Properties

Label 105.3.v.a.37.12
Level 105
Weight 3
Character 105.37
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.12
Character \(\chi\) \(=\) 105.37
Dual form 105.3.v.a.88.12

$q$-expansion

\(f(q)\) \(=\) \(q+(2.13226 - 0.571337i) q^{2} +(1.67303 + 0.448288i) q^{3} +(0.756006 - 0.436480i) q^{4} +(2.78563 + 4.15214i) q^{5} +3.82346 q^{6} +(2.73668 - 6.44287i) q^{7} +(-4.88107 + 4.88107i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(2.13226 - 0.571337i) q^{2} +(1.67303 + 0.448288i) q^{3} +(0.756006 - 0.436480i) q^{4} +(2.78563 + 4.15214i) q^{5} +3.82346 q^{6} +(2.73668 - 6.44287i) q^{7} +(-4.88107 + 4.88107i) q^{8} +(2.59808 + 1.50000i) q^{9} +(8.31195 + 7.26192i) q^{10} +(-4.69282 - 8.12820i) q^{11} +(1.46049 - 0.391337i) q^{12} +(-0.405222 + 0.405222i) q^{13} +(2.15427 - 15.3014i) q^{14} +(2.79909 + 8.19543i) q^{15} +(-9.36489 + 16.2205i) q^{16} +(2.82961 - 10.5602i) q^{17} +(6.39678 + 1.71401i) q^{18} +(-23.8500 - 13.7698i) q^{19} +(3.91828 + 1.92317i) q^{20} +(7.46682 - 9.55231i) q^{21} +(-14.6503 - 14.6503i) q^{22} +(1.02354 + 3.81990i) q^{23} +(-10.3543 + 5.97806i) q^{24} +(-9.48058 + 23.1326i) q^{25} +(-0.632520 + 1.09556i) q^{26} +(3.67423 + 3.67423i) q^{27} +(-0.743235 - 6.06535i) q^{28} +34.6601i q^{29} +(10.6507 + 15.8756i) q^{30} +(-11.8284 - 20.4874i) q^{31} +(-3.55465 + 13.2661i) q^{32} +(-4.20747 - 15.7025i) q^{33} -24.1338i q^{34} +(34.3751 - 6.58431i) q^{35} +2.61888 q^{36} +(25.6130 - 6.86297i) q^{37} +(-58.7215 - 15.7344i) q^{38} +(-0.859605 + 0.496293i) q^{39} +(-33.8637 - 6.67007i) q^{40} +54.6731 q^{41} +(10.4636 - 24.6341i) q^{42} +(-47.3942 + 47.3942i) q^{43} +(-7.09560 - 4.09664i) q^{44} +(1.00905 + 14.9660i) q^{45} +(4.36491 + 7.56024i) q^{46} +(-16.9830 + 4.55058i) q^{47} +(-22.9392 + 22.9392i) q^{48} +(-34.0211 - 35.2642i) q^{49} +(-6.99854 + 54.7414i) q^{50} +(9.46805 - 16.3992i) q^{51} +(-0.129479 + 0.483221i) q^{52} +(14.7503 + 3.95234i) q^{53} +(9.93365 + 5.73520i) q^{54} +(20.6770 - 42.1274i) q^{55} +(18.0901 + 44.8060i) q^{56} +(-33.7289 - 33.7289i) q^{57} +(19.8026 + 73.9044i) q^{58} +(90.3630 - 52.1711i) q^{59} +(5.69327 + 4.97405i) q^{60} +(-12.5803 + 21.7897i) q^{61} +(-36.9264 - 36.9264i) q^{62} +(16.7744 - 12.6340i) q^{63} -44.6014i q^{64} +(-2.81133 - 0.553743i) q^{65} +(-17.9428 - 31.0779i) q^{66} +(0.364564 - 1.36057i) q^{67} +(-2.47014 - 9.21867i) q^{68} +6.84966i q^{69} +(69.5348 - 33.6792i) q^{70} +86.5935 q^{71} +(-20.0030 + 5.35978i) q^{72} +(-84.9471 - 22.7615i) q^{73} +(50.6924 - 29.2673i) q^{74} +(-26.2314 + 34.4516i) q^{75} -24.0409 q^{76} +(-65.2117 + 7.99089i) q^{77} +(-1.54935 + 1.54935i) q^{78} +(128.353 + 74.1049i) q^{79} +(-93.4368 + 6.29977i) q^{80} +(4.50000 + 7.79423i) q^{81} +(116.577 - 31.2368i) q^{82} +(35.5711 - 35.5711i) q^{83} +(1.47557 - 10.4807i) q^{84} +(51.7299 - 17.6679i) q^{85} +(-73.9787 + 128.135i) q^{86} +(-15.5377 + 57.9875i) q^{87} +(62.5803 + 16.7683i) q^{88} +(130.143 + 75.1382i) q^{89} +(10.7022 + 31.3349i) q^{90} +(1.50183 + 3.71975i) q^{91} +(2.44111 + 2.44111i) q^{92} +(-10.6050 - 39.5786i) q^{93} +(-33.6122 + 19.4060i) q^{94} +(-9.26295 - 137.386i) q^{95} +(-11.8941 + 20.6011i) q^{96} +(74.8462 + 74.8462i) q^{97} +(-92.6896 - 55.7549i) q^{98} -28.1569i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.13226 0.571337i 1.06613 0.285669i 0.317228 0.948349i \(-0.397248\pi\)
0.748902 + 0.662681i \(0.230581\pi\)
\(3\) 1.67303 + 0.448288i 0.557678 + 0.149429i
\(4\) 0.756006 0.436480i 0.189001 0.109120i
\(5\) 2.78563 + 4.15214i 0.557125 + 0.830429i
\(6\) 3.82346 0.637244
\(7\) 2.73668 6.44287i 0.390955 0.920410i
\(8\) −4.88107 + 4.88107i −0.610133 + 0.610133i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) 8.31195 + 7.26192i 0.831195 + 0.726192i
\(11\) −4.69282 8.12820i −0.426620 0.738927i 0.569950 0.821679i \(-0.306962\pi\)
−0.996570 + 0.0827519i \(0.973629\pi\)
\(12\) 1.46049 0.391337i 0.121708 0.0326114i
\(13\) −0.405222 + 0.405222i −0.0311709 + 0.0311709i −0.722520 0.691350i \(-0.757016\pi\)
0.691350 + 0.722520i \(0.257016\pi\)
\(14\) 2.15427 15.3014i 0.153877 1.09296i
\(15\) 2.79909 + 8.19543i 0.186606 + 0.546362i
\(16\) −9.36489 + 16.2205i −0.585306 + 1.01378i
\(17\) 2.82961 10.5602i 0.166448 0.621191i −0.831404 0.555669i \(-0.812462\pi\)
0.997851 0.0655217i \(-0.0208712\pi\)
\(18\) 6.39678 + 1.71401i 0.355377 + 0.0952229i
\(19\) −23.8500 13.7698i −1.25526 0.724725i −0.283111 0.959087i \(-0.591367\pi\)
−0.972149 + 0.234362i \(0.924700\pi\)
\(20\) 3.91828 + 1.92317i 0.195914 + 0.0961587i
\(21\) 7.46682 9.55231i 0.355563 0.454872i
\(22\) −14.6503 14.6503i −0.665921 0.665921i
\(23\) 1.02354 + 3.81990i 0.0445017 + 0.166083i 0.984601 0.174819i \(-0.0559342\pi\)
−0.940099 + 0.340902i \(0.889268\pi\)
\(24\) −10.3543 + 5.97806i −0.431430 + 0.249086i
\(25\) −9.48058 + 23.1326i −0.379223 + 0.925305i
\(26\) −0.632520 + 1.09556i −0.0243277 + 0.0421368i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) −0.743235 6.06535i −0.0265441 0.216620i
\(29\) 34.6601i 1.19518i 0.801803 + 0.597588i \(0.203874\pi\)
−0.801803 + 0.597588i \(0.796126\pi\)
\(30\) 10.6507 + 15.8756i 0.355025 + 0.529186i
\(31\) −11.8284 20.4874i −0.381561 0.660883i 0.609724 0.792613i \(-0.291280\pi\)
−0.991286 + 0.131730i \(0.957947\pi\)
\(32\) −3.55465 + 13.2661i −0.111083 + 0.414566i
\(33\) −4.20747 15.7025i −0.127499 0.475833i
\(34\) 24.1338i 0.709819i
\(35\) 34.3751 6.58431i 0.982145 0.188123i
\(36\) 2.61888 0.0727467
\(37\) 25.6130 6.86297i 0.692242 0.185486i 0.104489 0.994526i \(-0.466679\pi\)
0.587753 + 0.809040i \(0.300013\pi\)
\(38\) −58.7215 15.7344i −1.54530 0.414063i
\(39\) −0.859605 + 0.496293i −0.0220411 + 0.0127255i
\(40\) −33.8637 6.67007i −0.846593 0.166752i
\(41\) 54.6731 1.33349 0.666745 0.745286i \(-0.267687\pi\)
0.666745 + 0.745286i \(0.267687\pi\)
\(42\) 10.4636 24.6341i 0.249134 0.586526i
\(43\) −47.3942 + 47.3942i −1.10219 + 1.10219i −0.108044 + 0.994146i \(0.534459\pi\)
−0.994146 + 0.108044i \(0.965541\pi\)
