Properties

Label 105.3.v.a.37.11
Level 105
Weight 3
Character 105.37
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.11
Character \(\chi\) \(=\) 105.37
Dual form 105.3.v.a.88.11

$q$-expansion

\(f(q)\) \(=\) \(q+(0.984292 - 0.263740i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(-2.56483 + 1.48081i) q^{4} +(-4.04958 - 2.93273i) q^{5} -1.76498 q^{6} +(-5.81621 + 3.89508i) q^{7} +(-5.01620 + 5.01620i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(0.984292 - 0.263740i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(-2.56483 + 1.48081i) q^{4} +(-4.04958 - 2.93273i) q^{5} -1.76498 q^{6} +(-5.81621 + 3.89508i) q^{7} +(-5.01620 + 5.01620i) q^{8} +(2.59808 + 1.50000i) q^{9} +(-4.75945 - 1.81862i) q^{10} +(-2.58885 - 4.48403i) q^{11} +(4.95487 - 1.32765i) q^{12} +(-3.12416 + 3.12416i) q^{13} +(-4.69756 + 5.36787i) q^{14} +(5.46037 + 6.72193i) q^{15} +(2.30879 - 3.99894i) q^{16} +(4.02869 - 15.0353i) q^{17} +(2.95288 + 0.791221i) q^{18} +(-17.1897 - 9.92450i) q^{19} +(14.7293 + 1.52531i) q^{20} +(11.4768 - 3.90926i) q^{21} +(-3.73081 - 3.73081i) q^{22} +(9.71406 + 36.2534i) q^{23} +(10.6410 - 6.14357i) q^{24} +(7.79821 + 23.7526i) q^{25} +(-2.25112 + 3.89905i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(9.14974 - 18.6029i) q^{28} -11.8306i q^{29} +(7.14745 + 5.17622i) q^{30} +(-9.02952 - 15.6396i) q^{31} +(8.56207 - 31.9541i) q^{32} +(2.32110 + 8.66248i) q^{33} -15.8616i q^{34} +(34.9764 + 1.28394i) q^{35} -8.88483 q^{36} +(-70.9224 + 19.0036i) q^{37} +(-19.5372 - 5.23498i) q^{38} +(6.62734 - 3.82630i) q^{39} +(35.0247 - 5.60235i) q^{40} +60.6872 q^{41} +(10.2655 - 6.87476i) q^{42} +(-33.1804 + 33.1804i) q^{43} +(13.2799 + 7.66718i) q^{44} +(-6.12203 - 13.6938i) q^{45} +(19.1229 + 33.1219i) q^{46} +(-19.9094 + 5.33470i) q^{47} +(-5.65535 + 5.65535i) q^{48} +(18.6567 - 45.3092i) q^{49} +(13.9402 + 21.3228i) q^{50} +(-13.4803 + 23.3485i) q^{51} +(3.38666 - 12.6392i) q^{52} +(-6.28105 - 1.68300i) q^{53} +(-4.58556 - 2.64748i) q^{54} +(-2.66666 + 25.7508i) q^{55} +(9.63679 - 48.7138i) q^{56} +(24.3100 + 24.3100i) q^{57} +(-3.12020 - 11.6447i) q^{58} +(-32.2232 + 18.6041i) q^{59} +(-23.9588 - 9.15485i) q^{60} +(-6.88336 + 11.9223i) q^{61} +(-13.0125 - 13.0125i) q^{62} +(-20.9536 + 1.39539i) q^{63} -15.2400i q^{64} +(21.8138 - 3.48922i) q^{65} +(4.56929 + 7.91424i) q^{66} +(-0.969242 + 3.61726i) q^{67} +(11.9314 + 44.5287i) q^{68} -65.0077i q^{69} +(34.7657 - 7.96093i) q^{70} -77.9344 q^{71} +(-20.5568 + 5.50817i) q^{72} +(-123.630 - 33.1265i) q^{73} +(-64.7964 + 37.4102i) q^{74} +(-2.39864 - 43.2348i) q^{75} +58.7850 q^{76} +(32.5230 + 15.9963i) q^{77} +(5.51409 - 5.51409i) q^{78} +(73.5670 + 42.4739i) q^{79} +(-21.0774 + 9.42297i) q^{80} +(4.50000 + 7.79423i) q^{81} +(59.7339 - 16.0057i) q^{82} +(-10.0091 + 10.0091i) q^{83} +(-23.6473 + 27.0215i) q^{84} +(-60.4089 + 49.0715i) q^{85} +(-23.9082 + 41.4102i) q^{86} +(-5.30350 + 19.7929i) q^{87} +(35.4790 + 9.50657i) q^{88} +(-95.4344 - 55.0991i) q^{89} +(-9.63747 - 11.8641i) q^{90} +(6.00193 - 30.3396i) q^{91} +(-78.5990 - 78.5990i) q^{92} +(8.09565 + 30.2134i) q^{93} +(-18.1897 + 10.5018i) q^{94} +(40.5054 + 90.6029i) q^{95} +(-28.6492 + 49.6219i) q^{96} +(30.0049 + 30.0049i) q^{97} +(6.41377 - 49.5181i) q^{98} -15.5331i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.984292 0.263740i 0.492146 0.131870i −0.00420656 0.999991i \(-0.501339\pi\)
0.496353 + 0.868121i \(0.334672\pi\)
\(3\) −1.67303 0.448288i −0.557678 0.149429i
\(4\) −2.56483 + 1.48081i −0.641207 + 0.370201i
\(5\) −4.04958 2.93273i −0.809916 0.586546i
\(6\) −1.76498 −0.294164
\(7\) −5.81621 + 3.89508i −0.830888 + 0.556440i
\(8\) −5.01620 + 5.01620i −0.627025 + 0.627025i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) −4.75945 1.81862i −0.475945 0.181862i
\(11\) −2.58885 4.48403i −0.235350 0.407639i 0.724024 0.689775i \(-0.242290\pi\)
−0.959374 + 0.282136i \(0.908957\pi\)
\(12\) 4.95487 1.32765i 0.412906 0.110638i
\(13\) −3.12416 + 3.12416i −0.240320 + 0.240320i −0.816982 0.576663i \(-0.804355\pi\)
0.576663 + 0.816982i \(0.304355\pi\)
\(14\) −4.69756 + 5.36787i −0.335540 + 0.383419i
\(15\) 5.46037 + 6.72193i 0.364025 + 0.448129i
\(16\) 2.30879 3.99894i 0.144299 0.249934i
\(17\) 4.02869 15.0353i 0.236982 0.884429i −0.740263 0.672317i \(-0.765299\pi\)
0.977245 0.212112i \(-0.0680341\pi\)
\(18\) 2.95288 + 0.791221i 0.164049 + 0.0439567i
\(19\) −17.1897 9.92450i −0.904723 0.522342i −0.0259936 0.999662i \(-0.508275\pi\)
−0.878730 + 0.477320i \(0.841608\pi\)
\(20\) 14.7293 + 1.52531i 0.736464 + 0.0762655i
\(21\) 11.4768 3.90926i 0.546516 0.186155i
\(22\) −3.73081 3.73081i −0.169582 0.169582i
\(23\) 9.71406 + 36.2534i 0.422350 + 1.57623i 0.769642 + 0.638476i \(0.220435\pi\)
−0.347292 + 0.937757i \(0.612899\pi\)
\(24\) 10.6410 6.14357i 0.443374 0.255982i
\(25\) 7.79821 + 23.7526i 0.311928 + 0.950106i
\(26\) −2.25112 + 3.89905i −0.0865814 + 0.149963i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) 9.14974 18.6029i 0.326777 0.664389i
\(29\) 11.8306i 0.407951i −0.978976 0.203975i \(-0.934614\pi\)
0.978976 0.203975i \(-0.0653863\pi\)
\(30\) 7.14745 + 5.17622i 0.238248 + 0.172541i
\(31\) −9.02952 15.6396i −0.291275 0.504503i 0.682837 0.730571i \(-0.260746\pi\)
−0.974111 + 0.226068i \(0.927413\pi\)
\(32\) 8.56207 31.9541i 0.267565 0.998565i
\(33\) 2.32110 + 8.66248i 0.0703365 + 0.262499i
\(34\) 15.8616i 0.466519i
\(35\) 34.9764 + 1.28394i 0.999327 + 0.0366839i
\(36\) −8.88483 −0.246801
\(37\) −70.9224 + 19.0036i −1.91682 + 0.513611i −0.926189 + 0.377059i \(0.876935\pi\)
−0.990633 + 0.136552i \(0.956398\pi\)
\(38\) −19.5372 5.23498i −0.514137 0.137763i
\(39\) 6.62734 3.82630i 0.169932 0.0981102i
\(40\) 35.0247 5.60235i 0.875617 0.140059i
\(41\) 60.6872 1.48018 0.740088 0.672510i \(-0.234784\pi\)
0.740088 + 0.672510i \(0.234784\pi\)
\(42\) 10.2655 6.87476i 0.244417 0.163685i
\(43\) −33.1804 + 33.1804i −0.771637 + 0.771637i −0.978393 0.206756i \(-0.933709\pi\)
