Properties

Label 105.3.v.a.58.4
Level 105
Weight 3
Character 105.58
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 58.4
Character \(\chi\) \(=\) 105.58
Dual form 105.3.v.a.67.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.686107 - 2.56059i) q^{2} +(-0.448288 + 1.67303i) q^{3} +(-2.62176 + 1.51367i) q^{4} +(3.50926 - 3.56161i) q^{5} +4.59152 q^{6} +(6.99820 - 0.158915i) q^{7} +(-1.82323 - 1.82323i) q^{8} +(-2.59808 - 1.50000i) q^{9} +O(q^{10})\) \(q+(-0.686107 - 2.56059i) q^{2} +(-0.448288 + 1.67303i) q^{3} +(-2.62176 + 1.51367i) q^{4} +(3.50926 - 3.56161i) q^{5} +4.59152 q^{6} +(6.99820 - 0.158915i) q^{7} +(-1.82323 - 1.82323i) q^{8} +(-2.59808 - 1.50000i) q^{9} +(-11.5275 - 6.54211i) q^{10} +(-8.05696 - 13.9551i) q^{11} +(-1.35712 - 5.06484i) q^{12} +(-0.148341 - 0.148341i) q^{13} +(-5.20843 - 17.8104i) q^{14} +(4.38554 + 7.46773i) q^{15} +(-9.47228 + 16.4065i) q^{16} +(19.4170 + 5.20277i) q^{17} +(-2.05832 + 7.68176i) q^{18} +(-10.9984 - 6.34991i) q^{19} +(-3.80931 + 14.6495i) q^{20} +(-2.87134 + 11.7794i) q^{21} +(-30.2052 + 30.2052i) q^{22} +(15.6270 - 4.18723i) q^{23} +(3.86765 - 2.23299i) q^{24} +(-0.370192 - 24.9973i) q^{25} +(-0.278063 + 0.481619i) q^{26} +(3.67423 - 3.67423i) q^{27} +(-18.1070 + 11.0096i) q^{28} +21.7589i q^{29} +(16.1128 - 16.3532i) q^{30} +(7.17206 + 12.4224i) q^{31} +(38.5469 + 10.3286i) q^{32} +(26.9591 - 7.22367i) q^{33} -53.2886i q^{34} +(23.9925 - 25.4825i) q^{35} +9.08203 q^{36} +(16.8501 + 62.8854i) q^{37} +(-8.71343 + 32.5190i) q^{38} +(0.314680 - 0.181680i) q^{39} +(-12.8918 + 0.0954540i) q^{40} +2.26939 q^{41} +(32.1323 - 0.729660i) q^{42} +(35.1154 + 35.1154i) q^{43} +(42.2467 + 24.3912i) q^{44} +(-14.4597 + 3.98946i) q^{45} +(-21.4435 - 37.1413i) q^{46} +(-14.9626 - 55.8413i) q^{47} +(-23.2023 - 23.2023i) q^{48} +(48.9495 - 2.22423i) q^{49} +(-63.7536 + 18.0987i) q^{50} +(-17.4088 + 30.1529i) q^{51} +(0.613455 + 0.164375i) q^{52} +(-27.1491 + 101.322i) q^{53} +(-11.9291 - 6.88728i) q^{54} +(-77.9765 - 20.2762i) q^{55} +(-13.0490 - 12.4696i) q^{56} +(15.5540 - 15.5540i) q^{57} +(55.7156 - 14.9290i) q^{58} +(-59.5129 + 34.3598i) q^{59} +(-22.8015 - 12.9403i) q^{60} +(17.3661 - 30.0790i) q^{61} +(26.8877 - 26.8877i) q^{62} +(-18.4202 - 10.0844i) q^{63} -30.0109i q^{64} +(-1.04890 + 0.00776634i) q^{65} +(-36.9937 - 64.0749i) q^{66} +(-31.9656 - 8.56515i) q^{67} +(-58.7819 + 15.7506i) q^{68} +28.0215i q^{69} +(-81.7117 - 43.9511i) q^{70} -59.5469 q^{71} +(2.00204 + 7.47172i) q^{72} +(-8.96382 + 33.4534i) q^{73} +(149.462 - 86.2922i) q^{74} +(41.9872 + 10.5866i) q^{75} +38.4467 q^{76} +(-58.6018 - 96.3799i) q^{77} +(-0.681112 - 0.681112i) q^{78} +(-2.87256 - 1.65847i) q^{79} +(25.1928 + 91.3112i) q^{80} +(4.50000 + 7.79423i) q^{81} +(-1.55704 - 5.81096i) q^{82} +(4.48322 + 4.48322i) q^{83} +(-10.3023 - 35.2291i) q^{84} +(86.6696 - 50.8980i) q^{85} +(65.8230 - 114.009i) q^{86} +(-36.4034 - 9.75426i) q^{87} +(-10.7536 + 40.1329i) q^{88} +(123.113 + 71.0793i) q^{89} +(20.1363 + 34.2882i) q^{90} +(-1.06170 - 1.01455i) q^{91} +(-34.6320 + 34.6320i) q^{92} +(-23.9982 + 6.43029i) q^{93} +(-132.720 + 76.6262i) q^{94} +(-61.2121 + 16.8885i) q^{95} +(-34.5602 + 59.8600i) q^{96} +(113.195 - 113.195i) q^{97} +(-39.2799 - 123.813i) q^{98} +48.3417i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.686107 2.56059i −0.343053 1.28029i −0.894870 0.446327i \(-0.852732\pi\)
0.551816 0.833966i \(-0.313935\pi\)
\(3\) −0.448288 + 1.67303i −0.149429 + 0.557678i
\(4\) −2.62176 + 1.51367i −0.655439 + 0.378418i
\(5\) 3.50926 3.56161i 0.701852 0.712323i
\(6\) 4.59152 0.765253
\(7\) 6.99820 0.158915i 0.999742 0.0227021i
\(8\) −1.82323 1.82323i −0.227903 0.227903i
\(9\) −2.59808 1.50000i −0.288675 0.166667i
\(10\) −11.5275 6.54211i −1.15275 0.654211i
\(11\) −8.05696 13.9551i −0.732451 1.26864i −0.955833 0.293911i \(-0.905043\pi\)
0.223382 0.974731i \(-0.428290\pi\)
\(12\) −1.35712 5.06484i −0.113093 0.422070i
\(13\) −0.148341 0.148341i −0.0114109 0.0114109i 0.701378 0.712789i \(-0.252568\pi\)
−0.712789 + 0.701378i \(0.752568\pi\)
\(14\) −5.20843 17.8104i −0.372030 1.27217i
\(15\) 4.38554 + 7.46773i 0.292369 + 0.497849i
\(16\) −9.47228 + 16.4065i −0.592018 + 1.02540i
\(17\) 19.4170 + 5.20277i 1.14218 + 0.306045i 0.779826 0.625996i \(-0.215308\pi\)
0.362351 + 0.932042i \(0.381974\pi\)
\(18\) −2.05832 + 7.68176i −0.114351 + 0.426764i
\(19\) −10.9984 6.34991i −0.578861 0.334206i 0.181819 0.983332i \(-0.441801\pi\)
−0.760681 + 0.649126i \(0.775135\pi\)
\(20\) −3.80931 + 14.6495i −0.190465 + 0.732477i
\(21\) −2.87134 + 11.7794i −0.136730 + 0.560926i
\(22\) −30.2052 + 30.2052i −1.37296 + 1.37296i
\(23\) 15.6270 4.18723i 0.679433 0.182054i 0.0974328 0.995242i \(-0.468937\pi\)
0.582000 + 0.813189i \(0.302270\pi\)
\(24\) 3.86765 2.23299i 0.161152 0.0930411i
\(25\) −0.370192 24.9973i −0.0148077 0.999890i
\(26\) −0.278063 + 0.481619i −0.0106947 + 0.0185238i
\(27\) 3.67423 3.67423i 0.136083 0.136083i
\(28\) −18.1070 + 11.0096i −0.646679 + 0.393200i
\(29\) 21.7589i 0.750308i 0.926962 + 0.375154i \(0.122410\pi\)
−0.926962 + 0.375154i \(0.877590\pi\)
\(30\) 16.1128 16.3532i 0.537094 0.545107i
\(31\) 7.17206 + 12.4224i 0.231357 + 0.400721i 0.958208 0.286074i \(-0.0923503\pi\)
−0.726851 + 0.686795i \(0.759017\pi\)
\(32\) 38.5469 + 10.3286i 1.20459 + 0.322769i
\(33\) 26.9591 7.22367i 0.816943 0.218899i
\(34\) 53.2886i 1.56731i
\(35\) 23.9925 25.4825i 0.685500 0.728073i
\(36\) 9.08203 0.252279
\(37\) 16.8501 + 62.8854i 0.455408 + 1.69960i 0.686886 + 0.726765i \(0.258977\pi\)
−0.231479 + 0.972840i \(0.574356\pi\)
\(38\) −8.71343 + 32.5190i −0.229301 + 0.855763i
\(39\) 0.314680 0.181680i 0.00806871 0.00465847i
\(40\) −12.8918 + 0.0954540i −0.322295 + 0.00238635i
\(41\) 2.26939 0.0553509 0.0276754 0.999617i \(-0.491190\pi\)
0.0276754 + 0.999617i \(0.491190\pi\)
\(42\) 32.1323 0.729660i 0.765056 0.0173729i
\(43\) 35.1154 + 35.1154i 0.816636 + 0.816636i 0.985619 0.168983i \(-0.0540482\pi\)
