Properties

Label 105.3.v.a.37.6
Level 105
Weight 3
Character 105.37
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.6
Character \(\chi\) \(=\) 105.37
Dual form 105.3.v.a.88.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.84280 + 0.493776i) q^{2} +(1.67303 + 0.448288i) q^{3} +(-0.312015 + 0.180142i) q^{4} +(-1.82066 - 4.65674i) q^{5} -3.30441 q^{6} +(-6.63712 - 2.22456i) q^{7} +(5.88211 - 5.88211i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-1.84280 + 0.493776i) q^{2} +(1.67303 + 0.448288i) q^{3} +(-0.312015 + 0.180142i) q^{4} +(-1.82066 - 4.65674i) q^{5} -3.30441 q^{6} +(-6.63712 - 2.22456i) q^{7} +(5.88211 - 5.88211i) q^{8} +(2.59808 + 1.50000i) q^{9} +(5.65448 + 7.68243i) q^{10} +(-5.24180 - 9.07906i) q^{11} +(-0.602766 + 0.161511i) q^{12} +(1.40565 - 1.40565i) q^{13} +(13.3293 + 0.822171i) q^{14} +(-0.958456 - 8.60705i) q^{15} +(-7.21453 + 12.4959i) q^{16} +(6.55621 - 24.4681i) q^{17} +(-5.52839 - 1.48133i) q^{18} +(-9.07193 - 5.23768i) q^{19} +(1.40694 + 1.12499i) q^{20} +(-10.1069 - 6.69711i) q^{21} +(14.1426 + 14.1426i) q^{22} +(-7.89111 - 29.4500i) q^{23} +(12.4779 - 7.20409i) q^{24} +(-18.3704 + 16.9566i) q^{25} +(-1.89626 + 3.28441i) q^{26} +(3.67423 + 3.67423i) q^{27} +(2.47161 - 0.501525i) q^{28} +55.6217i q^{29} +(6.01620 + 15.3878i) q^{30} +(8.12663 + 14.0757i) q^{31} +(-1.48729 + 5.55064i) q^{32} +(-4.69967 - 17.5394i) q^{33} +48.3271i q^{34} +(1.72469 + 34.9575i) q^{35} -1.08085 q^{36} +(14.8150 - 3.96966i) q^{37} +(19.3040 + 5.17248i) q^{38} +(2.98184 - 1.72157i) q^{39} +(-38.1008 - 16.6822i) q^{40} -28.7305 q^{41} +(21.9318 + 7.35088i) q^{42} +(3.17014 - 3.17014i) q^{43} +(3.27104 + 1.88853i) q^{44} +(2.25491 - 14.8295i) q^{45} +(29.0834 + 50.3740i) q^{46} +(-1.71038 + 0.458294i) q^{47} +(-17.6719 + 17.6719i) q^{48} +(39.1026 + 29.5294i) q^{49} +(25.4802 - 40.3185i) q^{50} +(21.9375 - 37.9969i) q^{51} +(-0.185367 + 0.691801i) q^{52} +(-56.9591 - 15.2621i) q^{53} +(-8.58512 - 4.95662i) q^{54} +(-32.7353 + 40.9395i) q^{55} +(-52.1254 + 25.9551i) q^{56} +(-12.8296 - 12.8296i) q^{57} +(-27.4647 - 102.499i) q^{58} +(57.7727 - 33.3551i) q^{59} +(1.84954 + 2.51287i) q^{60} +(6.16473 - 10.6776i) q^{61} +(-21.9260 - 21.9260i) q^{62} +(-13.9069 - 15.7353i) q^{63} -68.6793i q^{64} +(-9.10496 - 3.98655i) q^{65} +(17.3211 + 30.0010i) q^{66} +(28.5890 - 106.696i) q^{67} +(2.36209 + 8.81545i) q^{68} -52.8083i q^{69} +(-20.4394 - 63.5679i) q^{70} +29.9403 q^{71} +(24.1054 - 6.45901i) q^{72} +(115.286 + 30.8909i) q^{73} +(-25.3408 + 14.6305i) q^{74} +(-38.3358 + 20.1338i) q^{75} +3.77410 q^{76} +(14.5935 + 71.9195i) q^{77} +(-4.64486 + 4.64486i) q^{78} +(-99.9248 - 57.6916i) q^{79} +(71.3255 + 10.8454i) q^{80} +(4.50000 + 7.79423i) q^{81} +(52.9444 - 14.1864i) q^{82} +(24.2475 - 24.2475i) q^{83} +(4.35992 + 0.268926i) q^{84} +(-125.878 + 14.0174i) q^{85} +(-4.27659 + 7.40727i) q^{86} +(-24.9345 + 93.0569i) q^{87} +(-84.2370 - 22.5712i) q^{88} +(18.3646 + 10.6028i) q^{89} +(3.16714 + 28.4413i) q^{90} +(-12.4564 + 6.20252i) q^{91} +(7.76732 + 7.76732i) q^{92} +(7.28614 + 27.1922i) q^{93} +(2.92558 - 1.68909i) q^{94} +(-7.87366 + 51.7816i) q^{95} +(-4.97657 + 8.61966i) q^{96} +(56.7300 + 56.7300i) q^{97} +(-86.6391 - 35.1087i) q^{98} -31.4508i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.84280 + 0.493776i −0.921399 + 0.246888i −0.688183 0.725537i \(-0.741591\pi\)
−0.233216 + 0.972425i \(0.574925\pi\)
\(3\) 1.67303 + 0.448288i 0.557678 + 0.149429i
\(4\) −0.312015 + 0.180142i −0.0780037 + 0.0450354i
\(5\) −1.82066 4.65674i −0.364131 0.931348i
\(6\) −3.30441 −0.550736
\(7\) −6.63712 2.22456i −0.948160 0.317795i
\(8\) 5.88211 5.88211i 0.735264 0.735264i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) 5.65448 + 7.68243i 0.565448 + 0.768243i
\(11\) −5.24180 9.07906i −0.476527 0.825369i 0.523111 0.852265i \(-0.324771\pi\)
−0.999638 + 0.0268951i \(0.991438\pi\)
\(12\) −0.602766 + 0.161511i −0.0502305 + 0.0134592i
\(13\) 1.40565 1.40565i 0.108127 0.108127i −0.650973 0.759101i \(-0.725639\pi\)
0.759101 + 0.650973i \(0.225639\pi\)
\(14\) 13.3293 + 0.822171i 0.952093 + 0.0587265i
\(15\) −0.958456 8.60705i −0.0638971 0.573804i
\(16\) −7.21453 + 12.4959i −0.450908 + 0.780996i
\(17\) 6.55621 24.4681i 0.385659 1.43930i −0.451465 0.892289i \(-0.649099\pi\)
0.837125 0.547012i \(-0.184235\pi\)
\(18\) −5.52839 1.48133i −0.307133 0.0822960i
\(19\) −9.07193 5.23768i −0.477470 0.275667i 0.241892 0.970303i \(-0.422232\pi\)
−0.719362 + 0.694636i \(0.755566\pi\)
\(20\) 1.40694 + 1.12499i 0.0703472 + 0.0562497i
\(21\) −10.1069 6.69711i −0.481279 0.318910i
\(22\) 14.1426 + 14.1426i 0.642845 + 0.642845i
\(23\) −7.89111 29.4500i −0.343092 1.28044i −0.894826 0.446416i \(-0.852700\pi\)
0.551734 0.834020i \(-0.313966\pi\)
\(24\) 12.4779 7.20409i 0.519910 0.300170i
\(25\) −18.3704 + 16.9566i −0.734817 + 0.678265i
\(26\) −1.89626 + 3.28441i −0.0729329 + 0.126323i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) 2.47161 0.501525i 0.0882719 0.0179116i
\(29\) 55.6217i 1.91799i 0.283425 + 0.958994i \(0.408529\pi\)
−0.283425 + 0.958994i \(0.591471\pi\)
\(30\) 6.01620 + 15.3878i 0.200540 + 0.512926i
\(31\) 8.12663 + 14.0757i 0.262149 + 0.454056i 0.966813 0.255486i \(-0.0822354\pi\)
−0.704664 + 0.709542i \(0.748902\pi\)
\(32\) −1.48729 + 5.55064i −0.0464778 + 0.173457i
\(33\) −4.69967 17.5394i −0.142414 0.531497i
\(34\) 48.3271i 1.42138i
\(35\) 1.72469 + 34.9575i 0.0492768 + 0.998785i
\(36\) −1.08085 −0.0300236
\(37\) 14.8150 3.96966i 0.400404 0.107288i −0.0529966 0.998595i \(-0.516877\pi\)
0.453401 + 0.891307i \(0.350211\pi\)
\(38\) 19.3040 + 5.17248i 0.507999 + 0.136118i