0.206756 + 0.978393i \(0.433709\pi\)
\(44\) 13.2799 + 7.66718i 0.301817 + 0.174254i
\(45\) −6.12203 13.6938i −0.136045 0.304307i
\(46\) 19.1229 + 33.1219i 0.415716 + 0.720041i
\(47\) −19.9094 + 5.33470i −0.423604 + 0.113504i −0.464322 0.885666i \(-0.653702\pi\)
0.0407183 + 0.999171i \(0.487035\pi\)
\(48\) −5.65535 + 5.65535i −0.117820 + 0.117820i
\(49\) 18.6567 45.3092i 0.380749 0.924678i
\(50\) 13.9402 + 21.3228i 0.278805 + 0.426457i
\(51\) −13.4803 + 23.3485i −0.264319 + 0.457814i
\(52\) 3.38666 12.6392i 0.0651281 0.243062i
\(53\) −6.28105 1.68300i −0.118510 0.0317547i 0.199076 0.979984i \(-0.436206\pi\)
−0.317587 + 0.948229i \(0.602872\pi\)
\(54\) −4.58556 2.64748i −0.0849178 0.0490273i
\(55\) −2.66666 + 25.7508i −0.0484847 + 0.468197i
\(56\) 9.63679 48.7138i 0.172086 0.869889i
\(57\) 24.3100 + 24.3100i 0.426491 + 0.426491i
\(58\) −3.12020 11.6447i −0.0537965 0.200771i
\(59\) −32.2232 + 18.6041i −0.546155 + 0.315323i −0.747570 0.664183i \(-0.768779\pi\)
0.201415 + 0.979506i \(0.435446\pi\)
\(60\) −23.9588 9.15485i −0.399313 0.152581i
\(61\) −6.88336 + 11.9223i −0.112842 + 0.195448i −0.916915 0.399082i \(-0.869329\pi\)
0.804073 + 0.594530i \(0.202662\pi\)
\(62\) −13.0125 13.0125i −0.209879 0.209879i
\(63\) −20.9536 + 1.39539i −0.332597 + 0.0221491i
\(64\) 15.2400i 0.238125i
\(65\) 21.8138 3.48922i 0.335597 0.0536803i
\(66\) 4.56929 + 7.91424i 0.0692316 + 0.119913i
\(67\) −0.969242 + 3.61726i −0.0144663 + 0.0539889i −0.972782 0.231723i \(-0.925564\pi\)
0.958315 + 0.285712i \(0.0922302\pi\)
\(68\) 11.9314 + 44.5287i 0.175462 + 0.654833i
\(69\) 65.0077i 0.942141i
\(70\) 34.7657 7.96093i 0.496652 0.113728i
\(71\) −77.9344 −1.09767 −0.548834 0.835932i \(-0.684928\pi\)
−0.548834 + 0.835932i \(0.684928\pi\)
\(72\) −20.5568 + 5.50817i −0.285511 + 0.0765024i
\(73\) −123.630 33.1265i −1.69356 0.453788i −0.722256 0.691626i \(-0.756895\pi\)
−0.971305 + 0.237838i \(0.923561\pi\)
\(74\) −64.7964 + 37.4102i −0.875626 + 0.505543i
\(75\) −2.39864 43.2348i −0.0319818 0.576464i
\(76\) 58.7850 0.773487
\(77\) 32.5230 + 15.9963i 0.422376 + 0.207744i
\(78\) 5.51409 5.51409i 0.0706935 0.0706935i
\(79\) 73.5670 + 42.4739i 0.931227 + 0.537644i 0.887200 0.461386i \(-0.152648\pi\)
0.0440278 + 0.999030i \(0.485981\pi\)
\(80\) −21.0774 + 9.42297i −0.263468 + 0.117787i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 59.7339 16.0057i 0.728463 0.195191i
\(83\) −10.0091 + 10.0091i −0.120591 + 0.120591i −0.764827 0.644236i \(-0.777176\pi\)
0.644236 + 0.764827i \(0.277176\pi\)
\(84\) −23.6473 + 27.0215i −0.281515 + 0.321685i
\(85\) −60.4089 + 49.0715i −0.710693 + 0.577312i
\(86\) −23.9082 + 41.4102i −0.278002 + 0.481514i
\(87\) −5.30350 + 19.7929i −0.0609598 + 0.227505i
\(88\) 35.4790 + 9.50657i 0.403170 + 0.108029i
\(89\) −95.4344 55.0991i −1.07230 0.619091i −0.143489 0.989652i \(-0.545832\pi\)
−0.928808 + 0.370561i \(0.879165\pi\)
\(90\) −9.63747 11.8641i −0.107083 0.131823i
\(91\) 6.00193 30.3396i 0.0659552 0.333402i
\(92\) −78.5990 78.5990i −0.854337 0.854337i
\(93\) 8.09565 + 30.2134i 0.0870500 + 0.324875i
\(94\) −18.1897 + 10.5018i −0.193507 + 0.111721i
\(95\) 40.5054 + 90.6029i 0.426372 + 0.953715i
\(96\) −28.6492 + 49.6219i −0.298430 + 0.516895i
\(97\) 30.0049 + 30.0049i 0.309328 + 0.309328i 0.844649 0.535321i \(-0.179809\pi\)
−0.535321 + 0.844649i \(0.679809\pi\)
\(98\) 6.41377 49.5181i 0.0654466 0.505286i
\(99\) 15.5331i 0.156900i
\(100\) −55.1741 49.3739i −0.551741 0.493739i
\(101\) −34.2964 59.4032i −0.339569 0.588150i 0.644783 0.764366i \(-0.276948\pi\)
−0.984352 + 0.176215i \(0.943614\pi\)
\(102\) −7.11058 + 26.5370i −0.0697116 + 0.260167i
\(103\) 33.3675 + 124.529i 0.323956 + 1.20902i 0.915357 + 0.402643i \(0.131908\pi\)
−0.591401 + 0.806378i \(0.701425\pi\)
\(104\) 31.3428i 0.301373i
\(105\) −57.9412 17.8276i −0.551821 0.169786i
\(106\) −6.62626 −0.0625119
\(107\) 22.9093 6.13854i 0.214106 0.0573695i −0.150172 0.988660i \(-0.547983\pi\)
0.364278 + 0.931290i \(0.381316\pi\)
\(108\) 14.8646 + 3.98296i 0.137635 + 0.0368793i
\(109\) 167.284 96.5816i 1.53472 0.886070i 0.535583 0.844482i \(-0.320092\pi\)
0.999135 0.0415874i \(-0.0132415\pi\)
\(110\) 4.16676 + 26.0497i 0.0378796 + 0.236815i
\(111\) 127.175 1.14572
\(112\) 2.14778 + 32.2516i 0.0191766 + 0.287961i
\(113\) 129.366 129.366i 1.14483 1.14483i 0.157275 0.987555i \(-0.449729\pi\)
0.987555 0.157275i \(-0.0502710\pi\)
\(114\) 30.3396 + 17.5166i 0.266137 + 0.153654i
\(115\) 66.9834 175.300i 0.582464 1.52434i
\(116\) 17.5188 + 30.3434i 0.151024 + 0.261581i
\(117\) −12.8030 + 3.43056i −0.109428 + 0.0293211i
\(118\) −26.8104 + 26.8104i −0.227206 + 0.227206i
\(119\) 35.1319 + 103.141i 0.295226 + 0.866727i
\(120\) −61.1089 6.32821i −0.509241 0.0527351i
\(121\) 47.0957 81.5721i 0.389220 0.674149i
\(122\) −3.63084 + 13.5505i −0.0297610 + 0.111069i
\(123\) −101.532 27.2053i −0.825461 0.221182i
\(124\) 46.3184 + 26.7419i 0.373535 + 0.215661i
\(125\) 38.0806 119.058i 0.304645 0.952466i
\(126\) −20.2564 + 6.89978i −0.160765 + 0.0547602i
\(127\) 54.2797 + 54.2797i 0.427400 + 0.427400i 0.887742 0.460342i \(-0.152273\pi\)
−0.460342 + 0.887742i \(0.652273\pi\)
\(128\) 30.2289 + 112.816i 0.236163 + 0.881373i
\(129\) 70.3862 40.6375i 0.545630 0.315019i
\(130\) 20.5509 9.18760i 0.158084 0.0706738i
\(131\) −9.27972 + 16.0730i −0.0708376 + 0.122694i −0.899269 0.437397i \(-0.855901\pi\)
0.828431 + 0.560091i \(0.189234\pi\)
\(132\) −18.7807 18.7807i −0.142278 0.142278i
\(133\) 138.636 9.23239i 1.04238 0.0694165i
\(134\) 3.81607i 0.0284781i
\(135\) 4.10358 + 25.6546i 0.0303969 + 0.190034i
\(136\) 55.2113 + 95.6288i 0.405965 + 0.703153i
\(137\) 27.9757 104.407i 0.204202 0.762094i −0.785489 0.618876i \(-0.787588\pi\)
0.989691 0.143218i \(-0.0457449\pi\)
\(138\) −17.1452 63.9866i −0.124240 0.463671i
\(139\) 135.516i 0.974938i 0.873140 + 0.487469i \(0.162080\pi\)
−0.873140 + 0.487469i \(0.837920\pi\)
\(140\) −91.6099 + 48.5002i −0.654356 + 0.346430i
\(141\) 35.7005 0.253195