\(44\) −7.09560 4.09664i −0.161264 0.0931055i
\(45\) 1.00905 + 14.9660i 0.0224234 + 0.332578i
\(46\) 4.36491 + 7.56024i 0.0948893 + 0.164353i
\(47\) −16.9830 + 4.55058i −0.361340 + 0.0968208i −0.434921 0.900468i \(-0.643224\pi\)
0.0735811 + 0.997289i \(0.476557\pi\)
\(48\) −22.9392 + 22.9392i −0.477900 + 0.477900i
\(49\) −34.0211 35.2642i −0.694308 0.719678i
\(50\) −6.99854 + 54.7414i −0.139971 + 1.09483i
\(51\) 9.46805 16.3992i 0.185648 0.321552i
\(52\) −0.129479 + 0.483221i −0.00248997 + 0.00929271i
\(53\) 14.7503 + 3.95234i 0.278308 + 0.0745725i 0.395273 0.918564i \(-0.370650\pi\)
−0.116965 + 0.993136i \(0.537317\pi\)
\(54\) 9.93365 + 5.73520i 0.183957 + 0.106207i
\(55\) 20.6770 42.1274i 0.375946 0.765952i
\(56\) 18.0901 + 44.8060i 0.323038 + 0.800108i
\(57\) −33.7289 33.7289i −0.591735 0.591735i
\(58\) 19.8026 + 73.9044i 0.341424 + 1.27421i
\(59\) 90.3630 52.1711i 1.53158 0.884256i 0.532288 0.846564i \(-0.321333\pi\)
0.999289 0.0376927i \(-0.0120008\pi\)
\(60\) 5.69327 + 4.97405i 0.0948878 + 0.0829008i
\(61\) −12.5803 + 21.7897i −0.206235 + 0.357209i −0.950525 0.310647i \(-0.899454\pi\)
0.744291 + 0.667856i \(0.232788\pi\)
\(62\) −36.9264 36.9264i −0.595587 0.595587i
\(63\) 16.7744 12.6340i 0.266261 0.200540i
\(64\) 44.6014i 0.696897i
\(65\) −2.81133 0.553743i −0.0432513 0.00851912i
\(66\) −17.9428 31.0779i −0.271861 0.470877i
\(67\) 0.364564 1.36057i 0.00544126 0.0203071i −0.963152 0.268958i \(-0.913321\pi\)
0.968593 + 0.248651i \(0.0799873\pi\)
\(68\) −2.47014 9.21867i −0.0363255 0.135569i
\(69\) 6.84966i 0.0992704i
\(70\) 69.5348 33.6792i 0.993354 0.481132i
\(71\) 86.5935 1.21963 0.609813 0.792545i \(-0.291244\pi\)
0.609813 + 0.792545i \(0.291244\pi\)
\(72\) −20.0030 + 5.35978i −0.277819 + 0.0744414i
\(73\) −84.9471 22.7615i −1.16366 0.311802i −0.375233 0.926931i \(-0.622437\pi\)
−0.788427 + 0.615129i \(0.789104\pi\)
\(74\) 50.6924 29.2673i 0.685033 0.395504i
\(75\) −26.2314 + 34.4516i −0.349752 + 0.459355i
\(76\) −24.0409 −0.316328
\(77\) −65.2117 + 7.99089i −0.846905 + 0.103778i
\(78\) −1.54935 + 1.54935i −0.0198635 + 0.0198635i
\(79\) 128.353 + 74.1049i 1.62473 + 0.938036i 0.985632 + 0.168909i \(0.0540243\pi\)
0.639095 + 0.769128i \(0.279309\pi\)
\(80\) −93.4368 + 6.29977i −1.16796 + 0.0787472i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 116.577 31.2368i 1.42167 0.380936i
\(83\) 35.5711 35.5711i 0.428567 0.428567i −0.459573 0.888140i \(-0.651998\pi\)
0.888140 + 0.459573i \(0.151998\pi\)
\(84\) 1.47557 10.4807i 0.0175663 0.124770i
\(85\) 51.7299 17.6679i 0.608587 0.207858i
\(86\) −73.9787 + 128.135i −0.860217 + 1.48994i
\(87\) −15.5377 + 57.9875i −0.178594 + 0.666523i
\(88\) 62.5803 + 16.7683i 0.711139 + 0.190549i
\(89\) 130.143 + 75.1382i 1.46228 + 0.844250i 0.999117 0.0420218i \(-0.0133799\pi\)
0.463166 + 0.886271i \(0.346713\pi\)
\(90\) 10.7022 + 31.3349i 0.118913 + 0.348166i
\(91\) 1.50183 + 3.71975i 0.0165036 + 0.0408764i
\(92\) 2.44111 + 2.44111i 0.0265338 + 0.0265338i
\(93\) −10.6050 39.5786i −0.114033 0.425576i
\(94\) −33.6122 + 19.4060i −0.357577 + 0.206447i
\(95\) −9.26295 137.386i −0.0975047 1.44617i
\(96\) −11.8941 + 20.6011i −0.123897 + 0.214595i
\(97\) 74.8462 + 74.8462i 0.771610 + 0.771610i 0.978388 0.206778i \(-0.0662977\pi\)
−0.206778 + 0.978388i \(0.566298\pi\)
\(98\) −92.6896 55.7549i −0.945812 0.568928i
\(99\) 28.1569i 0.284413i
\(100\) 2.92956 + 21.6265i 0.0292956 + 0.216265i
\(101\) −65.3840 113.248i −0.647366 1.12127i −0.983750 0.179546i \(-0.942537\pi\)
0.336384 0.941725i \(-0.390796\pi\)
\(102\) 10.8189 40.3767i 0.106068 0.395850i
\(103\) 9.95292 + 37.1448i 0.0966303 + 0.360629i 0.997262 0.0739549i \(-0.0235621\pi\)
−0.900631 + 0.434584i \(0.856895\pi\)
\(104\) 3.95583i 0.0380368i
\(105\) 60.4623 + 4.39417i 0.575832 + 0.0418492i
\(106\) 33.7097 0.318016
\(107\) −193.691 + 51.8993i −1.81019 + 0.485040i −0.995492 0.0948408i \(-0.969766\pi\)
−0.814701 + 0.579881i \(0.803099\pi\)
\(108\) 4.38147 + 1.17401i 0.0405692 + 0.0108705i
\(109\) −126.264 + 72.8985i −1.15838 + 0.668793i −0.950916 0.309449i \(-0.899856\pi\)
−0.207468 + 0.978242i \(0.566522\pi\)
\(110\) 20.0198 101.640i 0.181998 0.924001i
\(111\) 45.9279 0.413765
\(112\) 78.8776 + 104.727i 0.704264 + 0.935063i
\(113\) −50.0612 + 50.0612i −0.443020 + 0.443020i −0.893026 0.450006i \(-0.851422\pi\)
0.450006 + 0.893026i \(0.351422\pi\)
\(114\) −91.1894 52.6482i −0.799907 0.461827i
\(115\) −13.0096 + 14.8907i −0.113127 + 0.129484i
\(116\) 15.1284 + 26.2032i 0.130418 + 0.225890i
\(117\) −1.66063 + 0.444964i −0.0141934 + 0.00380311i
\(118\) 162.870 162.870i 1.38026 1.38026i
\(119\) −60.2945 47.1308i −0.506677 0.396058i
\(120\) −53.6650 26.3399i −0.447208 0.219499i
\(121\) 16.4549 28.5007i 0.135991 0.235543i
\(122\) −14.3752 + 53.6490i −0.117830 + 0.439746i
\(123\) 91.4699 + 24.5093i 0.743658 + 0.199262i
\(124\) −17.8847 10.3257i −0.144231 0.0832719i
\(125\) −122.459 + 25.0741i −0.979675 + 0.200593i
\(126\) 28.5491 36.5229i 0.226580 0.289864i
\(127\) −120.362 120.362i −0.947736 0.947736i 0.0509644 0.998700i \(-0.483771\pi\)
−0.998700 + 0.0509644i \(0.983771\pi\)
\(128\) −39.7010 148.166i −0.310164 1.15755i
\(129\) −100.538 + 58.0458i −0.779366 + 0.449967i
\(130\) −6.31087 + 0.425497i −0.0485451 + 0.00327305i
\(131\) −61.7290 + 106.918i −0.471214 + 0.816166i −0.999458 0.0329263i \(-0.989517\pi\)
0.528244 + 0.849093i \(0.322851\pi\)
\(132\) −10.0347 10.0347i −0.0760204 0.0760204i
\(133\) −153.987 + 115.979i −1.15779 + 0.872019i
\(134\) 3.10939i 0.0232044i
\(135\) −5.02091 + 25.4910i −0.0371919 + 0.188822i
\(136\) 37.7337 + 65.3568i 0.277454 + 0.480564i
\(137\) −38.7216 + 144.511i −0.282639 + 1.05482i 0.667908 + 0.744244i \(0.267190\pi\)
−0.950547 + 0.310581i \(0.899477\pi\)
\(138\) 3.91347 + 14.6053i 0.0283585 + 0.105835i
\(139\) 86.7413i 0.624038i −0.950076 0.312019i \(-0.898995\pi\)
0.950076 0.312019i \(-0.101005\pi\)
\(140\) 23.1138 19.9818i 0.165099 0.142727i
\(141\) −30.4531 −0.215979