−0.168983 + 0.985619i \(0.554048\pi\)
\(44\) 42.2467 + 24.3912i 0.960153 + 0.554345i
\(45\) −14.4597 + 3.98946i −0.321328 + 0.0886546i
\(46\) −21.4435 37.1413i −0.466164 0.807419i
\(47\) −14.9626 55.8413i −0.318354 1.18811i −0.920826 0.389973i \(-0.872484\pi\)
0.602472 0.798140i \(-0.294182\pi\)
\(48\) −23.2023 23.2023i −0.483380 0.483380i
\(49\) 48.9495 2.22423i 0.998969 0.0453925i
\(50\) −63.7536 + 18.0987i −1.27507 + 0.361974i
\(51\) −17.4088 + 30.1529i −0.341349 + 0.591234i
\(52\) 0.613455 + 0.164375i 0.0117972 + 0.00316105i
\(53\) −27.1491 + 101.322i −0.512248 + 1.91173i −0.117090 + 0.993121i \(0.537357\pi\)
−0.395157 + 0.918613i \(0.629310\pi\)
\(54\) −11.9291 6.88728i −0.220909 0.127542i
\(55\) −77.9765 20.2762i −1.41775 0.368657i
\(56\) −13.0490 12.4696i −0.233018 0.222671i
\(57\) 15.5540 15.5540i 0.272878 0.272878i
\(58\) 55.7156 14.9290i 0.960614 0.257396i
\(59\) −59.5129 + 34.3598i −1.00869 + 0.582370i −0.910809 0.412828i \(-0.864541\pi\)
−0.0978847 + 0.995198i \(0.531208\pi\)
\(60\) −22.8015 12.9403i −0.380025 0.215672i
\(61\) 17.3661 30.0790i 0.284691 0.493099i −0.687843 0.725859i \(-0.741442\pi\)
0.972534 + 0.232760i \(0.0747758\pi\)
\(62\) 26.8877 26.8877i 0.433673 0.433673i
\(63\) −18.4202 10.0844i −0.292384 0.160070i
\(64\) 30.0109i 0.468920i
\(65\) −1.04890 + 0.00776634i −0.0161370 + 0.000119482i
\(66\) −36.9937 64.0749i −0.560510 0.970832i
\(67\) −31.9656 8.56515i −0.477098 0.127838i 0.0122529 0.999925i \(-0.496100\pi\)
−0.489351 + 0.872087i \(0.662766\pi\)
\(68\) −58.7819 + 15.7506i −0.864440 + 0.231626i
\(69\) 28.0215i 0.406109i
\(70\) −81.7117 43.9511i −1.16731 0.627873i
\(71\) −59.5469 −0.838689 −0.419345 0.907827i \(-0.637740\pi\)
−0.419345 + 0.907827i \(0.637740\pi\)
\(72\) 2.00204 + 7.47172i 0.0278061 + 0.103774i
\(73\) −8.96382 + 33.4534i −0.122792 + 0.458266i −0.999751 0.0222985i \(-0.992902\pi\)
0.876959 + 0.480565i \(0.159568\pi\)
\(74\) 149.462 86.2922i 2.01976 1.16611i
\(75\) 41.9872 + 10.5866i 0.559829 + 0.141155i
\(76\) 38.4467 0.505878
\(77\) −58.6018 96.3799i −0.761063 1.25169i
\(78\) −0.681112 0.681112i −0.00873221 0.00873221i
\(79\) −2.87256 1.65847i −0.0363615 0.0209933i 0.481709 0.876331i \(-0.340016\pi\)
−0.518071 + 0.855338i \(0.673350\pi\)
\(80\) 25.1928 + 91.3112i 0.314910 + 1.14139i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) −1.55704 5.81096i −0.0189883 0.0708653i
\(83\) 4.48322 + 4.48322i 0.0540147 + 0.0540147i 0.733598 0.679583i \(-0.237839\pi\)
−0.679583 + 0.733598i \(0.737839\pi\)
\(84\) −10.3023 35.2291i −0.122646 0.419394i
\(85\) 86.6696 50.8980i 1.01964 0.598800i
\(86\) 65.8230 114.009i 0.765384 1.32568i
\(87\) −36.4034 9.75426i −0.418430 0.112118i
\(88\) −10.7536 + 40.1329i −0.122200 + 0.456056i
\(89\) 123.113 + 71.0793i 1.38329 + 0.798644i 0.992548 0.121856i \(-0.0388846\pi\)
0.390744 + 0.920500i \(0.372218\pi\)
\(90\) 20.1363 + 34.2882i 0.223736 + 0.380980i
\(91\) −1.06170 1.01455i −0.0116670 0.0111489i
\(92\) −34.6320 + 34.6320i −0.376435 + 0.376435i
\(93\) −23.9982 + 6.43029i −0.258045 + 0.0691429i
\(94\) −132.720 + 76.6262i −1.41192 + 0.815172i
\(95\) −61.2121 + 16.8885i −0.644337 + 0.177773i
\(96\) −34.5602 + 59.8600i −0.360002 + 0.623542i
\(97\) 113.195 113.195i 1.16696 1.16696i 0.184038 0.982919i \(-0.441083\pi\)
0.982919 0.184038i \(-0.0589168\pi\)
\(98\) −39.2799 123.813i −0.400816 1.26340i
\(99\) 48.3417i 0.488300i
\(100\) 38.8082 + 64.9764i 0.388082 + 0.649764i
\(101\) −9.53745 16.5193i −0.0944302 0.163558i 0.814940 0.579545i \(-0.196770\pi\)
−0.909371 + 0.415987i \(0.863436\pi\)
\(102\) 89.1535 + 23.8886i 0.874054 + 0.234202i
\(103\) 57.5936 15.4322i 0.559162 0.149827i 0.0318405 0.999493i \(-0.489863\pi\)
0.527321 + 0.849666i \(0.323196\pi\)
\(104\) 0.540920i 0.00520115i
\(105\) 31.8776 + 51.5637i 0.303596 + 0.491083i
\(106\) 278.071 2.62331
\(107\) −23.2260 86.6807i −0.217066 0.810100i −0.985429 0.170086i \(-0.945595\pi\)
0.768363 0.640014i \(-0.221071\pi\)
\(108\) −4.07136 + 15.1945i −0.0376978 + 0.140690i
\(109\) 68.1153 39.3264i 0.624911 0.360792i −0.153868 0.988091i \(-0.549173\pi\)
0.778778 + 0.627299i \(0.215840\pi\)
\(110\) 1.58138 + 213.577i 0.0143762 + 1.94161i
\(111\) −112.763 −1.01588
\(112\) −63.6817 + 116.321i −0.568586 + 1.03858i
\(113\) −158.518 158.518i −1.40281 1.40281i −0.791012 0.611801i \(-0.790445\pi\)
−0.611801 0.791012i \(-0.709555\pi\)
\(114\) −50.4992 29.1557i −0.442975 0.255752i
\(115\) 39.9258 70.3513i 0.347181 0.611750i
\(116\) −32.9359 57.0466i −0.283930 0.491781i
\(117\) 0.162890 + 0.607914i 0.00139222 + 0.00519585i
\(118\) 128.813 + 128.813i 1.09164 + 1.09164i
\(119\) 136.711 + 33.3244i 1.14883 + 0.280037i
\(120\) 5.61954 21.6112i 0.0468295 0.180093i
\(121\) −69.3291 + 120.082i −0.572968 + 0.992410i
\(122\) −88.9350 23.8301i −0.728975 0.195328i
\(123\) −1.01734 + 3.79676i −0.00827104 + 0.0308679i
\(124\) −37.6068 21.7123i −0.303280 0.175099i
\(125\) −90.3297 86.4034i −0.722638 0.691227i
\(126\) −13.1838 + 54.0855i −0.104633 + 0.429250i
\(127\) −84.0175 + 84.0175i −0.661555 + 0.661555i −0.955747 0.294191i \(-0.904950\pi\)
0.294191 + 0.955747i \(0.404950\pi\)
\(128\) 77.3421 20.7238i 0.604235 0.161904i
\(129\) −74.4909 + 43.0074i −0.577449 + 0.333390i
\(130\) 0.739546 + 2.68048i 0.00568882 + 0.0206191i
\(131\) −93.7670 + 162.409i −0.715779 + 1.23976i 0.246880 + 0.969046i \(0.420595\pi\)
−0.962658 + 0.270719i \(0.912739\pi\)
\(132\) −59.7459 + 59.7459i −0.452621 + 0.452621i
\(133\) −77.9778 42.6901i −0.586299 0.320978i
\(134\) 87.7272i 0.654681i
\(135\) −0.192363 25.9800i −0.00142491 0.192445i
\(136\) −25.9158 44.8874i −0.190557 0.330054i
\(137\) 62.4691 + 16.7385i 0.455979 + 0.122179i 0.479495 0.877544i \(-0.340820\pi\)
−0.0235169 + 0.999723i \(0.507486\pi\)
\(138\) 71.7515 19.2257i 0.519938 0.139317i
\(139\) 93.0694i 0.669564i −0.942296 0.334782i \(-0.891337\pi\)
0.942296 0.334782i \(-0.108663\pi\)
\(140\) −24.3303 + 103.126i −0.173788 + 0.736613i
\(141\) 100.132 0.710155