\(142\) −76.7102 + 20.5544i −0.540213 + 0.144750i
\(143\) 22.0968 + 5.92082i 0.154523 + 0.0414043i
\(144\) 11.9968 6.92636i 0.0833112 0.0480998i
\(145\) −34.6959 + 47.9089i −0.239282 + 0.330406i
\(146\) −130.425 −0.893320
\(147\) −51.5248 + 67.4403i −0.350509 + 0.458777i
\(148\) 153.763 153.763i 1.03894 1.03894i
\(149\) 34.6086 + 19.9813i 0.232273 + 0.134103i 0.611620 0.791152i \(-0.290518\pi\)
−0.379347 + 0.925254i \(0.623851\pi\)
\(150\) −13.7637 41.9230i −0.0917581 0.279487i
\(151\) −20.0625 34.7493i −0.132864 0.230128i 0.791915 0.610631i \(-0.209084\pi\)
−0.924780 + 0.380503i \(0.875751\pi\)
\(152\) 136.010 36.4439i 0.894806 0.239762i
\(153\) 33.0198 33.0198i 0.215816 0.215816i
\(154\) 36.2310 + 7.16738i 0.235266 + 0.0465414i
\(155\) −9.30090 + 89.8149i −0.0600058 + 0.579451i
\(156\) −11.3320 + 19.6276i −0.0726410 + 0.125818i
\(157\) −39.9568 + 149.121i −0.254502 + 0.949813i 0.713865 + 0.700283i \(0.246943\pi\)
−0.968367 + 0.249530i \(0.919724\pi\)
\(158\) 83.6134 + 22.4042i 0.529199 + 0.141798i
\(159\) 9.75393 + 5.63143i 0.0613454 + 0.0354178i
\(160\) −128.385 + 104.290i −0.802409 + 0.651815i
\(161\) −197.709 173.020i −1.22800 1.07466i
\(162\) 6.48497 + 6.48497i 0.0400307 + 0.0400307i
\(163\) −56.0733 209.268i −0.344008 1.28386i −0.893767 0.448532i \(-0.851947\pi\)
0.549759 0.835324i \(-0.314720\pi\)
\(164\) −155.652 + 89.8659i −0.949100 + 0.547963i
\(165\) 16.0052 41.8866i 0.0970012 0.253858i
\(166\) −7.21206 + 12.4917i −0.0434461 + 0.0752509i
\(167\) 66.5271 + 66.5271i 0.398366 + 0.398366i 0.877656 0.479290i \(-0.159106\pi\)
−0.479290 + 0.877656i \(0.659106\pi\)
\(168\) −37.9605 + 77.1797i −0.225955 + 0.459403i
\(169\) 149.479i 0.884493i
\(170\) −46.5179 + 64.2330i −0.273635 + 0.377841i
\(171\) −29.7735 51.5692i −0.174114 0.301574i
\(172\) 35.9684 134.236i 0.209118 0.780440i
\(173\) −55.0739 205.539i −0.318346 1.18808i −0.920833 0.389956i \(-0.872490\pi\)
0.602487 0.798129i \(-0.294176\pi\)
\(174\) 20.8808i 0.120005i
\(175\) −137.874 107.776i −0.787854 0.615862i
\(176\) −23.9085 −0.135844
\(177\) 62.2504 16.6799i 0.351697 0.0942369i
\(178\) −108.467 29.0637i −0.609366 0.163279i
\(179\) −254.711 + 147.057i −1.42296 + 0.821549i −0.996551 0.0829801i \(-0.973556\pi\)
−0.426413 + 0.904529i \(0.640223\pi\)
\(180\) 35.9798 + 26.0568i 0.199888 + 0.144760i
\(181\) −160.740 −0.888065 −0.444032 0.896011i \(-0.646452\pi\)
−0.444032 + 0.896011i \(0.646452\pi\)
\(182\) −2.09413 31.4460i −0.0115062 0.172780i
\(183\) 16.8607 16.8607i 0.0921351 0.0921351i
\(184\) −230.582 133.126i −1.25316 0.723513i
\(185\) 342.938 + 131.040i 1.85372 + 0.708322i
\(186\) 15.9370 + 27.6036i 0.0856826 + 0.148407i
\(187\) −77.8483 + 20.8594i −0.416301 + 0.111548i
\(188\) 43.1645 43.1645i 0.229599 0.229599i
\(189\) 35.6816 + 7.05870i 0.188791 + 0.0373476i
\(190\) 63.7647 + 78.4968i 0.335604 + 0.413141i
\(191\) 73.6284 127.528i 0.385489 0.667686i −0.606348 0.795199i \(-0.707366\pi\)
0.991837 + 0.127513i \(0.0406995\pi\)
\(192\) −6.83190 + 25.4970i −0.0355828 + 0.132797i
\(193\) −96.7332 25.9196i −0.501208 0.134298i −0.000647439 1.00000i \(-0.500206\pi\)
−0.500561 + 0.865702i \(0.666873\pi\)
\(194\) 37.4470 + 21.6200i 0.193026 + 0.111444i
\(195\) −38.0594 3.94129i −0.195177 0.0202118i
\(196\) 19.2429 + 143.837i 0.0981781 + 0.733864i
\(197\) 130.900 + 130.900i 0.664467 + 0.664467i 0.956430 0.291963i \(-0.0943083\pi\)
−0.291963 + 0.956430i \(0.594308\pi\)
\(198\) −4.09671 15.2891i −0.0206905 0.0772178i
\(199\) −113.445 + 65.4975i −0.570076 + 0.329133i −0.757180 0.653207i \(-0.773423\pi\)
0.187104 + 0.982340i \(0.440090\pi\)
\(200\) −158.265 80.0306i −0.791327 0.400153i
\(201\) 3.24315 5.61729i 0.0161351 0.0279467i
\(202\) −49.4247 49.4247i −0.244677 0.244677i
\(203\) 46.0811 + 68.8092i 0.227000 + 0.338961i
\(204\) 79.8466i 0.391405i
\(205\) −245.758 177.979i −1.19882 0.868191i
\(206\) 65.6867 + 113.773i 0.318867 + 0.552295i
\(207\) −29.1422 + 108.760i −0.140783 + 0.525411i
\(208\) 5.28030 + 19.7063i 0.0253860 + 0.0947420i
\(209\) 102.772i 0.491734i
\(210\) −61.7329 2.26613i −0.293966 0.0107911i
\(211\) −284.859 −1.35004 −0.675021 0.737798i \(-0.735866\pi\)
−0.675021 + 0.737798i \(0.735866\pi\)
\(212\) 18.6020 4.98439i 0.0877453 0.0235113i
\(213\) 130.387 + 34.9370i 0.612144 + 0.164024i
\(214\) 20.9305 12.0842i 0.0978061 0.0564684i
\(215\) 231.676 37.0576i 1.07756 0.172361i
\(216\) 36.8614 0.170655
\(217\) 113.435 + 55.7925i 0.522742 + 0.257108i
\(218\) 139.184 139.184i 0.638459 0.638459i
\(219\) 191.987 + 110.844i 0.876651 + 0.506135i
\(220\) −31.2924 69.9953i −0.142238 0.318161i
\(221\) 34.3863 + 59.5589i 0.155594 + 0.269497i
\(222\) 125.177 33.5411i 0.563860 0.151086i
\(223\) −163.068 + 163.068i −0.731248 + 0.731248i −0.970867 0.239619i \(-0.922977\pi\)
0.239619 + 0.970867i \(0.422977\pi\)
\(224\) 74.6649 + 219.202i 0.333325 + 0.978579i
\(225\) −15.3686 + 73.4085i −0.0683050 + 0.326260i
\(226\) 93.2148 161.453i 0.412455 0.714393i
\(227\) 87.4422 326.339i 0.385208 1.43762i −0.452631 0.891698i \(-0.649514\pi\)
0.837839 0.545918i \(-0.183819\pi\)
\(228\) −98.3492 26.3526i −0.431356 0.115582i
\(229\) −196.388 113.385i −0.857590 0.495130i 0.00561424 0.999984i \(-0.498213\pi\)
−0.863205 + 0.504854i \(0.831546\pi\)
\(230\) 19.6977 190.212i 0.0856420 0.827009i
\(231\) −47.2411 41.3419i −0.204507 0.178969i
\(232\) 59.3446 + 59.3446i 0.255795 + 0.255795i
\(233\) 41.7928 + 155.973i 0.179368 + 0.669411i 0.995766 + 0.0919215i \(0.0293009\pi\)
−0.816398 + 0.577489i \(0.804032\pi\)
\(234\) −11.6971 + 6.75335i −0.0499878 + 0.0288605i
\(235\) 96.2699 + 36.7855i 0.409659 + 0.156534i
\(236\) 55.0979 95.4324i 0.233466 0.404375i
\(237\) −104.039 104.039i −0.438985 0.438985i
\(238\) 61.7824 + 92.2547i 0.259590 + 0.387625i
\(239\) 62.1386i 0.259994i −0.991514 0.129997i \(-0.958503\pi\)
0.991514 0.129997i \(-0.0414968\pi\)
\(240\) 39.4874 6.31619i 0.164531 0.0263175i
\(241\) 204.217 + 353.714i 0.847373 + 1.46769i 0.883545 + 0.468347i \(0.155150\pi\)