\(142\) 184.640 49.4741i 1.30028 0.348409i
\(143\) 5.19535 + 1.39209i 0.0363311 + 0.00973490i
\(144\) −48.6614 + 28.0947i −0.337926 + 0.195102i
\(145\) −143.914 + 96.5501i −0.992508 + 0.665863i
\(146\) −194.134 −1.32968
\(147\) −41.1099 74.2494i −0.279659 0.505098i
\(148\) 16.3680 16.3680i 0.110595 0.110595i
\(149\) −21.7762 12.5725i −0.146149 0.0843791i 0.425142 0.905126i \(-0.360224\pi\)
−0.571291 + 0.820747i \(0.693557\pi\)
\(150\) −36.2487 + 88.4468i −0.241658 + 0.589645i
\(151\) −100.832 174.647i −0.667765 1.15660i −0.978528 0.206115i \(-0.933918\pi\)
0.310763 0.950487i \(-0.399415\pi\)
\(152\) 183.624 49.2020i 1.20806 0.323697i
\(153\) 23.1919 23.1919i 0.151581 0.151581i
\(154\) −134.483 + 54.2965i −0.873265 + 0.352575i
\(155\) 52.1171 106.183i 0.336239 0.685054i
\(156\) −0.433244 + 0.750401i −0.00277721 + 0.00481026i
\(157\) 7.52733 28.0924i 0.0479448 0.178932i −0.937801 0.347173i \(-0.887142\pi\)
0.985746 + 0.168240i \(0.0538084\pi\)
\(158\) 316.022 + 84.6778i 2.00014 + 0.535935i
\(159\) 22.9060 + 13.2248i 0.144063 + 0.0831748i
\(160\) −64.9847 + 22.1950i −0.406155 + 0.138719i
\(161\) 27.4122 + 3.85934i 0.170262 + 0.0239710i
\(162\) 14.0483 + 14.0483i 0.0867179 + 0.0867179i
\(163\) −21.9253 81.8264i −0.134511 0.502003i −0.999999 0.00107335i \(-0.999658\pi\)
0.865488 0.500929i \(-0.167008\pi\)
\(164\) 41.3332 23.8637i 0.252032 0.145510i
\(165\) 53.4785 61.2112i 0.324112 0.370977i
\(166\) 55.5237 96.1699i 0.334480 0.579336i
\(167\) 147.643 + 147.643i 0.884091 + 0.884091i 0.993947 0.109856i \(-0.0350391\pi\)
−0.109856 + 0.993947i \(0.535039\pi\)
\(168\) 10.1794 + 83.0715i 0.0605916 + 0.494473i
\(169\) 168.672i 0.998057i
\(170\) 100.207 67.2279i 0.589454 0.395458i
\(171\) −41.3093 71.5499i −0.241575 0.418420i
\(172\) −15.1437 + 56.5169i −0.0880445 + 0.328587i
\(173\) −18.0662 67.4239i −0.104429 0.389733i 0.893851 0.448364i \(-0.147993\pi\)
−0.998280 + 0.0586307i \(0.981327\pi\)
\(174\) 132.522i 0.761619i
\(175\) 123.095 + 124.389i 0.703401 + 0.710794i
\(176\) 175.791 0.998812
\(177\) 174.568 46.7753i 0.986260 0.264268i
\(178\) 320.428 + 85.8585i 1.80016 + 0.482351i
\(179\) −10.7449 + 6.20357i −0.0600273 + 0.0346568i −0.529713 0.848177i \(-0.677700\pi\)
0.469686 + 0.882834i \(0.344367\pi\)
\(180\) 7.29522 + 10.8740i 0.0405290 + 0.0604109i
\(181\) −163.979 −0.905964 −0.452982 0.891520i \(-0.649640\pi\)
−0.452982 + 0.891520i \(0.649640\pi\)
\(182\) 5.32752 + 7.07343i 0.0292721 + 0.0388650i
\(183\) −30.8153 + 30.8153i −0.168390 + 0.168390i
\(184\) −23.6412 13.6492i −0.128485 0.0741806i
\(185\) 99.8441 + 87.2310i 0.539698 + 0.471519i
\(186\) −45.2254 78.3328i −0.243148 0.421144i
\(187\) −99.1146 + 26.5577i −0.530025 + 0.142020i
\(188\) −10.8530 + 10.8530i −0.0577287 + 0.0577287i
\(189\) 33.7278 13.6174i 0.178454 0.0720497i
\(190\) −98.2447 287.650i −0.517077 1.51395i
\(191\) 63.0093 109.135i 0.329892 0.571389i −0.652598 0.757704i \(-0.726321\pi\)
0.982490 + 0.186315i \(0.0596545\pi\)
\(192\) 19.9943 74.6196i 0.104137 0.388644i
\(193\) 53.1737 + 14.2479i 0.275512 + 0.0738231i 0.393929 0.919141i \(-0.371115\pi\)
−0.118418 + 0.992964i \(0.537782\pi\)
\(194\) 202.354 + 116.829i 1.04306 + 0.602212i
\(195\) −4.45522 2.18672i −0.0228473 0.0112139i
\(196\) −41.1123 11.8104i −0.209757 0.0602571i
\(197\) 62.0394 + 62.0394i 0.314921 + 0.314921i 0.846812 0.531892i \(-0.178519\pi\)
−0.531892 + 0.846812i \(0.678519\pi\)
\(198\) −16.0871 60.0379i −0.0812480 0.303222i
\(199\) 242.793 140.177i 1.22007 0.704405i 0.255134 0.966906i \(-0.417880\pi\)
0.964932 + 0.262501i \(0.0845472\pi\)
\(200\) −66.6366 159.187i −0.333183 0.795937i
\(201\) 1.21986 2.11285i 0.00606894 0.0105117i
\(202\) −204.119 204.119i −1.01049 1.01049i
\(203\) 223.311 + 94.8538i 1.10005 + 0.467260i
\(204\) 16.5305i 0.0810317i
\(205\) 152.299 + 227.011i 0.742921 + 1.10737i
\(206\) 42.4444 + 73.5159i 0.206041 + 0.356873i
\(207\) −3.07062 + 11.4597i −0.0148339 + 0.0553609i
\(208\) −2.77803 10.3677i −0.0133559 0.0498449i
\(209\) 258.476i 1.23673i
\(210\) 131.432 25.1749i 0.625866 0.119880i
\(211\) 215.254 1.02016 0.510081 0.860126i \(-0.329615\pi\)
0.510081 + 0.860126i \(0.329615\pi\)
\(212\) 12.8765 3.45024i 0.0607380 0.0162747i
\(213\) 144.874 + 38.8188i 0.680158 + 0.182248i
\(214\) −383.347 + 221.326i −1.79134 + 1.03423i
\(215\) −328.810 64.7650i −1.52935 0.301233i
\(216\) −35.8684 −0.166057
\(217\) −164.368 + 20.1413i −0.757457 + 0.0928170i
\(218\) −227.578 + 227.578i −1.04393 + 1.04393i
\(219\) −131.916 76.1615i −0.602354 0.347769i
\(220\) −2.75582 40.8736i −0.0125264 0.185789i
\(221\) 3.13262 + 5.42586i 0.0141747 + 0.0245514i
\(222\) 97.9302 26.2403i 0.441127 0.118200i
\(223\) 129.293 129.293i 0.579788 0.579788i −0.355057 0.934845i \(-0.615538\pi\)
0.934845 + 0.355057i \(0.115538\pi\)
\(224\) 75.7439 + 59.2073i 0.338142 + 0.264318i
\(225\) −59.3302 + 45.8795i −0.263690 + 0.203909i
\(226\) −78.1417 + 135.345i −0.345760 + 0.598874i
\(227\) −12.3978 + 46.2690i −0.0546156 + 0.203828i −0.987842 0.155460i \(-0.950314\pi\)
0.933227 + 0.359289i \(0.116981\pi\)
\(228\) −40.2213 10.7773i −0.176409 0.0472687i
\(229\) −275.307 158.949i −1.20221 0.694099i −0.241168 0.970483i \(-0.577530\pi\)
−0.961047 + 0.276384i \(0.910864\pi\)
\(230\) −19.2322 + 39.1837i −0.0836183 + 0.170364i
\(231\) −112.683 15.8646i −0.487807 0.0686778i
\(232\) −169.178 169.178i −0.729217 0.729217i
\(233\) −70.2155 262.048i −0.301354 1.12467i −0.936039 0.351897i \(-0.885537\pi\)
0.634685 0.772771i \(-0.281130\pi\)
\(234\) −3.28667 + 1.89756i −0.0140456 + 0.00810923i
\(235\) −66.2029 57.8396i −0.281715 0.246126i
\(236\) 45.5433 78.8833i 0.192980 0.334251i
\(237\) 181.519 + 181.519i 0.765904 + 0.765904i
\(238\) −155.491 66.0467i −0.653324 0.277507i
\(239\) 18.7596i 0.0784918i −0.999230 0.0392459i \(-0.987504\pi\)
0.999230 0.0392459i \(-0.0124956\pi\)
\(240\) −159.147 31.3468i −0.663112 0.130612i
\(241\) −39.4000 68.2427i −0.163485 0.283165i 0.772631 0.634855i \(-0.218940\pi\)