\(39\) 2.98184 1.72157i 0.0764574 0.0441427i
\(40\) −38.1008 16.6822i −0.952519 0.417054i
\(41\) −28.7305 −0.700743 −0.350371 0.936611i \(-0.613945\pi\)
−0.350371 + 0.936611i \(0.613945\pi\)
\(42\) 21.9318 + 7.35088i 0.522185 + 0.175021i
\(43\) 3.17014 3.17014i 0.0737243 0.0737243i −0.669283 0.743007i \(-0.733399\pi\)
0.743007 + 0.669283i \(0.233399\pi\)
\(44\) 3.27104 + 1.88853i 0.0743417 + 0.0429212i
\(45\) 2.25491 14.8295i 0.0501091 0.329545i
\(46\) 29.0834 + 50.3740i 0.632249 + 1.09509i
\(47\) −1.71038 + 0.458294i −0.0363910 + 0.00975094i −0.276969 0.960879i \(-0.589330\pi\)
0.240578 + 0.970630i \(0.422663\pi\)
\(48\) −17.6719 + 17.6719i −0.368165 + 0.368165i
\(49\) 39.1026 + 29.5294i 0.798013 + 0.602640i
\(50\) 25.4802 40.3185i 0.509604 0.806370i
\(51\) 21.9375 37.9969i 0.430147 0.745037i
\(52\) −0.185367 + 0.691801i −0.00356476 + 0.0133039i
\(53\) −56.9591 15.2621i −1.07470 0.287965i −0.322277 0.946645i \(-0.604448\pi\)
−0.752423 + 0.658680i \(0.771115\pi\)
\(54\) −8.58512 4.95662i −0.158984 0.0917893i
\(55\) −32.7353 + 40.9395i −0.595188 + 0.744355i
\(56\) −52.1254 + 25.9551i −0.930811 + 0.463485i
\(57\) −12.8296 12.8296i −0.225082 0.225082i
\(58\) −27.4647 102.499i −0.473528 1.76723i
\(59\) 57.7727 33.3551i 0.979198 0.565340i 0.0771698 0.997018i \(-0.475412\pi\)
0.902028 + 0.431678i \(0.142078\pi\)
\(60\) 1.84954 + 2.51287i 0.0308257 + 0.0418811i
\(61\) 6.16473 10.6776i 0.101061 0.175043i −0.811061 0.584962i \(-0.801110\pi\)
0.912122 + 0.409919i \(0.134443\pi\)
\(62\) −21.9260 21.9260i −0.353645 0.353645i
\(63\) −13.9069 15.7353i −0.220744 0.249766i
\(64\) 68.6793i 1.07311i
\(65\) −9.10496 3.98655i −0.140076 0.0613315i
\(66\) 17.3211 + 30.0010i 0.262441 + 0.454560i
\(67\) 28.5890 106.696i 0.426702 1.59247i −0.333476 0.942758i \(-0.608222\pi\)
0.760178 0.649715i \(-0.225112\pi\)
\(68\) 2.36209 + 8.81545i 0.0347367 + 0.129639i
\(69\) 52.8083i 0.765338i
\(70\) −20.4394 63.5679i −0.291992 0.908113i
\(71\) 29.9403 0.421694 0.210847 0.977519i \(-0.432378\pi\)
0.210847 + 0.977519i \(0.432378\pi\)
\(72\) 24.1054 6.45901i 0.334797 0.0897085i
\(73\) 115.286 + 30.8909i 1.57926 + 0.423162i 0.938698 0.344741i \(-0.112033\pi\)
0.640566 + 0.767903i \(0.278700\pi\)
\(74\) −25.3408 + 14.6305i −0.342444 + 0.197710i
\(75\) −38.3358 + 20.1338i −0.511144 + 0.268450i
\(76\) 3.77410 0.0496592
\(77\) 14.5935 + 71.9195i 0.189526 + 0.934020i
\(78\) −4.64486 + 4.64486i −0.0595495 + 0.0595495i
\(79\) −99.9248 57.6916i −1.26487 0.730274i −0.290858 0.956766i \(-0.593941\pi\)
−0.974013 + 0.226492i \(0.927274\pi\)
\(80\) 71.3255 + 10.8454i 0.891568 + 0.135567i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 52.9444 14.1864i 0.645663 0.173005i
\(83\) 24.2475 24.2475i 0.292139 0.292139i −0.545786 0.837925i \(-0.683769\pi\)
0.837925 + 0.545786i \(0.183769\pi\)
\(84\) 4.35992 + 0.268926i 0.0519038 + 0.00320150i