−0.0361717 + 0.999346i \(0.511516\pi\)
\(242\) 24.8420 92.7118i 0.102653 0.383107i
\(243\) −4.03459 15.0573i −0.0166032 0.0619642i
\(244\) 40.7717i 0.167097i
\(245\) −208.432 + 128.768i −0.850741 + 0.525585i
\(246\) −107.112 −0.435414
\(247\) 84.7092 22.6978i 0.342952 0.0918937i
\(248\) 123.745 + 33.1574i 0.498973 + 0.133699i
\(249\) 21.2325 12.2586i 0.0852709 0.0492312i
\(250\) 6.08196 127.231i 0.0243278 0.508926i
\(251\) −106.431 −0.424030 −0.212015 0.977266i \(-0.568003\pi\)
−0.212015 + 0.977266i \(0.568003\pi\)
\(252\) 51.6761 34.6071i 0.205064 0.137330i
\(253\) 137.413 137.413i 0.543133 0.543133i
\(254\) 67.7429 + 39.1114i 0.266704 + 0.153982i
\(255\) 123.064 55.0177i 0.482605 0.215756i
\(256\) 89.9881 + 155.864i 0.351516 + 0.608843i
\(257\) −377.542 + 101.162i −1.46904 + 0.393627i −0.902600 0.430480i \(-0.858344\pi\)
−0.566435 + 0.824107i \(0.691678\pi\)
\(258\) 58.5629 58.5629i 0.226988 0.226988i
\(259\) 338.479 386.778i 1.30687 1.49335i
\(260\) −50.7819 + 41.2513i −0.195315 + 0.158659i
\(261\) 17.7459 30.7367i 0.0679918 0.117765i
\(262\) −4.89487 + 18.2679i −0.0186827 + 0.0697249i
\(263\) −302.308 81.0033i −1.14946 0.307997i −0.366712 0.930335i \(-0.619517\pi\)
−0.782749 + 0.622337i \(0.786183\pi\)
\(264\) −55.0958 31.8096i −0.208696 0.120491i
\(265\) 20.4998 + 25.2361i 0.0773578 + 0.0952304i
\(266\) 134.023 45.6512i 0.503847 0.171621i
\(267\) 134.965 + 134.965i 0.505486 + 0.505486i
\(268\) −2.87052 10.7129i −0.0107109 0.0399736i
\(269\) 218.161 125.955i 0.811007 0.468235i −0.0362986 0.999341i \(-0.511557\pi\)
0.847305 + 0.531106i \(0.178223\pi\)
\(270\) 10.8053 + 24.1694i 0.0400196 + 0.0895162i
\(271\) −146.480 + 253.711i −0.540517 + 0.936203i 0.458357 + 0.888768i \(0.348438\pi\)
−0.998874 + 0.0474352i \(0.984895\pi\)
\(272\) −50.8238 50.8238i −0.186852 0.186852i
\(273\) −23.6423 + 48.0686i −0.0866018 + 0.176075i
\(274\) 110.145i 0.401990i
\(275\) 86.3191 96.4595i 0.313888 0.350762i
\(276\) 96.2638 + 166.734i 0.348782 + 0.604108i
\(277\) −35.8623 + 133.840i −0.129467 + 0.483177i −0.999959 0.00900462i \(-0.997134\pi\)
0.870493 + 0.492182i \(0.163800\pi\)
\(278\) 35.7411 + 133.388i 0.128565 + 0.479812i
\(279\) 54.1771i 0.194183i
\(280\) −181.889 + 169.008i −0.649605 + 0.603601i
\(281\) −127.812 −0.454848 −0.227424 0.973796i \(-0.573030\pi\)
−0.227424 + 0.973796i \(0.573030\pi\)
\(282\) 35.1397 9.41567i 0.124609 0.0333889i
\(283\) 242.594 + 65.0029i 0.857223 + 0.229692i 0.660555 0.750778i \(-0.270321\pi\)
0.196668 + 0.980470i \(0.436988\pi\)
\(284\) 199.888 115.406i 0.703832 0.406358i
\(285\) −27.1506 169.740i −0.0952654 0.595578i
\(286\) 23.3113 0.0815079
\(287\) −352.970 + 236.382i −1.22986 + 0.823629i
\(288\) 70.1760 70.1760i 0.243667 0.243667i
\(289\) 40.4518 + 23.3549i 0.139972 + 0.0808127i
\(290\) −21.5154 + 56.3070i −0.0741909 + 0.194162i
\(291\) −36.7483 63.6499i −0.126283 0.218728i
\(292\) 366.144 98.1079i 1.25392 0.335986i
\(293\) −21.9976 + 21.9976i −0.0750770 + 0.0750770i −0.743648 0.668571i \(-0.766906\pi\)
0.668571 + 0.743648i \(0.266906\pi\)
\(294\) −32.9288 + 79.9701i −0.112003 + 0.272007i
\(295\) 185.051 + 19.1632i 0.627291 + 0.0649599i
\(296\) 260.435 451.087i 0.879849 1.52394i
\(297\) −6.96331 + 25.9874i −0.0234455 + 0.0874998i
\(298\) 39.3349 + 10.5397i 0.131996 + 0.0353683i
\(299\) −143.609 82.9129i −0.480299 0.277301i
\(300\) 70.1744 + 107.338i 0.233915 + 0.357793i
\(301\) 63.7440 322.225i 0.211774 1.07051i
\(302\) −28.9121 28.9121i −0.0957356 0.0957356i
\(303\) 30.7494 + 114.758i 0.101483 + 0.378740i
\(304\) −79.3749 + 45.8271i −0.261102 + 0.150747i
\(305\) 62.8397 28.0934i 0.206032 0.0921095i
\(306\) 23.7925 41.2098i 0.0777532 0.134672i
\(307\) −121.636 121.636i −0.396210 0.396210i 0.480684 0.876894i \(-0.340388\pi\)
−0.876894 + 0.480684i \(0.840388\pi\)
\(308\) −107.103 + 7.13249i −0.347738 + 0.0231574i
\(309\) 223.300i 0.722652i
\(310\) 14.5330 + 90.8571i 0.0468807 + 0.293087i
\(311\) 301.676 + 522.518i 0.970020 + 1.68012i 0.695477 + 0.718548i \(0.255193\pi\)
0.274542 + 0.961575i \(0.411474\pi\)
\(312\) −14.0506 + 52.4375i −0.0450340 + 0.168069i
\(313\) −56.5067 210.886i −0.180533 0.673757i −0.995543 0.0943104i \(-0.969935\pi\)
0.815010 0.579447i \(-0.196731\pi\)
\(314\) 157.316i 0.501008i
\(315\) 88.9456 + 55.8004i 0.282367 + 0.177144i
\(316\) −251.582 −0.796146
\(317\) −9.46959 + 2.53737i −0.0298725 + 0.00800432i −0.273724 0.961808i \(-0.588256\pi\)
0.243852 + 0.969812i \(0.421589\pi\)
\(318\) 11.0859 + 2.97047i 0.0348615 + 0.00934110i
\(319\) −53.0486 + 30.6276i −0.166297 + 0.0960114i
\(320\) −44.6948 + 61.7156i −0.139671 + 0.192861i
\(321\) −41.0799 −0.127975
\(322\) −240.236 118.159i −0.746073 0.366952i
\(323\) −218.470 + 218.470i −0.676377 + 0.676377i
\(324\) −23.0835 13.3272i −0.0712453 0.0411335i
\(325\) −98.5698 49.8442i −0.303292 0.153367i
\(326\) −110.385 191.193i −0.338604 0.586480i
\(327\) −323.168 + 86.5927i −0.988283 + 0.264810i
\(328\) −304.419 + 304.419i −0.928107 + 0.928107i
\(329\) 95.0181 108.576i 0.288809 0.330020i
\(330\) 4.70661 45.4498i 0.0142625 0.137727i
\(331\) 229.481 397.473i 0.693296 1.20082i −0.277455 0.960738i \(-0.589491\pi\)
0.970752 0.240086i \(-0.0771756\pi\)
\(332\) 10.8501 40.4931i 0.0326810 0.121967i
\(333\) −212.767 57.0108i −0.638941 0.171204i
\(334\) 83.0280 + 47.9362i 0.248587 + 0.143522i
\(335\) 14.5335 11.8059i 0.0433835 0.0352414i
\(336\) 10.8647 54.9208i 0.0323354 0.163455i
\(337\) 75.1343 + 75.1343i 0.222951 + 0.222951i 0.809740 0.586789i \(-0.199608\pi\)
−0.586789 + 0.809740i \(0.699608\pi\)
\(338\) 39.4237 + 147.131i 0.116638 + 0.435300i
\(339\) −274.426 + 158.440i −0.809517 + 0.467375i
\(340\) 82.2732 215.314i 0.241980 0.633277i
\(341\) −46.7522 + 80.9772i −0.137103 + 0.237470i
\(342\) −42.9067 42.9067i −0.125458 0.125458i
\(343\) 67.9718 + 336.198i 0.198168 + 0.980168i
\(344\) 332.879i 0.967671i
\(345\) −190.650 + 263.254i −0.552609 + 0.763055i
\(346\) −108.418 187.785i −0.313346 0.542731i