\(142\) 40.8556 + 152.475i 0.287715 + 1.07377i
\(143\) −0.874933 + 3.26529i −0.00611841 + 0.0228342i
\(144\) 49.2194 28.4169i 0.341802 0.197339i
\(145\) 77.4969 + 76.3578i 0.534462 + 0.526605i
\(146\) 91.8105 0.628839
\(147\) −18.2222 + 82.8912i −0.123961 + 0.563886i
\(148\) −139.365 139.365i −0.941653 0.941653i
\(149\) −60.2245 34.7706i −0.404191 0.233360i 0.284099 0.958795i \(-0.408305\pi\)
−0.688291 + 0.725435i \(0.741639\pi\)
\(150\) −1.69974 114.775i −0.0113316 0.765169i
\(151\) 7.35747 + 12.7435i 0.0487250 + 0.0843941i 0.889359 0.457209i \(-0.151151\pi\)
−0.840634 + 0.541603i \(0.817818\pi\)
\(152\) 8.47519 + 31.6298i 0.0557578 + 0.208091i
\(153\) −42.6427 42.6427i −0.278710 0.278710i
\(154\) −206.582 + 216.182i −1.34144 + 1.40378i
\(155\) 69.4123 + 18.0492i 0.447821 + 0.116447i
\(156\) −0.550009 + 0.952643i −0.00352570 + 0.00610669i
\(157\) 111.548 + 29.8891i 0.710494 + 0.190376i 0.595926 0.803039i \(-0.296785\pi\)
0.114568 + 0.993415i \(0.463452\pi\)
\(158\) −2.27578 + 8.49333i −0.0144037 + 0.0537553i
\(159\) −157.344 90.8428i −0.989587 0.571338i
\(160\) 172.058 101.043i 1.07536 0.631521i
\(161\) 108.695 31.7864i 0.675125 0.197431i
\(162\) 16.8703 16.8703i 0.104138 0.104138i
\(163\) 102.160 27.3737i 0.626750 0.167937i 0.0685554 0.997647i \(-0.478161\pi\)
0.558194 + 0.829710i \(0.311494\pi\)
\(164\) −5.94978 + 3.43510i −0.0362791 + 0.0209458i
\(165\) 68.8786 121.368i 0.417446 0.735562i
\(166\) 8.40370 14.5556i 0.0506247 0.0876846i
\(167\) −15.1287 + 15.1287i −0.0905911 + 0.0905911i −0.750950 0.660359i \(-0.770404\pi\)
0.660359 + 0.750950i \(0.270404\pi\)
\(168\) 26.7117 16.2415i 0.158998 0.0966756i
\(169\) 168.956i 0.999740i
\(170\) −189.793 187.003i −1.11643 1.10002i
\(171\) 19.0497 + 32.9951i 0.111402 + 0.192954i
\(172\) −145.217 38.9108i −0.844285 0.226225i
\(173\) 157.352 42.1625i 0.909552 0.243714i 0.226438 0.974026i \(-0.427292\pi\)
0.683114 + 0.730312i \(0.260625\pi\)
\(174\) 99.9065i 0.574175i
\(175\) −6.56311 174.877i −0.0375035 0.999296i
\(176\) 305.271 1.73450
\(177\) −30.8062 114.970i −0.174046 0.649549i
\(178\) 97.5360 364.009i 0.547955 2.04500i
\(179\) −117.423 + 67.7943i −0.655996 + 0.378739i −0.790750 0.612140i \(-0.790309\pi\)
0.134754 + 0.990879i \(0.456976\pi\)
\(180\) 31.8712 32.3467i 0.177062 0.179704i
\(181\) −232.181 −1.28277 −0.641383 0.767221i \(-0.721639\pi\)
−0.641383 + 0.767221i \(0.721639\pi\)
\(182\) −1.86940 + 3.41465i −0.0102714 + 0.0187618i
\(183\) 42.5382 + 42.5382i 0.232449 + 0.232449i
\(184\) −36.1258 20.8572i −0.196336 0.113354i
\(185\) 283.105 + 160.668i 1.53030 + 0.868474i
\(186\) 32.9306 + 57.0375i 0.177046 + 0.306653i
\(187\) −83.8370 312.884i −0.448326 1.67318i
\(188\) 123.754 + 123.754i 0.658265 + 0.658265i
\(189\) 25.1291 26.2969i 0.132958 0.139137i
\(190\) 85.2424 + 145.151i 0.448644 + 0.763955i
\(191\) −50.1041 + 86.7828i −0.262325 + 0.454360i −0.966859 0.255310i \(-0.917823\pi\)
0.704534 + 0.709670i \(0.251156\pi\)
\(192\) 50.2092 + 13.4535i 0.261506 + 0.0700704i
\(193\) −56.2382 + 209.884i −0.291390 + 1.08748i 0.652653 + 0.757657i \(0.273656\pi\)
−0.944042 + 0.329824i \(0.893011\pi\)
\(194\) −367.509 212.181i −1.89438 1.09372i
\(195\) 0.457217 1.75833i 0.00234470 0.00901708i
\(196\) −124.967 + 79.9248i −0.637586 + 0.407780i
\(197\) −173.120 + 173.120i −0.878782 + 0.878782i −0.993409 0.114626i \(-0.963433\pi\)
0.114626 + 0.993409i \(0.463433\pi\)
\(198\) 123.783 33.1676i 0.625168 0.167513i
\(199\) 9.01589 5.20533i 0.0453060 0.0261574i −0.477176 0.878808i \(-0.658340\pi\)
0.522482 + 0.852650i \(0.325006\pi\)
\(200\) −44.9007 + 46.2506i −0.224504 + 0.231253i
\(201\) 28.6596 49.6398i 0.142585 0.246964i
\(202\) −35.7555 + 35.7555i −0.177007 + 0.177007i
\(203\) 3.45782 + 152.273i 0.0170336 + 0.750115i
\(204\) 105.405i 0.516690i
\(205\) 7.96387 8.08268i 0.0388481 0.0394277i
\(206\) −79.0308 136.885i −0.383645 0.664492i
\(207\) −46.8809 12.5617i −0.226478 0.0606845i
\(208\) 3.83889 1.02863i 0.0184562 0.00494533i
\(209\) 204.644i 0.979157i
\(210\) 110.162 117.004i 0.524581 0.557160i
\(211\) −215.645 −1.02202 −0.511008 0.859576i \(-0.670728\pi\)
−0.511008 + 0.859576i \(0.670728\pi\)
\(212\) −82.1897 306.736i −0.387687 1.44687i
\(213\) 26.6942 99.6240i 0.125325 0.467718i
\(214\) −206.018 + 118.944i −0.962700 + 0.555815i
\(215\) 248.296 1.83845i 1.15487 0.00855091i
\(216\) −13.3979 −0.0620274
\(217\) 52.1655 + 85.7944i 0.240394 + 0.395366i
\(218\) −147.433 147.433i −0.676298 0.676298i
\(219\) −51.9503 29.9935i −0.237216 0.136957i
\(220\) 235.127 64.8717i 1.06876 0.294871i
\(221\) −2.10856 3.65213i −0.00954099 0.0165255i
\(222\) 77.3675 + 288.739i 0.348502 + 1.30063i
\(223\) −134.520 134.520i −0.603230 0.603230i 0.337938 0.941168i \(-0.390270\pi\)
−0.941168 + 0.337938i \(0.890270\pi\)
\(224\) 271.400 + 66.1560i 1.21161 + 0.295339i
\(225\) −36.5341 + 65.5001i −0.162374 + 0.291111i
\(226\) −297.138 + 514.659i −1.31477 + 2.27725i
\(227\) −47.3332 12.6829i −0.208516 0.0558718i 0.153049 0.988219i \(-0.451091\pi\)
−0.361565 + 0.932347i \(0.617758\pi\)
\(228\) −17.2352 + 64.3226i −0.0755929 + 0.282117i
\(229\) −23.3799 13.4984i −0.102095 0.0589448i 0.448083 0.893992i \(-0.352107\pi\)
−0.550178 + 0.835047i \(0.685440\pi\)
\(230\) −207.534 53.9648i −0.902321 0.234630i
\(231\) 187.517 54.8369i 0.811763 0.237389i
\(232\) 39.6715 39.6715i 0.170998 0.170998i
\(233\) −80.4192 + 21.5483i −0.345147 + 0.0924818i −0.427228 0.904144i \(-0.640510\pi\)
0.0820815 + 0.996626i \(0.473843\pi\)
\(234\) 1.44486 0.834188i 0.00617460 0.00356491i
\(235\) −251.393 142.671i −1.06976 0.607109i
\(236\) 104.019 180.166i 0.440758 0.763415i
\(237\) 4.06242 4.06242i 0.0171410 0.0171410i
\(238\) −8.46834 372.924i −0.0355813 1.56691i
\(239\) 47.8746i 0.200312i 0.994972 + 0.100156i \(0.0319342\pi\)
−0.994972 + 0.100156i \(0.968066\pi\)
\(240\) −164.060 + 1.21474i −0.683584 + 0.00506143i
\(241\) 119.934 + 207.732i 0.497652 + 0.861958i 0.999996 0.00270956i \(-0.000862479\pi\)