\(85\) −125.878 + 14.0174i −1.48092 + 0.164911i
\(86\) −4.27659 + 7.40727i −0.0497278 + 0.0861311i
\(87\) −24.9345 + 93.0569i −0.286604 + 1.06962i
\(88\) −84.2370 22.5712i −0.957238 0.256491i
\(89\) 18.3646 + 10.6028i 0.206344 + 0.119133i 0.599611 0.800292i \(-0.295322\pi\)
−0.393267 + 0.919424i \(0.628655\pi\)
\(90\) 3.16714 + 28.4413i 0.0351904 + 0.316014i
\(91\) −12.4564 + 6.20252i −0.136884 + 0.0681595i
\(92\) 7.76732 + 7.76732i 0.0844274 + 0.0844274i
\(93\) 7.28614 + 27.1922i 0.0783455 + 0.292390i
\(94\) 2.92558 1.68909i 0.0311232 0.0179690i
\(95\) −7.87366 + 51.7816i −0.0828806 + 0.545070i
\(96\) −4.97657 + 8.61966i −0.0518392 + 0.0897882i
\(97\) 56.7300 + 56.7300i 0.584845 + 0.584845i 0.936231 0.351386i \(-0.114289\pi\)
−0.351386 + 0.936231i \(0.614289\pi\)
\(98\) −86.6391 35.1087i −0.884073 0.358252i
\(99\) 31.4508i 0.317685i
\(100\) 2.67725 8.60000i 0.0267725 0.0860000i
\(101\) −27.0096 46.7820i −0.267422 0.463188i 0.700774 0.713384i \(-0.252838\pi\)
−0.968195 + 0.250196i \(0.919505\pi\)
\(102\) −21.6644 + 80.8527i −0.212396 + 0.792674i
\(103\) 40.5749 + 151.428i 0.393931 + 1.47017i 0.823593 + 0.567182i \(0.191966\pi\)
−0.429661 + 0.902990i \(0.641367\pi\)
\(104\) 16.5364i 0.159004i
\(105\) −12.7855 + 59.2582i −0.121767 + 0.564363i
\(106\) 112.500 1.06132
\(107\) −80.1432 + 21.4743i −0.749001 + 0.200694i −0.613075 0.790025i \(-0.710068\pi\)
−0.135926 + 0.990719i \(0.543401\pi\)
\(108\) −1.80830 0.484532i −0.0167435 0.00448641i
\(109\) 145.762 84.1557i 1.33727 0.772070i 0.350864 0.936426i \(-0.385888\pi\)
0.986401 + 0.164356i \(0.0525546\pi\)
\(110\) 40.1096 91.6072i 0.364633 0.832793i
\(111\) 26.5655 0.239328
\(112\) 75.6817 66.8878i 0.675729 0.597212i
\(113\) 105.863 105.863i 0.936843 0.936843i −0.0612774 0.998121i \(-0.519517\pi\)
0.998121 + 0.0612774i \(0.0195174\pi\)
\(114\) 29.9774 + 17.3075i 0.262960 + 0.151820i
\(115\) −122.774 + 90.3652i −1.06760 + 0.785784i
\(116\) −10.0198 17.3548i −0.0863775 0.149610i
\(117\) 5.76047 1.54351i 0.0492348 0.0131924i
\(118\) −89.9934 + 89.9934i −0.762656 + 0.762656i
\(119\) −97.9452 + 147.813i −0.823069 + 1.24213i
\(120\) −56.2654 44.9899i −0.468879 0.374916i
\(121\) 5.54707 9.60780i 0.0458435 0.0794033i
\(122\) −6.08799 + 22.7207i −0.0499016 + 0.186235i
\(123\) −48.0670 12.8795i −0.390789 0.104711i
\(124\) −5.07125 2.92789i −0.0408972 0.0236120i
\(125\) 112.409 + 54.6741i 0.899270 + 0.437393i
\(126\) 33.3973 + 22.1300i 0.265058 + 0.175635i
\(127\) −100.095 100.095i −0.788153 0.788153i 0.193038 0.981191i \(-0.438166\pi\)
−0.981191 + 0.193038i \(0.938166\pi\)
\(128\) 27.9631 + 104.360i 0.218461 + 0.815309i
\(129\) 6.72489 3.88262i 0.0521309 0.0300978i
\(130\) 18.7471 + 2.85059i 0.144208 + 0.0219276i
\(131\) 64.1225 111.063i 0.489485 0.847813i −0.510442 0.859912i \(-0.670518\pi\)