\(347\) 2.16426 8.07713i 0.00623706 0.0232770i −0.962737 0.270439i \(-0.912831\pi\)
0.968974 + 0.247162i \(0.0794979\pi\)
\(348\) −15.7069 58.6190i −0.0451348 0.168445i
\(349\) 571.222i 1.63674i 0.574693 + 0.818369i \(0.305122\pi\)
−0.574693 + 0.818369i \(0.694878\pi\)
\(350\) −164.134 69.7198i −0.468953 0.199199i
\(351\) 22.9578 0.0654068
\(352\) −165.449 + 44.3319i −0.470025 + 0.125943i
\(353\) −645.496 172.960i −1.82860 0.489972i −0.830818 0.556544i \(-0.812127\pi\)
−0.997782 + 0.0665723i \(0.978794\pi\)
\(354\) 56.8734 32.8359i 0.160659 0.0927567i
\(355\) 315.602 + 228.560i 0.889018 + 0.643832i
\(356\) 326.364 0.916753
\(357\) −12.5402 188.307i −0.0351266 0.527470i
\(358\) −211.925 + 211.925i −0.591968 + 0.591968i
\(359\) −395.711 228.464i −1.10226 0.636390i −0.165446 0.986219i \(-0.552906\pi\)
−0.936814 + 0.349829i \(0.886240\pi\)
\(360\) 99.4003 + 37.9817i 0.276112 + 0.105505i
\(361\) 16.4914 + 28.5640i 0.0456826 + 0.0791246i
\(362\) −158.215 + 42.3935i −0.437057 + 0.117109i
\(363\) −115.360 + 115.360i −0.317797 + 0.317797i
\(364\) 29.5331 + 86.7036i 0.0811350 + 0.238197i
\(365\) 403.498 + 496.722i 1.10547 + 1.36088i
\(366\) 12.1490 21.0427i 0.0331940 0.0574938i
\(367\) 24.7429 92.3418i 0.0674194 0.251613i −0.923988 0.382421i \(-0.875091\pi\)
0.991408 + 0.130808i \(0.0417572\pi\)
\(368\) 167.403 + 44.8554i 0.454898 + 0.121890i
\(369\) 157.670 + 91.0308i 0.427290 + 0.246696i
\(370\) 372.112 + 38.5345i 1.00571 + 0.104147i
\(371\) 43.0873 14.6765i 0.116138 0.0395593i
\(372\) −65.5041 65.5041i −0.176086 0.176086i
\(373\) 34.6037 + 129.143i 0.0927713 + 0.346227i 0.996672 0.0815149i \(-0.0259758\pi\)
−0.903901 + 0.427742i \(0.859309\pi\)
\(374\) −71.1240 + 41.0635i −0.190171 + 0.109795i
\(375\) −117.082 + 182.117i −0.312220 + 0.485646i
\(376\) 73.1095 126.629i 0.194440 0.336780i
\(377\) 36.9606 + 36.9606i 0.0980387 + 0.0980387i
\(378\) 36.9828 2.46285i 0.0978380 0.00651547i
\(379\) 407.491i 1.07517i −0.843208 0.537587i \(-0.819336\pi\)
0.843208 0.537587i \(-0.180664\pi\)
\(380\) −238.055 172.400i −0.626460 0.453685i
\(381\) −66.4788 115.145i −0.174485 0.302217i
\(382\) 38.8375 144.944i 0.101669 0.379434i
\(383\) −52.0748 194.346i −0.135966 0.507430i −0.999992 0.00398411i \(-0.998732\pi\)
0.864026 0.503446i \(-0.167935\pi\)
\(384\) 202.296i 0.526811i
\(385\) −84.7917 160.159i −0.220238 0.415998i
\(386\) −102.050 −0.264377
\(387\) −135.976 + 36.4346i −0.351359 + 0.0941462i
\(388\) −121.389 32.5260i −0.312857 0.0838299i
\(389\) 184.186 106.340i 0.473487 0.273368i −0.244211 0.969722i \(-0.578529\pi\)
0.717698 + 0.696354i \(0.245196\pi\)
\(390\) −38.5011 + 6.15842i −0.0987207 + 0.0157908i
\(391\) 584.215 1.49415
\(392\) 133.695 + 320.866i 0.341057 + 0.818536i
\(393\) 22.7306 22.7306i 0.0578387 0.0578387i
\(394\) 163.367 + 94.3202i 0.414638 + 0.239391i
\(395\) −173.351 387.753i −0.438863 0.981654i
\(396\) 23.0015 + 39.8398i 0.0580847 + 0.100606i
\(397\) 211.533 56.6800i 0.532828 0.142771i 0.0176340 0.999845i \(-0.494387\pi\)
0.515194 + 0.857074i \(0.327720\pi\)
\(398\) −94.3887 + 94.3887i −0.237158 + 0.237158i
\(399\) −236.081 46.7027i −0.591682 0.117049i
\(400\) 112.990 + 23.6553i 0.282474 + 0.0591382i
\(401\) −248.520 + 430.449i −0.619750 + 1.07344i 0.369782 + 0.929119i \(0.379433\pi\)
−0.989531 + 0.144319i \(0.953901\pi\)
\(402\) 1.71070 6.38441i 0.00425546 0.0158816i
\(403\) 77.0702 + 20.6509i 0.191241 + 0.0512429i
\(404\) 175.929 + 101.573i 0.435468 + 0.251418i
\(405\) 4.63524 44.7606i 0.0114450 0.110520i
\(406\) 63.5050 + 55.5749i 0.156416 + 0.136884i
\(407\) 268.820 + 268.820i 0.660493 + 0.660493i
\(408\) −49.5011 184.741i −0.121326 0.452796i
\(409\) −113.088 + 65.2914i −0.276499 + 0.159637i −0.631837 0.775101i \(-0.717699\pi\)
0.355339 + 0.934738i \(0.384366\pi\)
\(410\) −288.838 110.367i −0.704482 0.269188i
\(411\) −93.6086 + 162.135i −0.227758 + 0.394489i
\(412\) −269.985 269.985i −0.655304 0.655304i
\(413\) 114.953 233.717i 0.278335 0.565901i
\(414\) 114.738i 0.277144i
\(415\) 69.8865 11.1787i 0.168401 0.0269365i
\(416\) 73.0803 + 126.579i 0.175674 + 0.304276i
\(417\) 60.7503 226.723i 0.145684 0.543701i
\(418\) 27.1052 + 101.158i 0.0648450 + 0.242005i
\(419\) 467.512i 1.11578i −0.829915 0.557890i \(-0.811611\pi\)
0.829915 0.557890i \(-0.188389\pi\)
\(420\) 175.008 40.0749i 0.416687 0.0954163i
\(421\) −403.062 −0.957391 −0.478696 0.877981i \(-0.658890\pi\)
−0.478696 + 0.877981i \(0.658890\pi\)
\(422\) −280.384 + 75.1288i −0.664418 + 0.178030i
\(423\) −59.7282 16.0041i −0.141201 0.0378348i
\(424\) 39.9493 23.0647i 0.0942200 0.0543979i
\(425\) 388.544 21.5562i 0.914222 0.0507204i
\(426\) 137.553 0.322894
\(427\) −6.40333 96.1541i −0.0149961 0.225185i
\(428\) −49.6686 + 49.6686i −0.116048 + 0.116048i
\(429\) −34.3144 19.8114i −0.0799870 0.0461805i
\(430\) 218.263 97.5777i 0.507588 0.226925i
\(431\) 185.222 + 320.815i 0.429750 + 0.744350i 0.996851 0.0792991i \(-0.0252682\pi\)
−0.567100 + 0.823649i \(0.691935\pi\)
\(432\) −23.1761 + 6.21001i −0.0536483 + 0.0143750i
\(433\) 116.395 116.395i 0.268810 0.268810i −0.559811 0.828621i \(-0.689126\pi\)
0.828621 + 0.559811i \(0.189126\pi\)
\(434\) 126.368 + 24.9987i 0.291170 + 0.0576007i
\(435\) 79.5243 64.5994i 0.182814 0.148504i
\(436\) −286.037 + 495.431i −0.656048 + 1.13631i
\(437\) 192.814 719.593i 0.441223 1.64667i
\(438\) 218.205 + 58.4678i 0.498185 + 0.133488i
\(439\) −238.473 137.683i −0.543219 0.313628i 0.203163 0.979145i \(-0.434878\pi\)
−0.746383 + 0.665517i \(0.768211\pi\)
\(440\) −115.795 142.548i −0.263170 0.323972i
\(441\) 116.435 89.7318i 0.264026 0.203474i
\(442\) 49.5543 + 49.5543i 0.112114 + 0.112114i
\(443\) 201.380 + 751.559i 0.454581 + 1.69652i 0.689315 + 0.724461i \(0.257911\pi\)
−0.234734 + 0.972060i \(0.575422\pi\)
\(444\) −326.181 + 188.321i −0.734642 + 0.424146i
\(445\) 224.879 + 503.011i 0.505345 + 1.13036i
\(446\) −117.499 + 203.515i −0.263451 + 0.456311i
\(447\) −48.9440 48.9440i −0.109494 0.109494i