−0.502345 + 0.864667i \(0.667529\pi\)
\(242\) 355.046 + 95.1344i 1.46713 + 0.393117i
\(243\) −15.0573 + 4.03459i −0.0619642 + 0.0166032i
\(244\) 105.146i 0.430928i
\(245\) 163.855 182.145i 0.668794 0.743447i
\(246\) 10.4199 0.0423574
\(247\) 0.689559 + 2.57347i 0.00279174 + 0.0104189i
\(248\) 9.57250 35.7251i 0.0385988 0.144053i
\(249\) −9.51035 + 5.49080i −0.0381942 + 0.0220514i
\(250\) −159.267 + 290.579i −0.637070 + 1.16232i
\(251\) −173.528 −0.691346 −0.345673 0.938355i \(-0.612349\pi\)
−0.345673 + 0.938355i \(0.612349\pi\)
\(252\) 63.5578 1.44327i 0.252214 0.00572726i
\(253\) −184.339 184.339i −0.728612 0.728612i
\(254\) 272.779 + 157.489i 1.07393 + 0.620036i
\(255\) 46.3011 + 167.818i 0.181573 + 0.658110i
\(256\) −166.152 287.783i −0.649030 1.12415i
\(257\) −82.6939 308.618i −0.321766 1.20085i −0.917523 0.397683i \(-0.869814\pi\)
0.595757 0.803165i \(-0.296852\pi\)
\(258\) 161.233 + 161.233i 0.624933 + 0.624933i
\(259\) 127.914 + 437.406i 0.493875 + 1.68883i
\(260\) 2.73821 1.60806i 0.0105316 0.00618483i
\(261\) 32.6384 56.5314i 0.125051 0.216595i
\(262\) 480.197 + 128.668i 1.83281 + 0.491101i
\(263\) −0.393152 + 1.46726i −0.00149487 + 0.00557894i −0.966669 0.256028i \(-0.917586\pi\)
0.965174 + 0.261607i \(0.0842526\pi\)
\(264\) −62.3229 35.9822i −0.236072 0.136296i
\(265\) 265.596 + 452.260i 1.00225 + 1.70664i
\(266\) −55.8106 + 228.959i −0.209814 + 0.860748i
\(267\) −174.108 + 174.108i −0.652090 + 0.652090i
\(268\) 96.7708 25.9297i 0.361085 0.0967524i
\(269\) 244.004 140.876i 0.907077 0.523701i 0.0275875 0.999619i \(-0.491218\pi\)
0.879490 + 0.475918i \(0.157884\pi\)
\(270\) −66.3922 + 18.3177i −0.245897 + 0.0678432i
\(271\) 246.806 427.480i 0.910723 1.57742i 0.0976771 0.995218i \(-0.468859\pi\)
0.813046 0.582200i \(-0.197808\pi\)
\(272\) −269.282 + 269.282i −0.990009 + 0.990009i
\(273\) 2.17332 1.32144i 0.00796087 0.00484045i
\(274\) 171.442i 0.625700i
\(275\) −345.856 + 206.568i −1.25766 + 0.751156i
\(276\) −42.4153 73.4655i −0.153679 0.266179i
\(277\) −29.3313 7.85929i −0.105889 0.0283729i 0.205485 0.978660i \(-0.434123\pi\)
−0.311375 + 0.950287i \(0.600789\pi\)
\(278\) −238.312 + 63.8556i −0.857238 + 0.229696i
\(279\) 43.0323i 0.154238i
\(280\) −90.2042 + 2.71670i −0.322158 + 0.00970252i
\(281\) 292.290 1.04018 0.520089 0.854112i \(-0.325899\pi\)
0.520089 + 0.854112i \(0.325899\pi\)
\(282\) −68.7012 256.396i −0.243621 0.909207i
\(283\) −132.786 + 495.563i −0.469207 + 1.75111i 0.173343 + 0.984862i \(0.444543\pi\)
−0.642550 + 0.766244i \(0.722124\pi\)
\(284\) 156.118 90.1345i 0.549710 0.317375i
\(285\) −0.814323 109.981i −0.00285728 0.385897i
\(286\) 8.96136 0.0313334
\(287\) 15.8816 0.360639i 0.0553366 0.00125658i
\(288\) −84.6549 84.6549i −0.293941 0.293941i
\(289\) 99.6699 + 57.5444i 0.344878 + 0.199116i
\(290\) 142.349 250.827i 0.490860 0.864921i
\(291\) 138.635 + 240.122i 0.476408 + 0.825163i
\(292\) −27.1365 101.275i −0.0929334 0.346832i
\(293\) 395.050 + 395.050i 1.34829 + 1.34829i 0.887515 + 0.460780i \(0.152430\pi\)
0.460780 + 0.887515i \(0.347570\pi\)
\(294\) 224.752 10.2126i 0.764464 0.0347368i
\(295\) −86.4699 + 332.540i −0.293118 + 1.12725i
\(296\) 83.9327 145.376i 0.283557 0.491134i
\(297\) −80.8773 21.6710i −0.272314 0.0729664i
\(298\) −47.7128 + 178.066i −0.160110 + 0.597538i
\(299\) −2.93927 1.69699i −0.00983032 0.00567554i
\(300\) −126.105 + 35.7993i −0.420349 + 0.119331i
\(301\) 251.324 + 240.164i 0.834965 + 0.797886i
\(302\) 27.5828 27.5828i 0.0913339 0.0913339i
\(303\) 31.9129 8.55104i 0.105323 0.0282213i
\(304\) 208.359 120.296i 0.685392 0.395711i
\(305\) −46.1876 167.407i −0.151435 0.548874i
\(306\) −79.9328 + 138.448i −0.261218 + 0.452444i
\(307\) 359.887 359.887i 1.17227 1.17227i 0.190605 0.981667i \(-0.438955\pi\)
0.981667 0.190605i \(-0.0610448\pi\)
\(308\) 299.527 + 163.981i 0.972491 + 0.532404i
\(309\) 103.274i 0.334220i
\(310\) −1.40769 190.120i −0.00454095 0.613290i
\(311\) −201.048 348.225i −0.646457 1.11970i −0.983963 0.178372i \(-0.942917\pi\)
0.337507 0.941323i \(-0.390417\pi\)
\(312\) −0.904976 0.242488i −0.00290057 0.000777204i
\(313\) −430.931 + 115.468i −1.37678 + 0.368906i −0.869949 0.493142i \(-0.835848\pi\)
−0.506827 + 0.862048i \(0.669182\pi\)
\(314\) 306.134i 0.974950i
\(315\) −100.558 + 30.2169i −0.319232 + 0.0959265i
\(316\) 10.0415 0.0317770
\(317\) 54.1975 + 202.268i 0.170970 + 0.638069i 0.997203 + 0.0747404i \(0.0238128\pi\)
−0.826233 + 0.563329i \(0.809521\pi\)
\(318\) −124.656 + 465.221i −0.391999 + 1.46296i
\(319\) 303.647 175.311i 0.951872 0.549564i
\(320\) −106.887 105.316i −0.334023 0.329113i
\(321\) 155.432 0.484211
\(322\) −155.968 256.514i −0.484374 0.796628i
\(323\) −180.518 180.518i −0.558880 0.558880i
\(324\) −23.5958 13.6230i −0.0728265 0.0420464i
\(325\) −3.65321 + 3.76304i −0.0112407 + 0.0115786i
\(326\) −140.186 242.809i −0.430017 0.744812i
\(327\) 35.2591 + 131.589i 0.107826 + 0.402412i
\(328\) −4.13760 4.13760i −0.0126146 0.0126146i
\(329\) −113.585 388.411i −0.345244 1.18058i
\(330\) −358.030 93.0983i −1.08494 0.282116i
\(331\) 150.975 261.497i 0.456119 0.790020i −0.542633 0.839970i \(-0.682573\pi\)
0.998752 + 0.0499493i \(0.0159060\pi\)
\(332\) −18.5400 4.96779i −0.0558435 0.0149632i
\(333\) 50.5503 188.656i 0.151803 0.566535i
\(334\) 49.1183 + 28.3584i 0.147061 + 0.0849055i
\(335\) −142.681 + 83.7917i −0.425914 + 0.250125i
\(336\) −166.061 158.687i −0.494230 0.472282i
\(337\) −232.153 + 232.153i −0.688883 + 0.688883i −0.961985 0.273102i \(-0.911950\pi\)
0.273102 + 0.961985i \(0.411950\pi\)
\(338\) −432.626 + 115.922i −1.27996 + 0.342964i
\(339\) 336.267 194.144i 0.991938 0.572696i
\(340\) −150.184 + 264.631i −0.441716 + 0.778328i
\(341\) 115.570 200.173i 0.338915 0.587017i
\(342\) 71.4166 71.4166i 0.208821 0.208821i
\(343\) 342.205 23.3444i 0.997681 0.0680596i
\(344\) 128.046i 0.372228i
\(345\) 99.8018 + 98.3347i 0.289281 + 0.285028i
\(346\) −215.921 373.986i −0.624050 1.08089i