−0.936116 + 0.351690i \(0.885607\pi\)
\(242\) 18.8026 70.1723i 0.0776968 0.289968i
\(243\) 4.03459 + 15.0573i 0.0166032 + 0.0619642i
\(244\) 21.9642i 0.0900173i
\(245\) 51.6519 239.493i 0.210824 0.977524i
\(246\) 209.041 0.849759
\(247\) 15.2443 4.08470i 0.0617179 0.0165373i
\(248\) 157.735 + 42.2651i 0.636030 + 0.170424i
\(249\) 75.4576 43.5655i 0.303043 0.174962i
\(250\) −246.789 + 123.430i −0.987158 + 0.493720i
\(251\) −86.2825 −0.343755 −0.171877 0.985118i \(-0.554983\pi\)
−0.171877 + 0.985118i \(0.554983\pi\)
\(252\) 7.16705 16.8731i 0.0284407 0.0669568i
\(253\) 26.2456 26.2456i 0.103738 0.103738i
\(254\) −325.412 187.877i −1.28115 0.739671i
\(255\) 94.4661 6.36917i 0.370455 0.0249771i
\(256\) −80.1031 138.743i −0.312903 0.541963i
\(257\) −241.586 + 64.7328i −0.940024 + 0.251879i −0.696124 0.717922i \(-0.745094\pi\)
−0.243900 + 0.969800i \(0.578427\pi\)
\(258\) −181.210 + 181.210i −0.702364 + 0.702364i
\(259\) 25.8774 183.803i 0.0999126 0.709663i
\(260\) −2.36708 + 0.808459i −0.00910416 + 0.00310946i
\(261\) −51.9902 + 90.0496i −0.199196 + 0.345018i
\(262\) −70.5362 + 263.245i −0.269222 + 1.00475i
\(263\) −350.527 93.9235i −1.33280 0.357123i −0.479043 0.877791i \(-0.659016\pi\)
−0.853759 + 0.520668i \(0.825683\pi\)
\(264\) 97.1818 + 56.1079i 0.368113 + 0.212530i
\(265\) 24.6782 + 72.2553i 0.0931254 + 0.272661i
\(266\) −262.077 + 335.275i −0.985251 + 1.26043i
\(267\) 184.050 + 184.050i 0.689327 + 0.689327i
\(268\) −0.318250 1.18773i −0.00118750 0.00443181i
\(269\) 255.637 147.592i 0.950323 0.548669i 0.0571419 0.998366i \(-0.481801\pi\)
0.893181 + 0.449697i \(0.148468\pi\)
\(270\) 3.85807 + 57.2221i 0.0142892 + 0.211934i
\(271\) 208.489 361.113i 0.769332 1.33252i −0.168594 0.985686i \(-0.553923\pi\)
0.937926 0.346836i \(-0.112744\pi\)
\(272\) 144.793 + 144.793i 0.532328 + 0.532328i
\(273\) 0.845084 + 6.89652i 0.00309554 + 0.0252620i
\(274\) 330.258i 1.20532i
\(275\) 232.517 31.4971i 0.845517 0.114535i
\(276\) 2.98974 + 5.17838i 0.0108324 + 0.0187623i
\(277\) −65.5326 + 244.571i −0.236580 + 0.882927i 0.740851 + 0.671670i \(0.234423\pi\)
−0.977430 + 0.211258i \(0.932244\pi\)
\(278\) −49.5586 184.955i −0.178268 0.665306i
\(279\) 70.9704i 0.254374i
\(280\) −135.649 + 199.926i −0.484460 + 0.714020i
\(281\) 235.018 0.836363 0.418181 0.908363i \(-0.362668\pi\)
0.418181 + 0.908363i \(0.362668\pi\)
\(282\) −64.9339 + 17.3990i −0.230262 + 0.0616985i
\(283\) 45.4761 + 12.1853i 0.160693 + 0.0430576i 0.338269 0.941050i \(-0.390159\pi\)
−0.177576 + 0.984107i \(0.556825\pi\)
\(284\) 65.4652 37.7963i 0.230511 0.133086i
\(285\) 46.0912 234.003i 0.161723 0.821065i
\(286\) 11.8732 0.0415147
\(287\) 149.623 352.252i 0.521335 1.22736i
\(288\) −29.1344 + 29.1344i −0.101161 + 0.101161i
\(289\) 146.769 + 84.7373i 0.507852 + 0.293209i
\(290\) −251.699 + 288.093i −0.867927 + 0.993425i
\(291\) 91.6675 + 158.773i 0.315009 + 0.545611i
\(292\) −74.1555 + 19.8699i −0.253957 + 0.0680476i
\(293\) −12.1766 + 12.1766i −0.0415584 + 0.0415584i −0.727581 0.686022i \(-0.759355\pi\)
0.686022 + 0.727581i \(0.259355\pi\)
\(294\) −130.079 134.831i −0.442444 0.458610i
\(295\) 468.340 + 229.871i 1.58759 + 0.779224i
\(296\) −91.5200 + 158.517i −0.309189 + 0.535531i
\(297\) 12.6224 47.1074i 0.0424997 0.158611i
\(298\) −53.6156 14.3663i −0.179918 0.0482089i
\(299\) −1.96267 1.13315i −0.00656410 0.00378979i
\(300\) −4.79365 + 37.4951i −0.0159788 + 0.124984i
\(301\) 175.652 + 435.058i 0.583560 + 1.44537i
\(302\) −314.783 314.783i −1.04233 1.04233i
\(303\) −58.6217 218.779i −0.193471 0.722043i
\(304\) 446.704 257.905i 1.46942 0.848371i
\(305\) −125.518 + 8.46279i −0.411535 + 0.0277468i
\(306\) 36.2008 62.7016i 0.118303 0.204907i
\(307\) −104.260 104.260i −0.339609 0.339609i 0.516611 0.856220i \(-0.327193\pi\)
−0.856220 + 0.516611i \(0.827193\pi\)
\(308\) −45.8125 + 34.5048i −0.148742 + 0.112028i
\(309\) 66.6062i 0.215554i
\(310\) 50.4606 256.187i 0.162776 0.826410i
\(311\) −16.5632 28.6884i −0.0532580 0.0922455i 0.838167 0.545413i \(-0.183627\pi\)
−0.891425 + 0.453168i \(0.850294\pi\)
\(312\) 1.77335 6.61823i 0.00568381 0.0212123i
\(313\) −112.285 419.052i −0.358737 1.33882i −0.875716 0.482826i \(-0.839610\pi\)
0.516980 0.855998i \(-0.327056\pi\)
\(314\) 64.2009i 0.204462i
\(315\) 99.1856 + 34.4561i 0.314875 + 0.109384i
\(316\) 129.381 0.409434
\(317\) 270.012 72.3496i 0.851774 0.228232i 0.193584 0.981084i \(-0.437989\pi\)
0.658190 + 0.752852i \(0.271322\pi\)
\(318\) 56.3974 + 15.1116i 0.177350 + 0.0475209i
\(319\) 281.724 162.654i 0.883148 0.509886i
\(320\) 185.191 124.243i 0.578723 0.388259i
\(321\) −347.317 −1.08198
\(322\) 60.6550 7.43252i 0.188370 0.0230824i
\(323\) −212.898 + 212.898i −0.659128 + 0.659128i
\(324\) 6.80405 + 3.92832i 0.0210002 + 0.0121244i
\(325\) −5.53210 13.2156i −0.0170219 0.0406633i
\(326\) −93.5010 161.948i −0.286813 0.496774i
\(327\) −243.923 + 65.3590i −0.745942 + 0.199875i
\(328\) −266.863 + 266.863i −0.813607 + 0.813607i
\(329\) −17.1583 + 121.873i −0.0521529 + 0.370434i
\(330\) 79.0578 161.073i 0.239569 0.488099i
\(331\) −125.181 + 216.820i −0.378191 + 0.655047i −0.990799 0.135340i \(-0.956787\pi\)
0.612608 + 0.790387i \(0.290121\pi\)
\(332\) 11.3659 42.4180i 0.0342345 0.127765i
\(333\) 76.8389 + 20.5889i 0.230747 + 0.0618286i
\(334\) 399.168 + 230.460i 1.19511 + 0.689999i
\(335\) 6.66483 2.27632i 0.0198950 0.00679499i
\(336\) 85.0169 + 210.572i 0.253027 + 0.626701i
\(337\) −7.57759 7.57759i −0.0224854 0.0224854i 0.695775 0.718260i \(-0.255061\pi\)
−0.718260 + 0.695775i \(0.755061\pi\)
\(338\) 96.3684 + 359.652i 0.285114 + 1.06406i
\(339\) −106.196 + 61.3122i −0.313262 + 0.180862i
\(340\) 31.3964 35.9361i 0.0923423 0.105694i
\(341\) −111.017 + 192.287i −0.325563 + 0.563892i
\(342\) −128.961 128.961i −0.377080 0.377080i
\(343\) −320.308 + 122.687i −0.933842 + 0.357687i
\(344\) 462.669i 1.34497i
\(345\) −28.4408 + 19.0806i −0.0824370 + 0.0553060i
\(346\) −77.0436 133.443i −0.222669 0.385675i