\(448\) 59.3610 + 88.6391i 0.132502 + 0.197855i
\(449\) 437.111i 0.973521i −0.873536 0.486760i \(-0.838178\pi\)
0.873536 0.486760i \(-0.161822\pi\)
\(450\) 4.23355 + 76.3087i 0.00940790 + 0.169575i
\(451\) −157.110 272.123i −0.348360 0.603377i
\(452\) −140.236 + 523.367i −0.310256 + 1.15789i
\(453\) 17.9875 + 67.1304i 0.0397076 + 0.148191i
\(454\) 344.275i 0.758315i
\(455\) −113.283 + 105.261i −0.248974 + 0.231342i
\(456\) −243.887 −0.534841
\(457\) 161.133 43.1755i 0.352589 0.0944760i −0.0781772 0.996939i \(-0.524910\pi\)
0.430766 + 0.902463i \(0.358243\pi\)
\(458\) −223.207 59.8083i −0.487353 0.130586i
\(459\) −70.0455 + 40.4408i −0.152605 + 0.0881063i
\(460\) 87.7835 + 548.803i 0.190834 + 1.19305i
\(461\) −350.553 −0.760418 −0.380209 0.924901i \(-0.624148\pi\)
−0.380209 + 0.924901i \(0.624148\pi\)
\(462\) −57.4025 28.2332i −0.124248 0.0611107i
\(463\) 394.302 394.302i 0.851623 0.851623i −0.138710 0.990333i \(-0.544295\pi\)
0.990333 + 0.138710i \(0.0442955\pi\)
\(464\) −47.3098 27.3143i −0.101961 0.0588670i
\(465\) 55.8236 146.094i 0.120051 0.314180i
\(466\) 82.2726 + 142.500i 0.176551 + 0.305795i
\(467\) 148.947 39.9101i 0.318944 0.0854607i −0.0957955 0.995401i \(-0.530539\pi\)
0.414739 + 0.909940i \(0.363873\pi\)
\(468\) 27.7576 27.7576i 0.0593111 0.0593111i
\(469\) −8.45220 24.8140i −0.0180217 0.0529084i
\(470\) 104.460 + 10.8174i 0.222254 + 0.0230158i
\(471\) 133.698 231.572i 0.283860 0.491659i
\(472\) 68.3162 254.959i 0.144738 0.540168i
\(473\) 234.681 + 62.8826i 0.496154 + 0.132944i
\(474\) −129.845 74.9658i −0.273934 0.158156i
\(475\) 101.684 485.695i 0.214072 1.02252i
\(476\) −242.838 212.514i −0.510165 0.446459i
\(477\) −13.7941 13.7941i −0.0289185 0.0289185i
\(478\) −16.3885 61.1626i −0.0342855 0.127955i
\(479\) 24.0342 13.8762i 0.0501758 0.0289690i −0.474702 0.880146i \(-0.657444\pi\)
0.524878 + 0.851177i \(0.324111\pi\)
\(480\) 261.545 116.928i 0.544886 0.243599i
\(481\) 162.203 280.943i 0.337219 0.584081i
\(482\) 294.298 + 294.298i 0.610576 + 0.610576i
\(483\) 253.210 + 378.099i 0.524245 + 0.782813i
\(484\) 278.958i 0.576360i
\(485\) −33.5110 209.503i −0.0690948 0.431965i
\(486\) −7.94243 13.7567i −0.0163424 0.0283059i
\(487\) 7.42611 27.7146i 0.0152487 0.0569089i −0.957882 0.287161i \(-0.907288\pi\)
0.973131 + 0.230252i \(0.0739551\pi\)
\(488\) −25.2765 94.3331i −0.0517961 0.193306i
\(489\) 375.250i 0.767382i
\(490\) −171.196 + 181.718i −0.349380 + 0.370852i
\(491\) 220.188 0.448449 0.224224 0.974538i \(-0.428015\pi\)
0.224224 + 0.974538i \(0.428015\pi\)
\(492\) 300.697 80.5716i 0.611173 0.163763i
\(493\) −177.876 47.6618i −0.360804 0.0966770i
\(494\) 77.3922 44.6824i 0.156664 0.0904503i
\(495\) −45.5544 + 62.9026i −0.0920292 + 0.127076i
\(496\) −83.3890 −0.168123
\(497\) 453.283 303.561i 0.912038 0.610786i
\(498\) 17.6659 17.6659i 0.0354736 0.0354736i
\(499\) 523.463 + 302.222i 1.04902 + 0.605654i 0.922376 0.386293i \(-0.126245\pi\)
0.126648 + 0.991948i \(0.459578\pi\)
\(500\) 78.6319 + 361.754i 0.157264 + 0.723508i
\(501\) −81.4787 141.125i −0.162632 0.281687i
\(502\) −104.760 + 28.0703i −0.208684 + 0.0559168i
\(503\) 597.944 597.944i 1.18876 1.18876i 0.211343 0.977412i \(-0.432216\pi\)
0.977412 0.211343i \(-0.0677837\pi\)
\(504\) 98.1078 112.107i 0.194658 0.222434i
\(505\) −35.3272 + 341.140i −0.0699549 + 0.675525i
\(506\) 99.0130 171.496i 0.195678 0.338924i
\(507\) 67.0097 250.084i 0.132169 0.493262i
\(508\) −219.596 58.8406i −0.432276 0.115828i
\(509\) 578.494 + 333.993i 1.13653 + 0.656176i 0.945569 0.325422i \(-0.105506\pi\)
0.190961 + 0.981598i \(0.438840\pi\)
\(510\) 106.621 86.6105i 0.209060 0.169825i
\(511\) 848.089 288.877i 1.65966 0.565318i
\(512\) −200.665 200.665i −0.391924 0.391924i
\(513\) 26.6942 + 99.6241i 0.0520355 + 0.194199i
\(514\) −344.931 + 199.146i −0.671072 + 0.387444i
\(515\) 230.086 602.148i 0.446769 1.16922i
\(516\) −120.352 + 208.457i −0.233241 + 0.403986i
\(517\) 75.4635 + 75.4635i 0.145964 + 0.145964i
\(518\) 231.154 469.973i 0.446243 0.907283i
\(519\) 368.562i 0.710138i
\(520\) −91.9199 + 126.925i −0.176769 + 0.244087i
\(521\) 66.0241 + 114.357i 0.126726 + 0.219495i 0.922406 0.386221i \(-0.126220\pi\)
−0.795681 + 0.605717i \(0.792887\pi\)
\(522\) 9.36060 34.9342i 0.0179322 0.0669238i
\(523\) −9.74425 36.3660i −0.0186314 0.0695335i 0.955984 0.293418i \(-0.0947928\pi\)
−0.974616 + 0.223885i \(0.928126\pi\)
\(524\) 54.9659i 0.104897i
\(525\) 182.354 + 242.120i 0.347341 + 0.461181i
\(526\) −318.923 −0.606318
\(527\) −271.523 + 72.7543i −0.515224 + 0.138054i
\(528\) 39.9996 + 10.7179i 0.0757569 + 0.0202990i
\(529\) −761.815 + 439.834i −1.44010 + 0.831445i
\(530\) 26.8336 + 19.4330i 0.0506294 + 0.0366661i
\(531\) −111.624 −0.210215
\(532\) −341.906 + 228.972i −0.642681 + 0.430399i
\(533\) −189.596 + 189.596i −0.355716 + 0.355716i
\(534\) 168.440 + 97.2490i 0.315431 + 0.182114i
\(535\) −110.776 42.3284i −0.207058 0.0791185i
\(536\) −13.2830 23.0068i −0.0247817 0.0429232i
\(537\) 492.063 131.848i 0.916318 0.245527i
\(538\) 181.515 181.515i 0.337388 0.337388i
\(539\) −251.467 + 33.6419i −0.466544 + 0.0624154i
\(540\) −48.5145 59.7232i −0.0898417 0.110599i
\(541\) −272.705 + 472.340i −0.504077 + 0.873086i 0.495912 + 0.868373i \(0.334834\pi\)
−0.999989 + 0.00471373i \(0.998500\pi\)
\(542\) −77.2654 + 288.359i −0.142556 + 0.532027i
\(543\) 268.923 + 72.0576i 0.495254 + 0.132703i
\(544\) −445.945 257.466i −0.819751 0.473284i
\(545\) −960.679 99.4843i −1.76271 0.182540i
\(546\) −10.5933 + 53.5489i −0.0194017 + 0.0980750i
\(547\) −470.178 470.178i −0.859558 0.859558i 0.131728 0.991286i \(-0.457948\pi\)
−0.991286 + 0.131728i \(0.957948\pi\)
\(548\) 82.8532 + 309.212i 0.151192 + 0.564256i
\(549\) −35.7670 + 20.6501i −0.0651493 + 0.0376140i
\(550\) 59.5229 117.710i 0.108223 0.214018i
\(551\) −117.413 + 203.365i −0.213090 + 0.369083i
\(552\) 326.092 + 326.092i 0.590746 + 0.590746i
\(553\) −593.320 + 39.5119i −1.07291 + 0.0714501i
\(554\) 141.196i 0.254866i