\(347\) −184.356 49.3981i −0.531286 0.142358i −0.0168038 0.999859i \(-0.505349\pi\)
−0.514482 + 0.857501i \(0.672016\pi\)
\(348\) 110.206 29.5295i 0.316683 0.0848549i
\(349\) 10.4041i 0.0298112i 0.999889 + 0.0149056i \(0.00474477\pi\)
−0.999889 + 0.0149056i \(0.995255\pi\)
\(350\) −443.284 + 136.790i −1.26653 + 0.390828i
\(351\) −1.09008 −0.00310565
\(352\) −166.434 621.141i −0.472825 1.76461i
\(353\) 84.2818 314.544i 0.238759 0.891059i −0.737660 0.675172i \(-0.764069\pi\)
0.976418 0.215886i \(-0.0692641\pi\)
\(354\) −273.255 + 157.764i −0.771906 + 0.445660i
\(355\) −208.966 + 212.083i −0.588636 + 0.597418i
\(356\) −430.363 −1.20888
\(357\) −117.039 + 213.783i −0.327839 + 0.598831i
\(358\) 254.158 + 254.158i 0.709939 + 0.709939i
\(359\) 196.189 + 113.270i 0.546487 + 0.315514i 0.747704 0.664032i \(-0.231156\pi\)
−0.201217 + 0.979547i \(0.564490\pi\)
\(360\) 33.6371 + 19.0897i 0.0934363 + 0.0530270i
\(361\) −99.8573 172.958i −0.276613 0.479108i
\(362\) 159.301 + 594.518i 0.440057 + 1.64232i
\(363\) −169.821 169.821i −0.467827 0.467827i
\(364\) 4.31920 + 1.05284i 0.0118659 + 0.00289242i
\(365\) 87.6918 + 149.322i 0.240252 + 0.409103i
\(366\) 79.7369 138.108i 0.217860 0.377345i
\(367\) 30.4304 + 8.15380i 0.0829166 + 0.0222174i 0.300039 0.953927i \(-0.403000\pi\)
−0.217122 + 0.976144i \(0.569667\pi\)
\(368\) −79.3253 + 296.046i −0.215558 + 0.804473i
\(369\) −5.89604 3.40408i −0.0159784 0.00922515i
\(370\) 217.163 835.149i 0.586927 2.25716i
\(371\) −173.893 + 713.385i −0.468715 + 1.92287i
\(372\) 53.1840 53.1840i 0.142968 0.142968i
\(373\) −137.880 + 36.9449i −0.369652 + 0.0990479i −0.438863 0.898554i \(-0.644619\pi\)
0.0692108 + 0.997602i \(0.477952\pi\)
\(374\) −743.645 + 429.344i −1.98836 + 1.14798i
\(375\) 185.049 112.391i 0.493465 0.299709i
\(376\) −74.5310 + 129.092i −0.198221 + 0.343329i
\(377\) 3.22775 3.22775i 0.00856167 0.00856167i
\(378\) −84.5767 46.3028i −0.223748 0.122494i
\(379\) 678.102i 1.78919i −0.446882 0.894593i \(-0.647466\pi\)
0.446882 0.894593i \(-0.352534\pi\)
\(380\) 134.919 136.932i 0.355051 0.360348i
\(381\) −102.900 178.228i −0.270079 0.467790i
\(382\) 256.592 + 68.7535i 0.671706 + 0.179983i
\(383\) 313.516 84.0064i 0.818580 0.219338i 0.174854 0.984594i \(-0.444055\pi\)
0.643725 + 0.765257i \(0.277388\pi\)
\(384\) 138.686i 0.361162i
\(385\) −548.917 129.505i −1.42576 0.336376i
\(386\) 576.011 1.49226
\(387\) −38.5593 143.905i −0.0996365 0.371849i
\(388\) −125.429 + 468.109i −0.323272 + 1.20647i
\(389\) −442.039 + 255.211i −1.13635 + 0.656070i −0.945523 0.325555i \(-0.894449\pi\)
−0.190823 + 0.981624i \(0.561116\pi\)
\(390\) −4.81606 + 0.0356593i −0.0123489 + 9.14340e-5i
\(391\) 325.214 0.831749
\(392\) −93.3013 85.1907i −0.238013 0.217323i
\(393\) −229.681 229.681i −0.584431 0.584431i
\(394\) 562.068 + 324.510i 1.42657 + 0.823629i
\(395\) −15.9874 + 4.41094i −0.0404745 + 0.0111669i
\(396\) −73.1735 126.740i −0.184782 0.320051i
\(397\) 4.62529 + 17.2618i 0.0116506 + 0.0434806i 0.971506 0.237013i \(-0.0761685\pi\)
−0.959856 + 0.280494i \(0.909502\pi\)
\(398\) −19.5146 19.5146i −0.0490315 0.0490315i
\(399\) 106.378 111.322i 0.266613 0.279002i
\(400\) 413.624 + 230.708i 1.03406 + 0.576769i
\(401\) −66.9804 + 116.014i −0.167034 + 0.289311i −0.937376 0.348320i \(-0.886752\pi\)
0.770342 + 0.637631i \(0.220085\pi\)
\(402\) −146.771 39.3270i −0.365101 0.0978285i
\(403\) 0.778838 2.90666i 0.00193260 0.00721256i
\(404\) 50.0097 + 28.8731i 0.123786 + 0.0714681i
\(405\) 43.5517 + 11.3247i 0.107535 + 0.0279622i
\(406\) 387.536 113.330i 0.954523 0.279137i
\(407\) 741.809 741.809i 1.82263 1.82263i
\(408\) 86.7158 23.2354i 0.212539 0.0569496i
\(409\) −426.695 + 246.353i −1.04326 + 0.602329i −0.920756 0.390138i \(-0.872427\pi\)
−0.122509 + 0.992467i \(0.539094\pi\)
\(410\) −26.1605 14.8466i −0.0638060 0.0362112i
\(411\) −56.0082 + 97.0091i −0.136273 + 0.236032i
\(412\) −127.637 + 127.637i −0.309799 + 0.309799i
\(413\) −411.023 + 249.914i −0.995213 + 0.605119i
\(414\) 128.661i 0.310776i
\(415\) 31.7003 0.234717i 0.0763862 0.000565582i
\(416\) −4.18594 7.25026i −0.0100624 0.0174285i
\(417\) 155.708 + 41.7219i 0.373401 + 0.100052i
\(418\) 524.008 140.408i 1.25361 0.335903i
\(419\) 274.467i 0.655053i −0.944842 0.327526i \(-0.893785\pi\)
0.944842 0.327526i \(-0.106215\pi\)
\(420\) −161.626 86.9353i −0.384823 0.206989i
\(421\) −175.509 −0.416887 −0.208444 0.978034i \(-0.566840\pi\)
−0.208444 + 0.978034i \(0.566840\pi\)
\(422\) 147.956 + 552.179i 0.350606 + 1.30848i
\(423\) −44.8879 + 167.524i −0.106118 + 0.396038i
\(424\) 234.232 135.234i 0.552433 0.318948i
\(425\) 122.867 487.298i 0.289099 1.14658i
\(426\) −273.411 −0.641809
\(427\) 116.752 213.259i 0.273423 0.499435i
\(428\) 192.099 + 192.099i 0.448830 + 0.448830i
\(429\) −5.07072 2.92758i −0.0118199 0.00682420i
\(430\) −175.065 634.522i −0.407129 1.47563i
\(431\) 183.897 + 318.520i 0.426676 + 0.739025i 0.996575 0.0826899i \(-0.0263511\pi\)
−0.569899 + 0.821715i \(0.693018\pi\)
\(432\) 25.4779 + 95.0846i 0.0589765 + 0.220103i
\(433\) −22.6024 22.6024i −0.0521995 0.0521995i 0.680525 0.732725i \(-0.261752\pi\)
−0.732725 + 0.680525i \(0.761752\pi\)
\(434\) 183.893 192.438i 0.423716 0.443407i
\(435\) −162.490 + 95.4246i −0.373540 + 0.219367i
\(436\) −119.054 + 206.208i −0.273061 + 0.472955i
\(437\) −198.460 53.1771i −0.454141 0.121687i
\(438\) −41.1575 + 153.602i −0.0939670 + 0.350689i
\(439\) 348.602 + 201.265i 0.794082 + 0.458464i 0.841398 0.540416i \(-0.181733\pi\)
−0.0473155 + 0.998880i \(0.515067\pi\)
\(440\) 105.201 + 179.137i 0.239093 + 0.407129i
\(441\) −130.511 67.6455i −0.295943 0.153391i
\(442\) −7.90490 + 7.90490i −0.0178844 + 0.0178844i
\(443\) 335.058 89.7786i 0.756340 0.202661i 0.140011 0.990150i \(-0.455286\pi\)
0.616328 + 0.787489i \(0.288619\pi\)
\(444\) 295.637 170.686i 0.665849 0.384428i
\(445\) 685.192 189.045i 1.53976 0.424820i
\(446\) −252.155 + 436.746i −0.565371 + 0.979251i
\(447\) 85.1704 85.1704i 0.190538 0.190538i