0.999927 + 0.0120995i \(0.00385150\pi\)
\(132\) 4.62594 + 4.62594i 0.0350450 + 0.0350450i
\(133\) 48.5599 + 54.9442i 0.365112 + 0.413114i
\(134\) 210.735i 1.57265i
\(135\) 10.4204 23.7995i 0.0771884 0.176292i
\(136\) −105.360 182.489i −0.774705 1.34183i
\(137\) 28.4034 106.003i 0.207324 0.773745i −0.781404 0.624025i \(-0.785496\pi\)
0.988729 0.149719i \(-0.0478371\pi\)
\(138\) 26.0755 + 97.3151i 0.188953 + 0.705182i
\(139\) 29.9231i 0.215274i −0.994190 0.107637i \(-0.965672\pi\)
0.994190 0.107637i \(-0.0343284\pi\)
\(140\) −6.83543 10.5966i −0.0488245 0.0756897i
\(141\) −3.06696 −0.0217515
\(142\) −55.1739 + 14.7838i −0.388549 + 0.104111i
\(143\) −20.1302 5.39386i −0.140770 0.0377193i
\(144\) −37.4878 + 21.6436i −0.260332 + 0.150303i
\(145\) 259.016 101.268i 1.78631 0.698399i
\(146\) −227.702 −1.55960
\(147\) 52.1823 + 66.9328i 0.354982 + 0.455325i
\(148\) −3.90738 + 3.90738i −0.0264012 + 0.0264012i
\(149\) −20.3618 11.7559i −0.136657 0.0788987i 0.430113 0.902775i \(-0.358474\pi\)
−0.566770 + 0.823876i \(0.691807\pi\)
\(150\) 60.7035 56.0317i 0.404690 0.373545i
\(151\) 2.08556 + 3.61230i 0.0138117 + 0.0239225i 0.872849 0.487991i \(-0.162270\pi\)
−0.859037 + 0.511914i \(0.828937\pi\)
\(152\) −84.1708 + 22.5535i −0.553755 + 0.148378i
\(153\) 53.7357 53.7357i 0.351214 0.351214i
\(154\) −62.4050 125.327i −0.405227 0.813813i
\(155\) 50.7512 63.4706i 0.327427 0.409488i
\(156\) −0.620252 + 1.07431i −0.00397597 + 0.00688659i
\(157\) −71.2889 + 266.054i −0.454069 + 1.69461i 0.236741 + 0.971573i \(0.423921\pi\)
−0.690810 + 0.723036i \(0.742746\pi\)
\(158\) 212.628 + 56.9735i 1.34575 + 0.360592i
\(159\) −88.4526 51.0681i −0.556306 0.321183i
\(160\) 28.5557 3.17988i 0.178473 0.0198743i
\(161\) −13.1392 + 213.018i −0.0816102 + 1.32309i
\(162\) −12.1412 12.1412i −0.0749456 0.0749456i
\(163\) −10.2997 38.4390i −0.0631884 0.235822i 0.927108 0.374795i \(-0.122287\pi\)
−0.990296 + 0.138972i \(0.955620\pi\)
\(164\) 8.96432 5.17555i 0.0546605 0.0315583i
\(165\) −73.1199 + 53.8183i −0.443151 + 0.326172i
\(166\) −32.7104 + 56.6561i −0.197051 + 0.341302i
\(167\) −193.699 193.699i −1.15987 1.15987i −0.984503 0.175370i \(-0.943888\pi\)
−0.175370 0.984503i \(-0.556112\pi\)
\(168\) −98.8429 + 20.0566i −0.588351 + 0.119385i
\(169\) 165.048i 0.976617i
\(170\) 225.046 87.9869i 1.32380 0.517570i
\(171\) −15.7130 27.2158i −0.0918892 0.159157i
\(172\) −0.418056 + 1.56021i −0.00243056 + 0.00907097i
\(173\) 49.1239 + 183.333i 0.283953 + 1.05973i 0.949601 + 0.313461i \(0.101489\pi\)
−0.665648 + 0.746266i \(0.731845\pi\)
\(174\) 183.797i 1.05630i
\(175\) 159.648 71.6769i 0.912273 0.409583i
\(176\) 151.269 0.859480
\(177\) 111.608 29.9053i 0.630555 0.168957i
\(178\) −39.0776 10.4708i −0.219537 0.0588248i
\(179\) −22.1740 + 12.8022i −0.123877 + 0.0715205i −0.560658 0.828047i \(-0.689452\pi\)