\(555\) −515.004 372.969i −0.927935 0.672015i
\(556\) −200.673 347.576i −0.360923 0.625137i
\(557\) −169.860 + 633.927i −0.304955 + 1.13811i 0.628028 + 0.778190i \(0.283862\pi\)
−0.932984 + 0.359918i \(0.882805\pi\)
\(558\) −14.2887 53.3261i −0.0256070 0.0955665i
\(559\) 207.322i 0.370879i
\(560\) 85.8876 136.904i 0.153371 0.244472i
\(561\) 139.594 0.248830
\(562\) −125.805 + 33.7092i −0.223851 + 0.0599808i
\(563\) −1076.55 288.461i −1.91217 0.512364i −0.992936 0.118651i \(-0.962143\pi\)
−0.919233 0.393713i \(-0.871190\pi\)
\(564\) −91.5658 + 52.8655i −0.162351 + 0.0937332i
\(565\) −903.272 + 144.482i −1.59871 + 0.255721i
\(566\) 255.927 0.452168
\(567\) −56.5321 27.8050i −0.0997039 0.0490389i
\(568\) 390.934 390.934i 0.688265 0.688265i
\(569\) 401.795 + 231.976i 0.706142 + 0.407691i 0.809631 0.586939i \(-0.199667\pi\)
−0.103489 + 0.994631i \(0.533001\pi\)
\(570\) −71.4913 159.913i −0.125423 0.280549i
\(571\) −457.777 792.892i −0.801710 1.38860i −0.918490 0.395445i \(-0.870590\pi\)
0.116779 0.993158i \(-0.462743\pi\)
\(572\) −65.4421 + 17.5352i −0.114409 + 0.0306559i
\(573\) −180.352 + 180.352i −0.314750 + 0.314750i
\(574\) −285.082 + 325.761i −0.496659 + 0.567528i
\(575\) −785.361 + 513.446i −1.36584 + 0.892949i
\(576\) 22.8600 39.5947i 0.0396875 0.0687408i
\(577\) −127.163 + 474.579i −0.220387 + 0.822495i 0.763814 + 0.645437i \(0.223325\pi\)
−0.984200 + 0.177058i \(0.943342\pi\)
\(578\) 45.9760 + 12.3192i 0.0795433 + 0.0213136i
\(579\) 150.218 + 86.7286i 0.259444 + 0.149790i
\(580\) 18.0453 174.256i 0.0311126 0.300441i
\(581\) 19.2288 97.2011i 0.0330960 0.167300i
\(582\) −52.9581 52.9581i −0.0909933 0.0909933i
\(583\) 8.71409 + 32.5214i 0.0149470 + 0.0557829i
\(584\) 786.322 453.983i 1.34644 0.777368i
\(585\) 61.9078 + 23.6555i 0.105825 + 0.0404367i
\(586\) −15.8504 + 27.4537i −0.0270484 + 0.0468492i
\(587\) 379.329 + 379.329i 0.646217 + 0.646217i 0.952077 0.305860i \(-0.0989439\pi\)
−0.305860 + 0.952077i \(0.598944\pi\)
\(588\) 32.2865 249.271i 0.0549091 0.423930i
\(589\) 358.454i 0.608580i
\(590\) 187.198 29.9432i 0.317285 0.0507512i
\(591\) −160.319 277.681i −0.271268 0.469849i
\(592\) −87.7506 + 327.490i −0.148227 + 0.553192i
\(593\) −125.542 468.530i −0.211707 0.790101i −0.987300 0.158868i \(-0.949216\pi\)
0.775593 0.631233i \(-0.217451\pi\)
\(594\) 27.4157i 0.0461544i
\(595\) 160.214 520.708i 0.269267 0.875140i
\(596\) −118.354 −0.198580
\(597\) 219.159 58.7235i 0.367101 0.0983643i
\(598\) −163.221 43.7350i −0.272945 0.0731354i
\(599\) −63.6790 + 36.7651i −0.106309 + 0.0613774i −0.552212 0.833704i \(-0.686216\pi\)
0.445903 + 0.895081i \(0.352883\pi\)
\(600\) 228.906 + 204.842i 0.381511 + 0.341404i
\(601\) 491.594 0.817960 0.408980 0.912543i \(-0.365885\pi\)
0.408980 + 0.912543i \(0.365885\pi\)
\(602\) −22.2409 333.975i −0.0369450 0.554776i
\(603\) −7.94405 + 7.94405i −0.0131742 + 0.0131742i
\(604\) 102.914 + 59.4173i 0.170387 + 0.0983730i
\(605\) −429.946 + 192.214i −0.710655 + 0.317709i
\(606\) 60.5327 + 104.846i 0.0998889 + 0.173013i
\(607\) −664.790 + 178.130i −1.09521 + 0.293459i −0.760811 0.648974i \(-0.775199\pi\)
−0.334395 + 0.942433i \(0.608532\pi\)
\(608\) −464.308 + 464.308i −0.763664 + 0.763664i
\(609\) −46.2488 135.778i −0.0759422 0.222952i
\(610\) 54.4432 44.2255i 0.0892512 0.0725008i
\(611\) 45.5336 78.8665i 0.0745231 0.129078i
\(612\) −35.7943 + 133.586i −0.0584874 + 0.218278i
\(613\) 349.460 + 93.6376i 0.570082 + 0.152753i 0.532334 0.846534i \(-0.321315\pi\)
0.0377478 + 0.999287i \(0.487982\pi\)
\(614\) −151.806 87.6453i −0.247241 0.142745i
\(615\) 331.375 + 407.935i 0.538821 + 0.663309i
\(616\) −243.382 + 82.9013i −0.395101 + 0.134580i
\(617\) 201.236 + 201.236i 0.326153 + 0.326153i 0.851121 0.524969i \(-0.175923\pi\)
−0.524969 + 0.851121i \(0.675923\pi\)
\(618\) −58.8931 219.792i −0.0952962 0.355650i
\(619\) 339.835 196.204i 0.549006 0.316969i −0.199715 0.979854i \(-0.564002\pi\)
0.748721 + 0.662885i \(0.230668\pi\)
\(620\) −109.143 244.133i −0.176037 0.393762i
\(621\) 97.5116 168.895i 0.157024 0.271973i
\(622\) 434.746 + 434.746i 0.698949 + 0.698949i
\(623\) 769.682 51.2566i 1.23545 0.0822739i
\(624\) 35.3364i 0.0566289i
\(625\) −503.376 + 370.456i −0.805402 + 0.592730i
\(626\) −111.238 192.670i −0.177697 0.307780i
\(627\) 46.0716 171.941i 0.0734794 0.274229i
\(628\) −118.336 441.637i −0.188434 0.703244i
\(629\) 1142.90i 1.81701i
\(630\) 102.265 + 31.4654i 0.162326 + 0.0499451i
\(631\) −478.217 −0.757872 −0.378936 0.925423i \(-0.623710\pi\)
−0.378936 + 0.925423i \(0.623710\pi\)
\(632\) −582.084 + 155.969i −0.921019 + 0.246786i
\(633\) 476.578 + 127.699i 0.752888 + 0.201736i
\(634\) −8.65163 + 4.99502i −0.0136461 + 0.00787858i
\(635\) −60.6224 378.998i −0.0954684 0.596847i
\(636\) −33.3562 −0.0524469
\(637\) 83.2668 + 199.840i 0.130717 + 0.313720i
\(638\) −44.1376 + 44.1376i −0.0691812 + 0.0691812i
\(639\) −202.479 116.902i −0.316869 0.182945i
\(640\) 208.444 545.509i 0.325693 0.852358i
\(641\) 321.732 + 557.257i 0.501922 + 0.869355i 0.999998 + 0.00222115i \(0.000707015\pi\)
−0.498075 + 0.867134i \(0.665960\pi\)
\(642\) −40.4346 + 10.8344i −0.0629823 + 0.0168761i
\(643\) 687.066 687.066i 1.06853 1.06853i 0.0710604 0.997472i \(-0.477362\pi\)
0.997472 0.0710604i \(-0.0226383\pi\)
\(644\) 763.299 + 150.999i 1.18525 + 0.234471i
\(645\) −404.214 41.8588i −0.626688 0.0648974i
\(646\) −157.419 + 272.658i −0.243682 + 0.422070i
\(647\) −55.6541 + 207.704i −0.0860187 + 0.321026i −0.995505 0.0947073i \(-0.969808\pi\)
0.909486 + 0.415734i \(0.136475\pi\)
\(648\) −61.6703 16.5245i −0.0951702 0.0255008i
\(649\) 166.842 + 96.3264i 0.257076 + 0.148423i
\(650\) −110.167 23.0644i −0.169488 0.0354837i
\(651\) −164.769 144.194i −0.253102 0.221496i
\(652\) 453.704 + 453.704i 0.695866 + 0.695866i
\(653\) −165.462 617.511i −0.253387 0.945652i −0.968981 0.247136i \(-0.920511\pi\)
0.715594 0.698516i \(-0.246156\pi\)
\(654\) −295.254 + 170.465i −0.451459 + 0.260650i
\(655\) 84.7166 37.8738i 0.129338 0.0578226i