\(448\) −4.76918 210.022i −0.0106455 0.468800i
\(449\) 144.105i 0.320946i 0.987040 + 0.160473i \(0.0513020\pi\)
−0.987040 + 0.160473i \(0.948698\pi\)
\(450\) 192.785 + 48.6087i 0.428411 + 0.108019i
\(451\) −18.2843 31.6694i −0.0405418 0.0702204i
\(452\) 655.539 + 175.651i 1.45031 + 0.388609i
\(453\) −24.6186 + 6.59653i −0.0543456 + 0.0145619i
\(454\) 129.903i 0.286129i
\(455\) −7.33920 + 0.221037i −0.0161301 + 0.000485795i
\(456\) −56.7171 −0.124380
\(457\) 195.866 + 730.982i 0.428591 + 1.59952i 0.755955 + 0.654624i \(0.227173\pi\)
−0.327364 + 0.944898i \(0.606160\pi\)
\(458\) −18.5226 + 69.1275i −0.0404425 + 0.150933i
\(459\) 90.4588 52.2264i 0.197078 0.113783i
\(460\) 1.81314 + 244.878i 0.00394161 + 0.532344i
\(461\) −371.997 −0.806935 −0.403468 0.914994i \(-0.632195\pi\)
−0.403468 + 0.914994i \(0.632195\pi\)
\(462\) −269.071 442.530i −0.582405 0.957857i
\(463\) 316.624 + 316.624i 0.683853 + 0.683853i 0.960866 0.277013i \(-0.0893446\pi\)
−0.277013 + 0.960866i \(0.589345\pi\)
\(464\) −356.987 206.107i −0.769370 0.444196i
\(465\) −61.3136 + 108.038i −0.131857 + 0.232339i
\(466\) 110.352 + 191.136i 0.236808 + 0.410163i
\(467\) 217.569 + 811.979i 0.465887 + 1.73871i 0.653933 + 0.756552i \(0.273118\pi\)
−0.188046 + 0.982160i \(0.560216\pi\)
\(468\) −1.34724 1.34724i −0.00287872 0.00287872i
\(469\) −225.063 54.8608i −0.479878 0.116974i
\(470\) −192.838 + 741.600i −0.410293 + 1.57787i
\(471\) −100.011 + 173.224i −0.212337 + 0.367779i
\(472\) 171.151 + 45.8598i 0.362608 + 0.0971606i
\(473\) 207.114 772.960i 0.437873 1.63416i
\(474\) −13.1894 7.61491i −0.0278258 0.0160652i
\(475\) −154.659 + 277.280i −0.325598 + 0.583747i
\(476\) −408.864 + 119.567i −0.858959 + 0.251191i
\(477\) 222.518 222.518i 0.466496 0.466496i
\(478\) 122.587 32.8471i 0.256458 0.0687177i
\(479\) −206.858 + 119.430i −0.431854 + 0.249331i −0.700136 0.714009i \(-0.746877\pi\)
0.268282 + 0.963340i \(0.413544\pi\)
\(480\) 91.9176 + 333.155i 0.191495 + 0.694072i
\(481\) 6.82894 11.8281i 0.0141974 0.0245906i
\(482\) 449.628 449.628i 0.932837 0.932837i
\(483\) 4.45303 + 196.100i 0.00921953 + 0.406004i
\(484\) 419.766i 0.867285i
\(485\) −5.92625 800.386i −0.0122191 1.65028i
\(486\) 20.6618 + 35.7873i 0.0425140 + 0.0736365i
\(487\) −220.071 58.9679i −0.451891 0.121084i 0.0256929 0.999670i \(-0.491821\pi\)
−0.477584 + 0.878586i \(0.658487\pi\)
\(488\) −86.5033 + 23.1785i −0.177261 + 0.0474969i
\(489\) 183.189i 0.374619i
\(490\) −578.819 294.593i −1.18126 0.601210i
\(491\) −162.810 −0.331589 −0.165795 0.986160i \(-0.553019\pi\)
−0.165795 + 0.986160i \(0.553019\pi\)
\(492\) −3.07983 11.4941i −0.00625982 0.0233620i
\(493\) −113.207 + 422.493i −0.229628 + 0.856984i
\(494\) 6.11647 3.53135i 0.0123815 0.00714848i
\(495\) 172.175 + 169.644i 0.347828 + 0.342715i
\(496\) −271.743 −0.547869
\(497\) −416.721 + 9.46289i −0.838473 + 0.0190400i
\(498\) 20.5848 + 20.5848i 0.0413349 + 0.0413349i
\(499\) −828.405 478.280i −1.66013 0.958477i −0.972650 0.232275i \(-0.925383\pi\)
−0.687481 0.726202i \(-0.741284\pi\)
\(500\) 367.609 + 89.7991i 0.735217 + 0.179598i
\(501\) −18.5288 32.0928i −0.0369836 0.0640576i
\(502\) 119.059 + 444.333i 0.237169 + 0.885126i
\(503\) −210.562 210.562i −0.418612 0.418612i 0.466113 0.884725i \(-0.345654\pi\)
−0.884725 + 0.466113i \(0.845654\pi\)
\(504\) 15.1980 + 51.9704i 0.0301548 + 0.103116i
\(505\) −92.3049 24.0020i −0.182782 0.0475286i
\(506\) −345.539 + 598.492i −0.682884 + 1.18279i
\(507\) 282.669 + 75.7409i 0.557532 + 0.149390i
\(508\) 93.0985 347.448i 0.183265 0.683953i
\(509\) 27.4957 + 15.8746i 0.0540190 + 0.0311879i 0.526766 0.850010i \(-0.323404\pi\)
−0.472747 + 0.881198i \(0.656738\pi\)
\(510\) 397.945 233.699i 0.780284 0.458233i
\(511\) −57.4143 + 235.538i −0.112357 + 0.460936i
\(512\) −396.422 + 396.422i −0.774262 + 0.774262i
\(513\) −63.7416 + 17.0795i −0.124253 + 0.0332934i
\(514\) −733.506 + 423.490i −1.42705 + 0.823910i
\(515\) 147.148 259.282i 0.285724 0.503460i
\(516\) 130.198 225.510i 0.252322 0.437034i
\(517\) −658.715 + 658.715i −1.27411 + 1.27411i
\(518\) 1032.25 627.641i 1.99277 1.21166i
\(519\) 282.157i 0.543654i
\(520\) 1.92655 + 1.89823i 0.00370490 + 0.00365044i
\(521\) −150.818 261.225i −0.289478 0.501391i 0.684207 0.729288i \(-0.260148\pi\)
−0.973685 + 0.227897i \(0.926815\pi\)
\(522\) −167.147 44.7869i −0.320205 0.0857986i
\(523\) −909.011 + 243.569i −1.73807 + 0.465715i −0.982017 0.188794i \(-0.939542\pi\)
−0.756055 + 0.654509i \(0.772876\pi\)
\(524\) 567.730i 1.08345i
\(525\) 295.517 + 67.4149i 0.562889 + 0.128409i
\(526\) 4.02679 0.00765550
\(527\) 74.6291 + 278.520i 0.141611 + 0.528500i
\(528\) −136.849 + 510.729i −0.259184 + 0.967289i
\(529\) −231.458 + 133.633i −0.437539 + 0.252614i
\(530\) 975.822 990.381i 1.84117 1.86864i
\(531\) 206.159 0.388246
\(532\) 269.058 6.10975i 0.505747 0.0114845i
\(533\) −0.336644 0.336644i −0.000631602 0.000631602i
\(534\) 565.275 + 326.362i 1.05857 + 0.611164i
\(535\) −390.229 221.463i −0.729401 0.413950i
\(536\) 42.6643 + 73.8967i 0.0795975 + 0.137867i
\(537\) −60.7827 226.844i −0.113189 0.422429i
\(538\) −528.137 528.137i −0.981667 0.981667i
\(539\) −425.423 665.173i −0.789283 1.23409i
\(540\) 39.8296 + 67.8222i 0.0737585 + 0.125597i
\(541\) 224.676 389.150i 0.415297 0.719316i −0.580162 0.814501i \(-0.697011\pi\)
0.995460 + 0.0951848i \(0.0303442\pi\)
\(542\) −1263.94 338.670i −2.33198 0.624853i
\(543\) 104.084 388.446i 0.191683 0.715369i
\(544\) 694.728 + 401.101i 1.27707 + 0.737319i
\(545\) 98.9688 380.607i 0.181594 0.698361i
\(546\) −4.87479 4.65832i −0.00892819 0.00853172i
\(547\) −510.619 + 510.619i −0.933489 + 0.933489i −0.997922 0.0644326i \(-0.979476\pi\)
0.0644326 + 0.997922i \(0.479476\pi\)
\(548\) −189.115 + 50.6733i −0.345101 + 0.0924695i
\(549\) −90.2371 + 52.0984i −0.164366 + 0.0948969i
\(550\) 766.229 + 743.865i 1.39314 + 1.35248i
\(551\) 138.167 239.313i 0.250757 0.434324i
\(552\) 51.0895 51.0895i 0.0925535 0.0925535i
\(553\) −20.3663 11.1498i −0.0368288 0.0201625i