\(347\) −80.6472 + 300.979i −0.232413 + 0.867376i 0.746885 + 0.664953i \(0.231548\pi\)
−0.979298 + 0.202423i \(0.935118\pi\)
\(348\) 13.5638 + 50.6208i 0.0389764 + 0.145462i
\(349\) 396.973i 1.13746i −0.822525 0.568729i \(-0.807435\pi\)
0.822525 0.568729i \(-0.192565\pi\)
\(350\) 333.539 + 194.901i 0.952968 + 0.556859i
\(351\) −2.97776 −0.00848364
\(352\) 124.511 33.3626i 0.353724 0.0947802i
\(353\) −127.946 34.2831i −0.362454 0.0971193i 0.0729959 0.997332i \(-0.476744\pi\)
−0.435450 + 0.900213i \(0.643411\pi\)
\(354\) 345.500 199.474i 0.975988 0.563487i
\(355\) 241.217 + 359.548i 0.679484 + 1.01281i
\(356\) 131.185 0.368498
\(357\) −79.7465 105.881i −0.223380 0.296585i
\(358\) −19.3666 + 19.3666i −0.0540966 + 0.0540966i
\(359\) −66.6339 38.4711i −0.185610 0.107162i 0.404316 0.914619i \(-0.367510\pi\)
−0.589926 + 0.807458i \(0.700843\pi\)
\(360\) −77.9754 68.1249i −0.216598 0.189236i
\(361\) 198.713 + 344.182i 0.550453 + 0.953412i
\(362\) −349.647 + 93.6876i −0.965875 + 0.258805i
\(363\) 40.3061 40.3061i 0.111036 0.111036i
\(364\) 2.75899 + 2.15664i 0.00757963 + 0.00592483i
\(365\) −142.122 416.118i −0.389375 1.14005i
\(366\) −48.1004 + 83.3123i −0.131422 + 0.227629i
\(367\) 60.6221 226.245i 0.165183 0.616471i −0.832834 0.553523i \(-0.813283\pi\)
0.998017 0.0629479i \(-0.0200502\pi\)
\(368\) −71.5459 19.1707i −0.194418 0.0520942i
\(369\) 142.045 + 82.0096i 0.384945 + 0.222248i
\(370\) 262.732 + 128.955i 0.710087 + 0.348526i
\(371\) 65.8315 84.2182i 0.177443 0.227003i
\(372\) −25.2927 25.2927i −0.0679912 0.0679912i
\(373\) −98.3605 367.087i −0.263701 0.984146i −0.963041 0.269356i \(-0.913189\pi\)
0.699339 0.714790i \(-0.253478\pi\)
\(374\) −196.165 + 113.256i −0.524505 + 0.302823i
\(375\) −216.119 12.9472i −0.576317 0.0345260i
\(376\) 60.6835 105.107i 0.161392 0.279539i
\(377\) −14.0450 14.0450i −0.0372547 0.0372547i
\(378\) 64.1364 48.3058i 0.169673 0.127793i
\(379\) 369.290i 0.974379i 0.873296 + 0.487190i \(0.161978\pi\)
−0.873296 + 0.487190i \(0.838022\pi\)
\(380\) −66.9690 99.8214i −0.176234 0.262688i
\(381\) −147.413 255.327i −0.386912 0.670151i
\(382\) 71.9991 268.704i 0.188479 0.703415i
\(383\) 187.821 + 700.956i 0.490393 + 1.83017i 0.554439 + 0.832224i \(0.312933\pi\)
−0.0640459 + 0.997947i \(0.520400\pi\)
\(384\) 265.685i 0.691887i
\(385\) −214.835 248.509i −0.558012 0.645477i
\(386\) 121.521 0.314820
\(387\) −194.225 + 52.0424i −0.501873 + 0.134477i
\(388\) 89.2530 + 23.9153i 0.230034 + 0.0616373i
\(389\) 135.464 78.2101i 0.348236 0.201054i −0.315672 0.948868i \(-0.602230\pi\)
0.663908 + 0.747814i \(0.268897\pi\)
\(390\) −10.7490 2.11721i −0.0275616 0.00542876i
\(391\) 43.2353 0.110576
\(392\) 338.186 + 6.06760i 0.862720 + 0.0154786i
\(393\) −151.205 + 151.205i −0.384745 + 0.384745i
\(394\) 167.730 + 96.8387i 0.425710 + 0.245784i
\(395\) 49.8504 + 739.370i 0.126204 + 1.87182i
\(396\) −12.2899 21.2868i −0.0310352 0.0537545i
\(397\) 608.327 163.001i 1.53231 0.410581i 0.608538 0.793525i \(-0.291756\pi\)
0.923772 + 0.382944i \(0.125090\pi\)
\(398\) 437.610 437.610i 1.09952 1.09952i
\(399\) −309.616 + 125.006i −0.775981 + 0.313297i
\(400\) −286.437 370.414i −0.716093 0.926035i
\(401\) 175.823 304.535i 0.438463 0.759439i −0.559109 0.829094i \(-0.688857\pi\)
0.997571 + 0.0696551i \(0.0221899\pi\)
\(402\) 1.39390 5.20210i 0.00346741 0.0129406i
\(403\) 13.0950 + 3.50881i 0.0324939 + 0.00870672i
\(404\) −98.8613 57.0776i −0.244706 0.141281i
\(405\) −19.8274 + 40.3964i −0.0489566 + 0.0997443i
\(406\) 530.350 + 74.6673i 1.30628 + 0.183910i
\(407\) −175.981 175.981i −0.432385 0.432385i
\(408\) 33.8312 + 126.260i 0.0829195 + 0.309460i
\(409\) 63.4064 36.6077i 0.155028 0.0895055i −0.420479 0.907302i \(-0.638138\pi\)
0.575507 + 0.817797i \(0.304805\pi\)
\(410\) 454.440 + 397.032i 1.10839 + 0.968370i
\(411\) −129.565 + 224.413i −0.315243 + 0.546018i
\(412\) 23.7374 + 23.7374i 0.0576151 + 0.0576151i
\(413\) −88.8365 724.973i −0.215101 1.75538i
\(414\) 26.1894i 0.0632595i
\(415\) 246.784 + 48.6085i 0.594660 + 0.117129i
\(416\) −3.93530 6.81614i −0.00945985 0.0163849i
\(417\) 38.8851 145.121i 0.0932495 0.348012i
\(418\) 147.677 + 551.139i 0.353295 + 1.31851i
\(419\) 19.8543i 0.0473849i 0.999719 + 0.0236925i \(0.00754225\pi\)
−0.999719 + 0.0236925i \(0.992458\pi\)
\(420\) 47.6278 23.0686i 0.113400 0.0549252i
\(421\) −19.3162 −0.0458817 −0.0229408 0.999737i \(-0.507303\pi\)
−0.0229408 + 0.999737i \(0.507303\pi\)
\(422\) 458.978 122.983i 1.08763 0.291429i
\(423\) −50.9490 13.6517i −0.120447 0.0322736i
\(424\) −91.2891 + 52.7058i −0.215304 + 0.124306i
\(425\) 217.460 + 165.574i 0.511670 + 0.389585i
\(426\) 331.087 0.777200
\(427\) 105.960 + 140.685i 0.248150 + 0.329473i
\(428\) −123.778 + 123.778i −0.289202 + 0.289202i
\(429\) 8.06794 + 4.65803i 0.0188064 + 0.0108579i
\(430\) −738.111 + 49.7655i −1.71654 + 0.115734i
\(431\) −129.158 223.709i −0.299671 0.519046i 0.676389 0.736544i \(-0.263544\pi\)
−0.976061 + 0.217498i \(0.930210\pi\)
\(432\) −94.0066 + 25.1890i −0.217608 + 0.0583079i
\(433\) −307.927 + 307.927i −0.711147 + 0.711147i −0.966775 0.255628i \(-0.917718\pi\)
0.255628 + 0.966775i \(0.417718\pi\)
\(434\) −338.968 + 136.856i −0.781032 + 0.315337i
\(435\) −284.055 + 97.0167i −0.652999 + 0.223027i
\(436\) −63.6375 + 110.223i −0.145957 + 0.252806i
\(437\) 28.1878 105.198i 0.0645030 0.240729i
\(438\) −324.792 87.0279i −0.741535 0.198694i
\(439\) −544.482 314.357i −1.24028 0.716074i −0.271127 0.962544i \(-0.587396\pi\)
−0.969151 + 0.246469i \(0.920730\pi\)
\(440\) 104.701 + 306.552i 0.237956 + 0.696710i
\(441\) −35.4931 142.651i −0.0804833 0.323471i
\(442\) 9.77955 + 9.77955i 0.0221257 + 0.0221257i
\(443\) 173.821 + 648.708i 0.392372 + 1.46435i 0.826211 + 0.563361i \(0.190492\pi\)
−0.433839 + 0.900990i \(0.642841\pi\)
\(444\) 34.7218 20.0466i 0.0782022 0.0451500i
\(445\) 50.5456 + 749.680i 0.113586 + 1.68467i
\(446\) 201.816 349.556i 0.452502 0.783757i
\(447\) −30.7962 30.7962i −0.0688952 0.0688952i
