829i −0.606554 + 0.205282i
\(726\) 48.7538 84.4441i 0.0671540 0.116314i
\(727\) −794.241 794.241i −1.09249 1.09249i −0.995262 0.0972298i \(-0.969002\pi\)
−0.0972298 0.995262i \(-0.530998\pi\)
\(728\) −528.874 404.680i −0.726476 0.555880i
\(729\) 27.0000i 0.0370370i
\(730\) 146.094 203.678i 0.200129 0.279011i
\(731\) −415.733 720.070i −0.568718 0.985048i
\(732\) 95.8901 357.867i 0.130997 0.488889i
\(733\) −100.435 374.828i −0.137019 0.511362i −0.999981 0.00609363i \(-0.998060\pi\)
0.862963 0.505268i \(-0.168606\pi\)
\(734\) 998.842i 1.36082i
\(735\) 345.491 + 246.396i 0.470056 + 0.335233i
\(736\) 210.058 0.285405
\(737\) 73.2551 19.6287i 0.0993964 0.0266332i
\(738\) 393.642 + 105.476i 0.533391 + 0.142922i
\(739\) −994.736 + 574.311i −1.34606 + 0.777147i −0.987689 0.156433i \(-0.950000\pi\)
−0.358369 + 0.933580i \(0.616667\pi\)
\(740\) −74.6615 453.502i −0.100894 0.612841i
\(741\) 935.593 1.26261
\(742\) 168.028 219.595i 0.226453 0.295950i
\(743\) 720.519 720.519i 0.969743 0.969743i −0.0298125 0.999556i \(-0.509491\pi\)
0.999556 + 0.0298125i \(0.00949103\pi\)
\(744\) −279.578 161.414i −0.375777 0.216955i
\(745\) 728.218 329.552i 0.977473 0.442351i
\(746\) −93.9202 162.675i −0.125898 0.218062i
\(747\) 167.356 44.8430i 0.224038 0.0600308i
\(748\) −236.780 + 236.780i −0.316551 + 0.316551i
\(749\) −90.1503 + 218.480i −0.120361 + 0.291696i
\(750\) −510.330 155.568i −0.680440 0.207424i
\(751\) 301.457 522.139i 0.401407 0.695258i −0.592489 0.805579i \(-0.701854\pi\)
0.993896 + 0.110321i \(0.0351878\pi\)
\(752\) −131.268 + 489.897i −0.174558 + 0.651459i
\(753\) 67.7177 + 18.1449i 0.0899306 + 0.0240968i
\(754\) −793.664 458.222i −1.05260 0.607722i
\(755\) 364.732 + 36.0906i 0.483088 + 0.0478021i
\(756\) 59.7366 45.9664i 0.0790167 0.0608022i
\(757\) 590.863 + 590.863i 0.780532 + 0.780532i 0.979921 0.199389i \(-0.0638956\pi\)
−0.199389 + 0.979921i \(0.563896\pi\)
\(758\) 320.964 + 1197.85i 0.423435 + 1.58028i
\(759\) 103.128 59.5408i 0.135873 0.0784463i
\(760\) 225.932 599.460i 0.297280 0.788764i
\(761\) −104.936 + 181.755i −0.137892 + 0.238837i