\(554\) 80.4976i 0.145303i
\(555\) −395.715 + 401.618i −0.712999 + 0.723636i
\(556\) 140.877 + 244.005i 0.253375 + 0.438858i
\(557\) −246.800 66.1299i −0.443088 0.118725i 0.0303753 0.999539i \(-0.490330\pi\)
−0.473463 + 0.880813i \(0.656996\pi\)
\(558\) −110.188 + 29.5248i −0.197469 + 0.0529118i
\(559\) 10.4181i 0.0186371i
\(560\) 190.815 + 635.010i 0.340741 + 1.13395i
\(561\) 561.048 1.00009
\(562\) −200.542 748.434i −0.356837 1.33173i
\(563\) 13.8459 51.6736i 0.0245931 0.0917827i −0.952539 0.304418i \(-0.901538\pi\)
0.977132 + 0.212635i \(0.0682047\pi\)
\(564\) −262.521 + 151.567i −0.465463 + 0.268735i
\(565\) −1120.86 + 8.29912i −1.98382 + 0.0146887i
\(566\) 1360.04 2.40289
\(567\) 32.7305 + 53.8304i 0.0577257 + 0.0949390i
\(568\) 108.568 + 108.568i 0.191140 + 0.191140i
\(569\) 444.007 + 256.348i 0.780329 + 0.450523i 0.836547 0.547895i \(-0.184571\pi\)
−0.0562176 + 0.998419i \(0.517904\pi\)
\(570\) −281.056 + 77.5436i −0.493081 + 0.136041i
\(571\) 50.9402 + 88.2310i 0.0892122 + 0.154520i 0.907178 0.420746i \(-0.138232\pi\)
−0.817966 + 0.575266i \(0.804898\pi\)
\(572\) −2.64872 9.88516i −0.00463063 0.0172818i
\(573\) −122.729 122.729i −0.214188 0.214188i
\(574\) −11.8199 40.4188i −0.0205922 0.0704160i
\(575\) −110.454 389.081i −0.192094 0.676663i
\(576\) −45.0164 + 77.9706i −0.0781534 + 0.135366i
\(577\) 297.934 + 79.8311i 0.516350 + 0.138355i 0.507578 0.861606i \(-0.330541\pi\)
0.00877199 + 0.999962i \(0.497208\pi\)
\(578\) 78.9633 294.695i 0.136615 0.509853i
\(579\) −325.932 188.177i −0.562922 0.325003i
\(580\) −318.759 82.8865i −0.549584 0.142908i
\(581\) 32.0869 + 30.6620i 0.0552270 + 0.0527745i
\(582\) 519.736 519.736i 0.893017 0.893017i
\(583\) 1632.69 437.479i 2.80050 0.750393i
\(584\) 77.3362 44.6501i 0.132425 0.0764556i
\(585\) 2.73678 + 1.55318i 0.00467826 + 0.00265500i
\(586\) 740.513 1282.61i 1.26367 2.18875i
\(587\) 686.341 686.341i 1.16923 1.16923i 0.186845 0.982389i \(-0.440174\pi\)
0.982389 0.186845i \(-0.0598263\pi\)
\(588\) −77.6958 244.903i −0.132136 0.416502i
\(589\) 182.168i 0.309283i
\(590\) 910.824 6.74396i 1.54377 0.0114304i
\(591\) −212.028 367.243i −0.358761 0.621393i
\(592\) −1191.34 319.218i −2.01239 0.539219i
\(593\) −869.051 + 232.862i −1.46552 + 0.392684i −0.901391 0.433005i \(-0.857453\pi\)
−0.564125 + 0.825689i \(0.690787\pi\)
\(594\) 221.962i 0.373673i
\(595\) 598.442 369.967i 1.00579 0.621794i
\(596\) 210.525 0.353230
\(597\) 4.66697 + 17.4174i 0.00781737 + 0.0291748i
\(598\) −2.32863 + 8.69056i −0.00389403 + 0.0145327i
\(599\) −598.597 + 345.600i −0.999328 + 0.576962i −0.908049 0.418863i \(-0.862429\pi\)
−0.0912783 + 0.995825i \(0.529095\pi\)
\(600\) −57.2503 95.8539i −0.0954172 0.159757i
\(601\) 498.794 0.829940 0.414970 0.909835i \(-0.363792\pi\)
0.414970 + 0.909835i \(0.363792\pi\)
\(602\) 442.525 808.316i 0.735091 1.34272i
\(603\) 70.2013 + 70.2013i 0.116420 + 0.116420i
\(604\) −38.5790 22.2736i −0.0638725 0.0368768i
\(605\) 184.390 + 668.321i 0.304777 + 1.10466i
\(606\) −43.7914 75.8489i −0.0722630 0.125163i
\(607\) −146.716 547.550i −0.241706 0.902060i −0.975010 0.222159i \(-0.928690\pi\)
0.733304 0.679901i \(-0.237977\pi\)
\(608\) −358.367 358.367i −0.589420 0.589420i
\(609\) −256.308 62.4772i −0.420867 0.102590i
\(610\) −396.969 + 233.126i −0.650769 + 0.382174i
\(611\) −6.06400 + 10.5032i −0.00992471 + 0.0171901i
\(612\) 176.346 + 47.2517i 0.288147 + 0.0772087i
\(613\) 169.020 630.791i 0.275726 1.02902i −0.679627 0.733558i \(-0.737858\pi\)
0.955353 0.295466i \(-0.0954749\pi\)
\(614\) −1168.44 674.601i −1.90300 1.09870i
\(615\) 9.95248 + 16.9472i 0.0161829 + 0.0275564i
\(616\) −68.8779 + 282.567i −0.111815 + 0.458712i
\(617\) −171.584 + 171.584i −0.278095 + 0.278095i −0.832348 0.554253i \(-0.813004\pi\)
0.554253 + 0.832348i \(0.313004\pi\)
\(618\) 264.442 70.8571i 0.427900 0.114655i
\(619\) 51.9976 30.0209i 0.0840027 0.0484990i −0.457410 0.889256i \(-0.651223\pi\)
0.541413 + 0.840757i \(0.317890\pi\)
\(620\) −209.303 + 57.7468i −0.337585 + 0.0931399i
\(621\) 42.0323 72.8020i 0.0676848 0.117234i
\(622\) −753.720 + 753.720i −1.21177 + 1.21177i
\(623\) 872.864 + 477.862i 1.40107 + 0.767034i
\(624\) 6.88371i 0.0110316i
\(625\) −624.726 + 18.5076i −0.999561 + 0.0296121i
\(626\) 591.329 + 1024.21i 0.944615 + 1.63612i
\(627\) −342.376 91.7393i −0.546054 0.146315i
\(628\) −337.693 + 90.4845i −0.537727 + 0.144084i
\(629\) 1308.71i 2.08062i
\(630\) 146.367 + 236.756i 0.232328 + 0.375803i
\(631\) −472.374 −0.748612 −0.374306 0.927305i \(-0.622119\pi\)
−0.374306 + 0.927305i \(0.622119\pi\)
\(632\) 2.21356 + 8.26110i 0.00350246 + 0.0130714i
\(633\) 96.6712 360.782i 0.152719 0.569956i
\(634\) 480.739 277.555i 0.758263 0.437784i
\(635\) 4.39869 + 594.077i 0.00692708 + 0.935555i
\(636\) 550.024 0.864818
\(637\) −7.59118 6.93129i −0.0119171 0.0108811i
\(638\) −657.233 657.233i −1.03015 1.03015i
\(639\) 154.708 + 89.3204i 0.242109 + 0.139782i
\(640\) 197.603 348.188i 0.308755 0.544043i
\(641\) −251.987 436.454i −0.393115 0.680895i 0.599743 0.800192i \(-0.295269\pi\)
−0.992859 + 0.119297i \(0.961936\pi\)
\(642\) −106.643 397.996i −0.166110 0.619931i
\(643\) 269.091 + 269.091i 0.418493 + 0.418493i 0.884684 0.466191i \(-0.154374\pi\)
−0.466191 + 0.884684i \(0.654374\pi\)
\(644\) −236.858 + 247.865i −0.367792 + 0.384883i
\(645\) −108.232 + 416.232i −0.167802 + 0.645321i
\(646\) −338.378 + 586.087i −0.523804 + 0.907256i
\(647\) 1033.93 + 277.041i 1.59804 + 0.428193i 0.944449 0.328658i \(-0.106596\pi\)
0.653588 + 0.756851i \(0.273263\pi\)
\(648\) 6.00612 22.4152i 0.00926871 0.0345913i
\(649\) 958.986 + 553.671i 1.47764 + 0.853114i
\(650\) 12.1421 + 6.77252i 0.0186801 + 0.0104193i
\(651\) −166.922 + 48.8141i −0.256409 + 0.0749832i
\(652\) −226.404 + 226.404i −0.347246 + 0.347246i
\(653\) 456.208 122.241i 0.698634 0.187198i 0.108015 0.994149i \(-0.465550\pi\)
0.590619 + 0.806951i \(0.298884\pi\)
\(654\) 312.752 180.568i 0.478215 0.276097i