\(448\) −287.361 122.060i −0.641431 0.272455i
\(449\) 36.1975i 0.0806181i −0.999187 0.0403091i \(-0.987166\pi\)
0.999187 0.0403091i \(-0.0128342\pi\)
\(450\) −100.295 + 131.725i −0.222877 + 0.292721i
\(451\) −256.571 444.394i −0.568893 0.985352i
\(452\) −15.9958 + 59.6973i −0.0353890 + 0.132074i
\(453\) −90.4039 337.392i −0.199567 0.744795i
\(454\) 105.741i 0.232910i
\(455\) −11.2614 + 16.5976i −0.0247504 + 0.0364783i
\(456\) 329.266 0.722075
\(457\) −628.547 + 168.419i −1.37538 + 0.368531i −0.869440 0.494039i \(-0.835520\pi\)
−0.505937 + 0.862570i \(0.668853\pi\)
\(458\) −677.840 181.627i −1.48000 0.396565i
\(459\) 49.1975 28.4042i 0.107184 0.0618827i
\(460\) −3.33582 + 16.9359i −0.00725179 + 0.0368171i
\(461\) −224.604 −0.487210 −0.243605 0.969875i \(-0.578330\pi\)
−0.243605 + 0.969875i \(0.578330\pi\)
\(462\) −249.335 + 30.5529i −0.539685 + 0.0661318i
\(463\) 36.7738 36.7738i 0.0794250 0.0794250i −0.666278 0.745703i \(-0.732114\pi\)
0.745703 + 0.666278i \(0.232114\pi\)
\(464\) −562.203 324.588i −1.21164 0.699543i
\(465\) 134.794 154.285i 0.289880 0.331795i
\(466\) −299.435 518.637i −0.642565 1.11296i
\(467\) −249.401 + 66.8267i −0.534049 + 0.143098i −0.515757 0.856735i \(-0.672489\pi\)
−0.0182915 + 0.999833i \(0.505823\pi\)
\(468\) −1.06123 + 1.06123i −0.00226758 + 0.00226758i
\(469\) −7.76830 6.07230i −0.0165635 0.0129473i
\(470\) −174.208 85.5049i −0.370655 0.181925i
\(471\) 25.1870 43.6251i 0.0534755 0.0926223i
\(472\) −186.417 + 695.719i −0.394952 + 1.47398i
\(473\) 607.642 + 162.817i 1.28465 + 0.344222i
\(474\) 490.755 + 283.337i 1.03535 + 0.597758i
\(475\) 544.643 421.167i 1.14662 0.886666i
\(476\) −66.1547 9.31384i −0.138980 0.0195669i
\(477\) 32.3940 + 32.3940i 0.0679120 + 0.0679120i
\(478\) −10.7180 40.0002i −0.0224227 0.0836825i
\(479\) −633.380 + 365.682i −1.32230 + 0.763429i −0.984095 0.177645i \(-0.943152\pi\)
−0.338202 + 0.941073i \(0.609819\pi\)
\(480\) −118.671 + 8.00116i −0.247232 + 0.0166691i
\(481\) −7.59790 + 13.1599i −0.0157960 + 0.0273596i
\(482\) −123.001 123.001i −0.255188 0.255188i
\(483\) 44.1315 + 18.7454i 0.0913695 + 0.0388103i
\(484\) 28.7290i 0.0593574i
\(485\) −102.279 + 519.266i −0.210884 + 1.07065i
\(486\) 17.2056 + 29.8010i 0.0354024 + 0.0613188i
\(487\) 194.148 724.570i 0.398661 1.48782i −0.416792 0.909002i \(-0.636846\pi\)
0.815454 0.578823i \(-0.196488\pi\)
\(488\) −44.9518 167.762i −0.0921144 0.343776i
\(489\) 146.727i 0.300055i
\(490\) −26.6961 540.173i −0.0544819 1.10239i
\(491\) −114.225 −0.232638 −0.116319 0.993212i \(-0.537109\pi\)
−0.116319 + 0.993212i \(0.537109\pi\)
\(492\) 79.8496 21.3956i 0.162296 0.0434870i
\(493\) 366.019 + 98.0745i 0.742432 + 0.198934i
\(494\) 30.1711 17.4193i 0.0610751 0.0352618i
\(495\) 116.912 78.4346i 0.236185 0.158454i
\(496\) 443.087 0.893320
\(497\) 236.979 557.910i 0.476819 1.12256i
\(498\) 136.005 136.005i 0.273102 0.273102i
\(499\) −326.723 188.633i −0.654755 0.378023i 0.135521 0.990775i \(-0.456729\pi\)
−0.790275 + 0.612752i \(0.790063\pi\)
\(500\) −81.6356 + 72.4072i −0.163271 + 0.144814i
\(501\) 180.825 + 313.199i 0.360929 + 0.625147i
\(502\) −183.977 + 49.2964i −0.366487 + 0.0982000i
\(503\) −29.7057 + 29.7057i −0.0590572 + 0.0590572i −0.736019 0.676961i \(-0.763296\pi\)
0.676961 + 0.736019i \(0.263296\pi\)
\(504\) −20.2095 + 143.545i −0.0400982 + 0.284811i
\(505\) 288.088 586.951i 0.570472 1.16228i
\(506\) 40.9674 70.9576i 0.0809633 0.140233i
\(507\) −75.6134 + 282.193i −0.149139 + 0.556594i
\(508\) −143.531 38.4589i −0.282540 0.0757065i
\(509\) −147.952 85.4202i −0.290672 0.167820i 0.347573 0.937653i \(-0.387006\pi\)
−0.638245 + 0.769833i \(0.720339\pi\)
\(510\) 197.787 67.5527i 0.387818 0.132456i
\(511\) −379.123 + 485.012i −0.741924 + 0.949143i
\(512\) 183.792 + 183.792i 0.358968 + 0.358968i
\(513\) −37.0369 138.224i −0.0721967 0.269442i
\(514\) −478.141 + 276.055i −0.930234 + 0.537071i
\(515\) −126.505 + 144.797i −0.245642 + 0.281160i
\(516\) −50.6717 + 87.7659i −0.0982009 + 0.170089i
\(517\) 116.686 + 116.686i 0.225699 + 0.225699i
\(518\) −49.8361 406.700i −0.0962087 0.785135i
\(519\) 120.901i 0.232950i
\(520\) 16.4252 11.0195i 0.0315869 0.0211913i
\(521\) −75.4299 130.648i −0.144779 0.250765i 0.784511 0.620114i \(-0.212914\pi\)
−0.929291 + 0.369350i \(0.879580\pi\)
\(522\) −59.4078 + 221.713i −0.113808 + 0.424738i
\(523\) 210.608 + 786.001i 0.402693 + 1.50287i 0.808271 + 0.588810i \(0.200403\pi\)
−0.405579 + 0.914060i \(0.632930\pi\)
\(524\) 107.774i 0.205676i
\(525\) 150.180 + 263.289i 0.286057 + 0.501502i
\(526\) −801.077 −1.52296
\(527\) −249.821 + 66.9395i −0.474044 + 0.127020i
\(528\) 294.104 + 78.8049i 0.557015 + 0.149252i
\(529\) 444.583 256.680i 0.840422 0.485218i
\(530\) 93.9026 + 139.967i 0.177175 + 0.264090i
\(531\) 313.027 0.589504
\(532\) −65.7925 + 154.893i −0.123670 + 0.291151i
\(533\) −22.1547 + 22.1547i −0.0415661 + 0.0415661i
\(534\) 497.598 + 287.288i 0.931831 + 0.537993i
\(535\) −755.043 659.660i −1.41130 1.23301i
\(536\) 4.86159 + 8.42051i 0.00907012 + 0.0157099i
\(537\) −20.7575 + 5.56197i −0.0386546 + 0.0103575i
\(538\) 460.760 460.760i 0.856431 0.856431i
\(539\) −126.980 + 442.019i −0.235584 + 0.820072i
\(540\) 7.33048 + 21.4629i 0.0135750 + 0.0397460i
\(541\) −525.462 + 910.127i −0.971280 + 1.68231i −0.279577 + 0.960123i \(0.590194\pi\)
−0.691702 + 0.722183i \(0.743139\pi\)
\(542\) 238.235 889.105i 0.439548 1.64042i
\(543\) −274.343 73.5100i −0.505236 0.135377i
\(544\) 130.035 + 75.0758i 0.239035 + 0.138007i
\(545\) −654.409 321.198i −1.20075 0.589354i
\(546\) 5.74218 + 14.2223i 0.0105168 + 0.0260482i
\(547\) 332.845 + 332.845i 0.608492 + 0.608492i 0.942552 0.334060i \(-0.108419\pi\)
−0.334060 + 0.942552i \(0.608419\pi\)
\(548\) 33.8024 + 126.152i 0.0616833 + 0.230205i
\(549\) −65.3692 + 37.7409i −0.119070 + 0.0687448i
\(550\) 477.792 200.006i 0.868712 0.363647i
\(551\) 477.262 826.642i 0.866174 1.50026i
\(552\) −33.4337 33.4337i −0.0605682 0.0605682i
\(553\) 828.711 624.163i 1.49857 1.12868i