\(656\) 140.114 242.684i 0.213588 0.369946i
\(657\) −271.510 271.510i −0.413257 0.413257i
\(658\) 64.8896 131.931i 0.0986165 0.200503i
\(659\) 929.680i 1.41074i −0.708837 0.705372i \(-0.750780\pi\)
0.708837 0.705372i \(-0.249220\pi\)
\(660\) 20.9752 + 131.132i 0.0317807 + 0.198686i
\(661\) 573.316 + 993.012i 0.867346 + 1.50229i 0.864699 + 0.502291i \(0.167509\pi\)
0.00264699 + 0.999996i \(0.499157\pi\)
\(662\) 121.047 451.753i 0.182850 0.682406i
\(663\) −30.8299 115.059i −0.0465007 0.173543i
\(664\) 100.415i 0.151228i
\(665\) −588.494 369.194i −0.884953 0.555179i
\(666\) −224.461 −0.337029
\(667\) 428.898 114.923i 0.643026 0.172298i
\(668\) −269.144 72.1170i −0.402911 0.107960i
\(669\) 345.920 199.717i 0.517070 0.298531i
\(670\) 11.1915 15.4535i 0.0167037 0.0230649i
\(671\) 71.2801 0.106230
\(672\) −26.6513 400.203i −0.0396597 0.595540i
\(673\) −171.530 + 171.530i −0.254874 + 0.254874i −0.822966 0.568091i \(-0.807682\pi\)
0.568091 + 0.822966i \(0.307682\pi\)
\(674\) 93.7701 + 54.1382i 0.139125 + 0.0803237i
\(675\) 58.6203 115.925i 0.0868449 0.171741i
\(676\) −221.350 383.389i −0.327440 0.567143i
\(677\) 244.926 65.6278i 0.361782 0.0969391i −0.0733492 0.997306i \(-0.523369\pi\)
0.435131 + 0.900367i \(0.356702\pi\)
\(678\) −228.329 + 228.329i −0.336768 + 0.336768i
\(679\) −291.386 57.6433i −0.429140 0.0848945i
\(680\) 56.8706 549.176i 0.0836333 0.807612i
\(681\) −292.587 + 506.776i −0.429644 + 0.744165i
\(682\) −24.6609 + 92.0357i −0.0361597 + 0.134950i
\(683\) 900.620 + 241.320i 1.31862 + 0.353324i 0.848462 0.529256i \(-0.177529\pi\)
0.470162 + 0.882580i \(0.344196\pi\)
\(684\) 152.728 + 88.1775i 0.223286 + 0.128914i
\(685\) −419.487 + 340.759i −0.612390 + 0.497458i
\(686\) 155.573 + 312.990i 0.226783 + 0.456253i
\(687\) 277.735 + 277.735i 0.404272 + 0.404272i
\(688\) 56.0798 + 209.293i 0.0815114 + 0.304205i
\(689\) 24.8809 14.3650i 0.0361117 0.0208491i
\(690\) −118.225 + 309.401i −0.171340 + 0.448407i
\(691\) −112.934 + 195.607i −0.163435 + 0.283078i −0.936098 0.351738i \(-0.885591\pi\)
0.772663 + 0.634816i \(0.218924\pi\)
\(692\) 445.618 + 445.618i 0.643956 + 0.643956i
\(693\) 60.5028 + 90.3440i 0.0873056 + 0.130367i
\(694\) 8.52106i 0.0122782i
\(695\) 397.433 548.784i 0.571846 0.789618i
\(696\) −72.6819 125.889i −0.104428 0.180875i
\(697\) 244.490 912.450i 0.350775 1.30911i
\(698\) 150.654 + 562.249i 0.215837 + 0.805514i
\(699\) 279.683i 0.400118i
\(700\) 513.220 + 72.2614i 0.733171 + 0.103231i
\(701\) 36.9618 0.0527273 0.0263636 0.999652i \(-0.491607\pi\)
0.0263636 + 0.999652i \(0.491607\pi\)
\(702\) 22.5972 6.05489i 0.0321897 0.00862520i
\(703\) 1407.74 + 377.203i 2.00247 + 0.536561i
\(704\) −68.3366 + 39.4541i −0.0970690 + 0.0560428i
\(705\) −144.572 104.700i −0.205067 0.148511i
\(706\) −680.973 −0.964551
\(707\) 430.856 + 211.914i 0.609414 + 0.299737i
\(708\) −134.962 + 134.962i −0.190624 + 0.190624i
\(709\) 903.894 + 521.863i 1.27489 + 0.736055i 0.975903 0.218204i \(-0.0700197\pi\)
0.298982 + 0.954259i \(0.403353\pi\)
\(710\) 370.925 + 141.733i 0.522429 + 0.199624i
\(711\) 127.422 + 220.701i 0.179215 + 0.310409i
\(712\) 755.106 202.330i 1.06054 0.284172i
\(713\) 479.274 479.274i 0.672194 0.672194i
\(714\) −62.0073 182.041i −0.0868449 0.254960i
\(715\) −72.1186 88.7807i −0.100865 0.124169i
\(716\) 435.526 754.353i 0.608277 1.05357i
\(717\) −27.8560 + 103.960i −0.0388507 + 0.144993i
\(718\) −449.751 120.510i −0.626393 0.167842i
\(719\) −122.057 70.4696i −0.169759 0.0980106i 0.412713 0.910861i \(-0.364581\pi\)
−0.582472 + 0.812851i \(0.697915\pi\)
\(720\) −68.8952 7.13453i −0.0956878 0.00990907i
\(721\) −679.123 594.319i −0.941919 0.824298i
\(722\) 23.7659 + 23.7659i 0.0329167 + 0.0329167i
\(723\) −183.096 683.323i −0.253245 0.945122i
\(724\) 412.270 238.024i 0.569434 0.328763i
\(725\) 281.007 92.2573i 0.387597 0.127251i
\(726\) −83.1231 + 143.973i −0.114495 + 0.198311i
\(727\) −596.540 596.540i −0.820551 0.820551i 0.165636 0.986187i \(-0.447032\pi\)
−0.986187 + 0.165636i \(0.947032\pi\)
\(728\) 122.083 + 182.296i 0.167696 + 0.250407i
\(729\) 27.0000i 0.0370370i
\(730\) 528.165 + 382.500i 0.723514 + 0.523973i
\(731\) 365.203 + 632.550i 0.499594 + 0.865322i
\(732\) −18.2774 + 68.2123i −0.0249692 + 0.0931862i
\(733\) −88.6776 330.949i −0.120979 0.451500i 0.878685 0.477401i \(-0.158421\pi\)
−0.999665 + 0.0259012i \(0.991754\pi\)
\(734\) 97.4170i 0.132721i
\(735\) 406.438 121.996i 0.552977 0.165982i
\(736\) 1241.61 1.68698
\(737\) 18.7291 5.01845i 0.0254126 0.00680930i
\(738\) 179.202 + 48.0170i 0.242821 + 0.0650637i
\(739\) −781.571 + 451.241i −1.05761 + 0.610610i −0.924769 0.380528i \(-0.875742\pi\)
−0.132838 + 0.991138i \(0.542409\pi\)
\(740\) −1073.62 + 171.731i −1.45084 + 0.232069i
\(741\) −151.896 −0.204988
\(742\) 38.5397 25.8098i 0.0519404 0.0347841i
\(743\) −554.070 + 554.070i −0.745721 + 0.745721i −0.973672 0.227952i \(-0.926797\pi\)
0.227952 + 0.973672i \(0.426797\pi\)
\(744\) −192.166 110.947i −0.258287 0.149122i
\(745\) −81.5507 182.414i −0.109464 0.244850i
\(746\) 68.1203 + 117.988i 0.0913140 + 0.158161i
\(747\) −41.0180 + 10.9907i −0.0549103 + 0.0147132i
\(748\) 168.779 168.779i 0.225640 0.225640i
\(749\) −109.336 + 124.937i −0.145975 + 0.166805i
\(750\) −67.2116 + 210.136i −0.0896155 + 0.280181i
\(751\) 1.48979 2.58040i 0.00198375 0.00343595i −0.865032 0.501717i \(-0.832702\pi\)
0.867016 + 0.498281i \(0.166035\pi\)
\(752\) −24.6334 + 91.9331i −0.0327572 + 0.122251i
\(753\) 178.063 + 47.7119i 0.236472 + 0.0633624i
\(754\) 46.1280 + 26.6320i 0.0611777 + 0.0353210i
\(755\) −20.6655 + 199.558i −0.0273715 + 0.264315i
\(756\) −101.970 + 34.7331i −0.134881 + 0.0459433i
\(757\) −334.049 334.049i −0.441280 0.441280i 0.451162 0.892442i \(-0.351010\pi\)
−0.892442 + 0.451162i \(0.851010\pi\)
\(758\) −107.472 401.090i −0.141783 0.529143i
\(759\) −291.496 + 168.296i −0.384053 + 0.221733i
\(760\) −657.665 251.299i −0.865349 0.330657i
\(761\) −381.045 + 659.989i