\(655\) 249.386 + 903.898i 0.380742 + 1.38000i
\(656\) −21.4963 + 37.2326i −0.0327687 + 0.0567571i
\(657\) 73.4688 73.4688i 0.111825 0.111825i
\(658\) −916.627 + 557.336i −1.39305 + 0.847016i
\(659\) 299.482i 0.454449i 0.973842 + 0.227225i \(0.0729652\pi\)
−0.973842 + 0.227225i \(0.927035\pi\)
\(660\) 3.12797 + 422.456i 0.00473934 + 0.640085i
\(661\) −94.8665 164.314i −0.143520 0.248583i 0.785300 0.619115i \(-0.212509\pi\)
−0.928820 + 0.370532i \(0.879175\pi\)
\(662\) −773.170 207.170i −1.16793 0.312946i
\(663\) 7.05538 1.89048i 0.0106416 0.00285141i
\(664\) 16.3478i 0.0246203i
\(665\) −425.690 + 127.916i −0.640136 + 0.192355i
\(666\) −517.753 −0.777407
\(667\) 91.1097 + 340.026i 0.136596 + 0.509784i
\(668\) 16.7639 62.5637i 0.0250956 0.0936582i
\(669\) 285.361 164.753i 0.426548 0.246268i
\(670\) 312.451 + 307.858i 0.466344 + 0.459489i
\(671\) −559.673 −0.834088
\(672\) −232.346 + 424.404i −0.345754 + 0.631554i
\(673\) −501.108 501.108i −0.744589 0.744589i 0.228868 0.973457i \(-0.426497\pi\)
−0.973457 + 0.228868i \(0.926497\pi\)
\(674\) 753.731 + 435.167i 1.11830 + 0.645648i
\(675\) −93.2060 90.4856i −0.138083 0.134053i
\(676\) 255.744 + 442.961i 0.378319 + 0.655268i
\(677\) 58.6475 + 218.875i 0.0866285 + 0.323302i 0.995618 0.0935180i \(-0.0298113\pi\)
−0.908989 + 0.416820i \(0.863145\pi\)
\(678\) −727.837 727.837i −1.07351 1.07351i
\(679\) 774.171 810.148i 1.14016 1.19315i
\(680\) −250.817 65.2196i −0.368848 0.0959112i
\(681\) 42.4378 73.5044i 0.0623169 0.107936i
\(682\) −591.853 158.587i −0.867820 0.232532i
\(683\) −201.929 + 753.610i −0.295650 + 1.10338i 0.645049 + 0.764141i \(0.276837\pi\)
−0.940699 + 0.339241i \(0.889830\pi\)
\(684\) −99.8875 57.6701i −0.146034 0.0843129i
\(685\) 278.836 163.751i 0.407060 0.239052i
\(686\) −294.564 860.228i −0.429394 1.25398i
\(687\) 33.0641 33.0641i 0.0481283 0.0481283i
\(688\) −908.742 + 243.497i −1.32085 + 0.353920i
\(689\) 19.0576 11.0029i 0.0276598 0.0159694i
\(690\) 183.320 323.019i 0.265681 0.468144i
\(691\) 147.342 255.204i 0.213230 0.369325i −0.739494 0.673163i \(-0.764935\pi\)
0.952724 + 0.303839i \(0.0982684\pi\)
\(692\) −348.720 + 348.720i −0.503930 + 0.503930i
\(693\) 7.68222 + 338.305i 0.0110855 + 0.488175i
\(694\) 505.952i 0.729038i
\(695\) −331.477 326.605i −0.476946 0.469935i
\(696\) 48.5874 + 84.1559i 0.0698095 + 0.120914i
\(697\) 44.0647 + 11.8071i 0.0632205 + 0.0169399i
\(698\) 26.6406 7.13832i 0.0381670 0.0102268i
\(699\) 144.204i 0.206300i
\(700\) 281.913 + 448.550i 0.402733 + 0.640786i
\(701\) −1042.91 −1.48775 −0.743874 0.668320i \(-0.767014\pi\)
−0.743874 + 0.668320i \(0.767014\pi\)
\(702\) 0.747913 + 2.79125i 0.00106540 + 0.00397614i
\(703\) 213.993 798.633i 0.304400 1.13604i
\(704\) −418.804 + 241.797i −0.594892 + 0.343461i
\(705\) 351.389 356.631i 0.498424 0.505860i
\(706\) −863.243 −1.22272
\(707\) −69.3701 114.090i −0.0981190 0.161372i
\(708\) 254.793 + 254.793i 0.359877 + 0.359877i
\(709\) 56.4816 + 32.6096i 0.0796637 + 0.0459938i 0.539303 0.842112i \(-0.318688\pi\)
−0.459639 + 0.888106i \(0.652021\pi\)
\(710\) 686.430 + 389.563i 0.966803 + 0.548680i
\(711\) 4.97542 + 8.61769i 0.00699778 + 0.0121205i
\(712\) −94.8691 354.056i −0.133243 0.497270i
\(713\) 164.093 + 164.093i 0.230144 + 0.230144i
\(714\) 627.710 + 153.009i 0.879146 + 0.214299i
\(715\) 8.55935 + 14.5749i 0.0119711 + 0.0203845i
\(716\) 205.237 355.480i 0.286643 0.496481i
\(717\) −80.0957 21.4616i −0.111710 0.0299325i
\(718\) 155.430 580.073i 0.216477 0.807901i
\(719\) 647.135 + 373.624i 0.900049 + 0.519643i 0.877216 0.480096i \(-0.159398\pi\)
0.0228327 + 0.999739i \(0.492732\pi\)
\(720\) 71.5139 275.023i 0.0993249 0.381976i
\(721\) 400.599 117.150i 0.555616 0.162482i
\(722\) −374.361 + 374.361i −0.518505 + 0.518505i
\(723\) −401.307 + 107.530i −0.555058 + 0.148727i
\(724\) 608.721 351.445i 0.840774 0.485421i
\(725\) 543.914 8.05498i 0.750226 0.0111103i
\(726\) −318.326 + 551.357i −0.438466 + 0.759445i
\(727\) 532.464 532.464i 0.732412 0.732412i −0.238685 0.971097i \(-0.576716\pi\)
0.971097 + 0.238685i \(0.0767163\pi\)
\(728\) 0.0859602 + 3.78546i 0.000118077 + 0.00519981i
\(729\) 27.0000i 0.0370370i
\(730\) 322.187 326.994i 0.441352 0.447936i
\(731\) 499.138 + 864.532i 0.682815 + 1.18267i
\(732\) −175.913 47.1359i −0.240319 0.0643933i
\(733\) −94.0010 + 25.1875i −0.128241 + 0.0343622i −0.322369 0.946614i \(-0.604479\pi\)
0.194127 + 0.980976i \(0.437812\pi\)
\(734\) 83.5140i 0.113779i
\(735\) 231.280 + 355.787i 0.314667 + 0.484064i
\(736\) 645.619 0.877200
\(737\) 138.018 + 515.091i 0.187270 + 0.698902i
\(738\) −4.67112 + 17.4329i −0.00632944 + 0.0236218i
\(739\) −913.914 + 527.648i −1.23669 + 0.714003i −0.968416 0.249340i \(-0.919786\pi\)
−0.268273 + 0.963343i \(0.586453\pi\)
\(740\) −985.430 + 7.29636i −1.33166 + 0.00985995i
\(741\) −4.61462 −0.00622755
\(742\) 1945.99 44.1896i 2.62263 0.0595547i
\(743\) 750.889 + 750.889i 1.01062 + 1.01062i 0.999943 + 0.0106743i \(0.00339779\pi\)
0.0106743 + 0.999943i \(0.496602\pi\)
\(744\) 55.4779 + 32.0302i 0.0745671 + 0.0430514i
\(745\) −335.183 + 92.4773i −0.449910 + 0.124131i
\(746\) 189.201 + 327.706i 0.253621 + 0.439284i
\(747\) −4.92292 18.3726i −0.00659025 0.0245952i
\(748\) 693.404 + 693.404i 0.927010 + 0.927010i
\(749\) −176.315 602.918i −0.235401 0.804964i
\(750\) −414.750 396.723i −0.553000 0.528964i
\(751\) 286.483 496.203i 0.381469 0.660723i −0.609804 0.792552i \(-0.708752\pi\)
0.991272 + 0.131829i \(0.0420851\pi\)
\(752\) 1057.89 + 283.461i 1.40677 + 0.376942i
\(753\) 77.7904 290.318i 0.103307 0.385548i
\(754\) −10.4795 6.05035i −0.0138986 0.00802434i
\(755\) 71.2068 + 18.5158i 0.0943136 + 0.0245243i
\(756\) −26.0775 + 106.981i −0.0344941 + 0.141510i
\(757\) 498.849 498.849i 0.658982 0.658982i −0.296157 0.955139i \(-0.595705\pi\)
0.955139 + 0.296157i \(0.0957053\pi\)
\(758\) −1736.34 + 465.250i −2.29068 + 0.613786i
\(759\) 391.042 225.768i 0.515207 0.297455i
\(760\) 142.395 + 80.8119i 0.187362 + 0.106331i