\(554\) 558.930i 1.00890i
\(555\) 127.938 + 190.699i 0.230519 + 0.343602i
\(556\) −37.8609 65.5769i −0.0680951 0.117944i
\(557\) 177.542 662.596i 0.318747 1.18958i −0.601703 0.798720i \(-0.705511\pi\)
0.920450 0.390860i \(-0.127823\pi\)
\(558\) −40.5480 151.327i −0.0726667 0.271196i
\(559\) 38.4103i 0.0687125i
\(560\) −215.118 + 619.241i −0.384140 + 1.10579i
\(561\) −177.727 −0.316805
\(562\) 501.120 134.275i 0.891672 0.238923i
\(563\) 451.611 + 121.009i 0.802152 + 0.214936i 0.636528 0.771253i \(-0.280370\pi\)
0.165623 + 0.986189i \(0.447036\pi\)
\(564\) −23.0227 + 13.2922i −0.0408204 + 0.0235677i
\(565\) −347.313 68.4096i −0.614714 0.121079i
\(566\) 103.929 0.183620
\(567\) 62.5323 7.66256i 0.110286 0.0135142i
\(568\) −422.669 + 422.669i −0.744135 + 0.744135i
\(569\) 492.294 + 284.226i 0.865192 + 0.499519i 0.865747 0.500481i \(-0.166844\pi\)
−0.000555696 1.00000i \(0.500177\pi\)
\(570\) −35.4165 525.290i −0.0621343 0.921561i
\(571\) 377.172 + 653.280i 0.660546 + 1.14410i 0.980472 + 0.196657i \(0.0630084\pi\)
−0.319927 + 0.947442i \(0.603658\pi\)
\(572\) 4.53534 1.21524i 0.00792891 0.00212455i
\(573\) 154.341 154.341i 0.269355 0.269355i
\(574\) 117.781 836.577i 0.205193 1.45745i
\(575\) −98.0681 12.5377i −0.170553 0.0218048i
\(576\) 66.9021 115.878i 0.116149 0.201177i
\(577\) −146.947 + 548.414i −0.254675 + 0.950458i 0.713597 + 0.700557i \(0.247065\pi\)
−0.968271 + 0.249902i \(0.919602\pi\)
\(578\) 361.364 + 96.8272i 0.625197 + 0.167521i
\(579\) 82.5743 + 47.6743i 0.142615 + 0.0823390i
\(580\) −66.6574 + 135.808i −0.114927 + 0.234152i
\(581\) −131.833 326.527i −0.226907 0.562008i
\(582\) 286.172 + 286.172i 0.491704 + 0.491704i
\(583\) −37.0953 138.441i −0.0636282 0.237464i
\(584\) 525.733 303.532i 0.900228 0.519747i
\(585\) −6.47344 5.65567i −0.0110657 0.00966780i
\(586\) −19.0067 + 32.9206i −0.0324347 + 0.0561786i
\(587\) 191.752 + 191.752i 0.326665 + 0.326665i 0.851317 0.524652i \(-0.175805\pi\)
−0.524652 + 0.851317i \(0.675805\pi\)
\(588\) −63.4877 38.1893i −0.107972 0.0649478i
\(589\) 651.497i 1.10611i
\(590\) 1129.96 + 222.565i 1.91518 + 0.377229i
\(591\) 75.9824 + 131.605i 0.128566 + 0.222683i
\(592\) −128.542 + 479.725i −0.217132 + 0.810346i
\(593\) 158.838 + 592.793i 0.267856 + 0.999651i 0.960479 + 0.278352i \(0.0897881\pi\)
−0.692623 + 0.721299i \(0.743545\pi\)
\(594\) 107.657i 0.181241i
\(595\) 27.7361 381.640i 0.0466154 0.641412i
\(596\) −21.9506 −0.0368298
\(597\) 469.040 125.679i 0.785662 0.210517i
\(598\) −4.83233 1.29482i −0.00808081 0.00216525i
\(599\) −649.805 + 375.165i −1.08482 + 0.626319i −0.932192 0.361965i \(-0.882106\pi\)
−0.152625 + 0.988284i \(0.548773\pi\)
\(600\) −40.1234 296.198i −0.0668724 0.493663i
\(601\) −592.685 −0.986165 −0.493083 0.869982i \(-0.664130\pi\)
−0.493083 + 0.869982i \(0.664130\pi\)
\(602\) 623.100 + 827.300i 1.03505 + 1.37425i
\(603\) 2.98803 2.98803i 0.00495527 0.00495527i
\(604\) −152.460 88.0227i −0.252417 0.145733i
\(605\) 164.176 11.0692i 0.271366 0.0182963i
\(606\) −249.993 433.001i −0.412530 0.714523i
\(607\) 387.642 103.868i 0.638619 0.171117i 0.0750410 0.997180i \(-0.476091\pi\)
0.563578 + 0.826063i \(0.309425\pi\)
\(608\) 267.450 267.450i 0.439884 0.439884i
\(609\) 331.084 + 258.801i 0.543652 + 0.424960i
\(610\) −262.802 + 89.7581i −0.430823 + 0.147144i
\(611\) 5.03788 8.72587i 0.00824531 0.0142813i
\(612\) 7.41041 27.6560i 0.0121085 0.0451896i
\(613\) −212.730 57.0009i −0.347031 0.0929868i 0.0810932 0.996707i \(-0.474159\pi\)
−0.428125 + 0.903720i \(0.640826\pi\)
\(614\) −281.877 162.742i −0.459084 0.265052i
\(615\) 153.035 + 448.070i 0.248837 + 0.728569i
\(616\) 279.299 357.307i 0.453407 0.580043i
\(617\) 338.020 + 338.020i 0.547844 + 0.547844i 0.925817 0.377973i \(-0.123379\pi\)
−0.377973 + 0.925817i \(0.623379\pi\)
\(618\) 38.0546 + 142.022i 0.0615771 + 0.229809i
\(619\) 266.400 153.806i 0.430371 0.248475i −0.269134 0.963103i \(-0.586737\pi\)
0.699505 + 0.714628i \(0.253404\pi\)
\(620\) −6.94612 103.023i −0.0112034 0.166167i
\(621\) −10.2745 + 17.7959i −0.0165451 + 0.0286569i
\(622\) −51.7078 51.7078i −0.0831316 0.0831316i
\(623\) 840.266 632.866i 1.34874 1.01584i
\(624\) 18.5909i 0.0297931i
\(625\) −445.237 438.622i −0.712379 0.701795i
\(626\) −478.840 829.375i −0.764920 1.32488i
\(627\) −115.872 + 432.439i −0.184803 + 0.689696i
\(628\) −6.57106 24.5235i −0.0104635 0.0390502i
\(629\) 289.899i 0.460888i
\(630\) 231.176 + 16.8009i 0.366945 + 0.0266682i
\(631\) −219.545 −0.347931 −0.173966 0.984752i \(-0.555658\pi\)
−0.173966 + 0.984752i \(0.555658\pi\)
\(632\) −988.213 + 264.791i −1.56363 + 0.418973i
\(633\) 360.128 + 96.4959i 0.568922 + 0.152442i
\(634\) 534.401 308.536i 0.842903 0.486650i
\(635\) 164.477 835.047i 0.259020 1.31503i
\(636\) 23.0894 0.0363042
\(637\) 28.0759 + 0.503726i 0.0440752 + 0.000790779i
\(638\) 507.779 507.779i 0.795892 0.795892i
\(639\) 224.976 + 129.890i 0.352076 + 0.203271i
\(640\) 504.615 577.580i 0.788462 0.902469i
\(641\) 417.537 + 723.194i 0.651383 + 1.12823i 0.982787 + 0.184740i \(0.0591442\pi\)
−0.331404 + 0.943489i \(0.607522\pi\)
\(642\) −740.570 + 198.435i −1.15354 + 0.309089i
\(643\) −649.916 + 649.916i −1.01076 + 1.01076i −0.0108149 + 0.999942i \(0.503443\pi\)
−0.999942 + 0.0108149i \(0.996557\pi\)
\(644\) 22.4083 9.04721i 0.0347955 0.0140485i
\(645\) −521.076 255.755i −0.807870 0.396520i
\(646\) −332.318 + 575.591i −0.514424 + 0.891008i
\(647\) 95.3328 355.787i 0.147346 0.549902i −0.852294 0.523063i \(-0.824789\pi\)
0.999640 0.0268391i \(-0.00854417\pi\)
\(648\) −60.0090 16.0794i −0.0926064 0.0248138i
\(649\) −848.115 489.659i −1.30680 0.754483i
\(650\) −19.3464 25.0184i −0.0297637 0.0384898i
\(651\) −284.022 39.9872i −0.436286 0.0614242i
\(652\) −52.2913 52.2913i −0.0802014 0.0802014i
\(653\) 117.038 + 436.792i 0.179232 + 0.668901i 0.995792 + 0.0916414i \(0.0292113\pi\)
−0.816561 + 0.577260i \(0.804122\pi\)
\(654\) −482.765 + 278.725i −0.738173 + 0.426185i
\(655\) −615.892 + 41.5252i −0.940293 + 0.0633972i
\(656\) −512.008 + 886.823i −0.780499 + 1.35186i
\(657\) −186.557 186.557i −0.283953 0.283953i
\(658\) 33.0444 + 269.668i 0.0502195 + 0.409829i
\(659\) 395.881i 0.600730i 0.953824 + 0.300365i \(0.0971085\pi\)
−0.953824 + 0.300365i \(0.902892\pi\)
\(660\) 13.7126 69.6183i 0.0207766 0.105482i
\(661\) −41.2693 71.4804i −0.0624346 0.108140i 0.833119 0.553094i \(-0.186553\pi\)
−0.895553 + 0.444955i \(0.853220\pi\)
\(662\) −143.042 + 533.838i −0.216075 + 0.806403i
\(663\) 2.80863 + 10.4819i 0.00423624 + 0.0158099i
\(664\) 347.250i 0.522966i
\(665\) −910.509 316.302i −1.36919 0.475642i
\(666\) 175.604 0.263669
\(667\) −132.398 + 35.4760i −0.198498 + 0.0531874i
\(668\) 176.062 + 47.1758i 0.263567 + 0.0706225i
\(669\) 274.271 158.351i 0.409972 0.236698i
\(670\) 12.9106 8.66158i 0.0192696 0.0129277i
\(671\) 236.148 0.351935
\(672\) 100.180 + 133.011i 0.149078 + 0.197933i
\(673\) 923.540 923.540i 1.37227 1.37227i 0.515207 0.857066i \(-0.327715\pi\)
0.857066 0.515207i \(-0.172285\pi\)
\(674\) −20.4868 11.8280i −0.0303958 0.0175490i
\(675\) −119.829 + 50.1608i −0.177524 + 0.0743123i
\(676\) 73.6218 + 127.517i 0.108908 + 0.188634i
\(677\) −242.099 + 64.8703i −0.357606 + 0.0958203i −0.433149 0.901322i \(-0.642598\pi\)
0.0755429 + 0.997143i \(0.475931\pi\)
\(678\) −191.407 + 191.407i −0.282312 + 0.282312i
\(679\) 687.055 277.394i 1.01186 0.408533i
\(680\) −166.259 + 338.735i −0.244498 + 0.498140i
\(681\) −41.4837 + 71.8518i −0.0609158 + 0.105509i
\(682\) −126.856 + 473.434i −0.186006 + 0.694185i
\(683\) −1283.82 344.000i −1.87968 0.503660i −0.999583 0.0288723i \(-0.990808\pi\)
−0.880101 0.474787i \(-0.842525\pi\)
\(684\) −62.4602 36.0614i −0.0913161 0.0527213i
\(685\) −707.894 + 241.776i −1.03342 + 0.352957i
\(686\) −612.884 + 444.603i −0.893417 + 0.648110i
\(687\) −389.343 389.343i −0.566729 0.566729i
\(688\) −324.914 1212.60i −0.472259 1.76250i
\(689\) −7.57873 + 4.37558i −0.0109996 + 0.00635063i
\(690\) −49.7417 + 56.9341i −0.0720894 + 0.0825131i
\(691\) 161.274 279.335i 0.233392 0.404247i −0.725412 0.688315i \(-0.758351\pi\)
0.958804 + 0.284068i \(0.0916840\pi\)
\(692\) −43.0873 43.0873i −0.0622649 0.0622649i
\(693\) −181.411 77.0566i −0.261777 0.111193i
\(694\) 687.843i 0.991129i
\(695\) 360.162 241.629i 0.518219 0.347667i
\(696\) −207.200 358.881i −0.297702 0.515634i
\(697\) 154.703 577.361i 0.221956 0.828352i
\(698\) −226.805 846.449i −0.324936 1.21268i
\(699\) 469.891i 0.672233i
\(700\) 147.354 + 40.3101i 0.210506 + 0.0575859i
\(701\) 993.695 1.41754 0.708769 0.705440i \(-0.249251\pi\)
0.708769 + 0.705440i \(0.249251\pi\)
\(702\) −6.34936 + 1.70130i −0.00904467 + 0.00242351i
\(703\) −705.369 189.003i −1.00337 0.268852i
\(704\) −362.529 + 209.306i −0.514956 + 0.297310i
\(705\) −84.8309 126.446i −0.120327 0.179355i
\(706\) −292.402 −0.414167
\(707\) −908.580 + 111.335i −1.28512 + 0.157476i
\(708\) 111.558 111.558i 0.157568 0.157568i
\(709\) 594.099 + 343.003i 0.837940 + 0.483785i 0.856563 0.516042i \(-0.172595\pi\)
−0.0186238 + 0.999827i \(0.505928\pi\)
\(710\) 719.761 + 628.835i 1.01375 + 0.885683i
\(711\) 222.315 + 385.060i 0.312679 + 0.541576i
\(712\) −1001.99 + 268.483i −1.40729 + 0.377083i
\(713\) 66.1530 66.1530i 0.0927811 0.0927811i
\(714\) −230.534 180.203i −0.322877 0.252385i
\(715\) 8.69215 + 25.4497i 0.0121568 + 0.0355940i
\(716\) −5.41547 + 9.37986i −0.00756350 + 0.0131004i
\(717\) 8.40968 31.3853i 0.0117290 0.0437731i
\(718\) −164.061 43.9599i −0.228497 0.0612255i
\(719\) 258.622 + 149.315i 0.359696 + 0.207671i 0.668948 0.743310i \(-0.266745\pi\)
−0.309251 + 0.950980i \(0.600078\pi\)
\(720\) −252.206 123.788i −0.350285 0.171928i
\(721\) 266.557 + 37.5282i 0.369705 + 0.0520503i
\(722\) 620.353 + 620.353i 0.859214 + 0.859214i
\(723\) −35.3250 131.835i −0.0488590 0.182344i
\(724\) −123.969 + 71.5738i −0.171228 + 0.0988588i
\(725\) −801.779 328.598i −1.10590 0.453239i
\(726\) 62.9148 108.972i 0.0866595 0.150099i
\(727\) 427.959 + 427.959i 0.588665 + 0.588665i 0.937270 0.348605i \(-0.113344\pi\)
−0.348605 + 0.937270i \(0.613344\pi\)
\(728\) −25.4869 10.8259i −0.0350094 0.0148707i
\(729\) 27.0000i 0.0370370i
\(730\) −540.784 806.072i −0.740800 1.10421i
\(731\) 366.387 + 634.601i 0.501214 + 0.868127i
\(732\) −9.84629 + 36.7469i −0.0134512 + 0.0502006i
\(733\) 112.025 + 418.082i 0.152830 + 0.570370i 0.999281 + 0.0379039i \(0.0120681\pi\)
−0.846451 + 0.532466i \(0.821265\pi\)
\(734\) 517.048i 0.704426i
\(735\) 193.777 377.525i 0.263643 0.513640i
\(736\) −54.3136 −0.0737956
\(737\) −12.7698 + 3.42167i −0.0173268 + 0.00464270i
\(738\) 349.732 + 93.7104i 0.473891 + 0.126979i
\(739\) −160.126 + 92.4489i −0.216680 + 0.125100i −0.604412 0.796672i \(-0.706592\pi\)
0.387732 + 0.921772i \(0.373259\pi\)
\(740\) 113.557 + 22.3672i 0.153456 + 0.0302259i
\(741\) 27.3354 0.0368898
\(742\) 92.2528 217.187i 0.124330 0.292705i
\(743\) −576.263 + 576.263i −0.775589 + 0.775589i −0.979077 0.203488i \(-0.934772\pi\)
0.203488 + 0.979077i \(0.434772\pi\)
\(744\) 244.950 + 141.422i 0.329233 + 0.190083i
\(745\) −8.45753 125.440i −0.0113524 0.168376i
\(746\) −419.461 726.527i −0.562280 0.973897i
\(747\) 145.773 39.0597i 0.195145 0.0522888i
\(748\) −63.3393 + 63.3393i −0.0846782 + 0.0846782i
\(749\) −195.690 + 1389.96i −0.261269 + 1.85575i
\(750\) −468.219 + 95.8699i −0.624292 + 0.127827i
\(751\) 710.061 1229.86i 0.945487 1.63763i 0.190715 0.981645i \(-0.438919\pi\)
0.754772 0.655987i \(-0.227747\pi\)
\(752\) 85.2314 318.088i 0.113340 0.422989i
\(753\) −144.353 38.6794i −0.191704 0.0513670i
\(754\) −37.9721 21.9232i −0.0503609 0.0290759i
\(755\) 444.278 905.172i 0.588447 1.19890i
\(756\) 19.5547 25.0164i 0.0258660 0.0330904i
\(757\) −316.057 316.057i −0.417512 0.417512i 0.466833 0.884345i \(-0.345395\pi\)
−0.884345 + 0.466833i \(0.845395\pi\)
\(758\) 210.989 + 787.422i 0.278350 + 1.03882i
\(759\) 55.6754 32.1442i 0.0733536 0.0423507i
\(760\) 715.803 + 625.377i 0.941846 + 0.822864i
\(761\) 393.410