0.436781 + 0.899568i \(0.356118\pi\)
\(180\) 1.96786 + 5.03324i 0.0109325 + 0.0279624i
\(181\) 223.291 1.23365 0.616826 0.787100i \(-0.288418\pi\)
0.616826 + 0.787100i \(0.288418\pi\)
\(182\) 19.8920 17.5807i 0.109297 0.0965971i
\(183\) 15.1004 15.1004i 0.0825160 0.0825160i
\(184\) −219.645 126.812i −1.19372 0.689196i
\(185\) −45.4586 61.7620i −0.245722 0.333849i
\(186\) −26.8537 46.5120i −0.144375 0.250065i
\(187\) −256.514 + 68.7327i −1.37173 + 0.367554i
\(188\) 0.451105 0.451105i 0.00239949 0.00239949i
\(189\) −16.2128 32.5599i −0.0857818 0.172275i
\(190\) −11.0590 99.3109i −0.0582051 0.522689i
\(191\) −79.1507 + 137.093i −0.414402 + 0.717765i −0.995365 0.0961645i \(-0.969343\pi\)
0.580964 + 0.813930i \(0.302676\pi\)
\(192\) 30.7881 114.903i 0.160355 0.598452i
\(193\) 34.5030 + 9.24505i 0.178772 + 0.0479018i 0.347095 0.937830i \(-0.387168\pi\)
−0.168322 + 0.985732i \(0.553835\pi\)
\(194\) −132.554 76.5300i −0.683267 0.394484i
\(195\) −13.4458 10.7513i −0.0689527 0.0551347i
\(196\) −17.5201 2.16958i −0.0893881 0.0110693i
\(197\) −233.837 233.837i −1.18699 1.18699i −0.977896 0.209092i \(-0.932949\pi\)
−0.209092 0.977896i \(-0.567051\pi\)
\(198\) 15.5297 + 57.9574i 0.0784326 + 0.292714i
\(199\) −135.042 + 77.9668i −0.678605 + 0.391793i −0.799329 0.600893i \(-0.794812\pi\)
0.120724 + 0.992686i \(0.461478\pi\)
\(200\) −8.31614 + 207.798i −0.0415807 + 1.03899i
\(201\) 95.6607 165.689i 0.475924 0.824325i
\(202\) 72.8730 + 72.8730i 0.360757 + 0.360757i
\(203\) 123.734 369.168i 0.609527 1.81856i
\(204\) 15.8074i 0.0774874i
\(205\) 52.3082 + 133.790i 0.255162 + 0.652635i
\(206\) −149.543 259.016i −0.725936 1.25736i
\(207\) 23.6733 88.3501i 0.114364 0.426812i
\(208\) 7.42382 + 27.7061i 0.0356914 + 0.133202i
\(209\) 109.820i 0.525452i
\(210\) −5.69908 115.514i −0.0271385 0.550067i
\(211\) 71.3128 0.337975 0.168988 0.985618i \(-0.445950\pi\)
0.168988 + 0.985618i \(0.445950\pi\)
\(212\) 20.5214 5.49870i 0.0967991 0.0259372i
\(213\) 50.0911 + 13.4219i 0.235170 + 0.0630135i
\(214\) 137.084 79.1455i 0.640580 0.369839i
\(215\) −20.5343 8.99079i −0.0955082 0.0418176i
\(216\) 43.2245 0.200114
\(217\) −22.6250 111.500i −0.104263 0.513827i
\(218\) −227.056 + 227.056i −1.04154 + 1.04154i
\(219\) 179.030 + 103.363i 0.817487 + 0.471976i
\(220\) 2.83898 18.6707i 0.0129044 0.0848670i
\(221\) −25.1779 43.6094i −0.113927 0.197328i
\(222\) −48.9548 + 13.1174i −0.220517 + 0.0590873i
\(223\) −65.3363 + 65.3363i −0.292988 + 0.292988i −0.838259 0.545272i \(-0.816427\pi\)
0.545272 + 0.838259i \(0.316427\pi\)
\(224\) 22.2191 33.5317i 0.0991922 0.149695i
\(225\) −73.1627 + 16.4990i −0.325168 + 0.0733288i
\(226\) −142.812 + 247.357i −0.631911 + 1.09450i
\(227\) 21.7660 81.2317i 0.0958853 0.357849i −0.901267 0.433264i \(-0.857362\pi\)
0.997152 + 0.0754156i \(0.0240283\pi\)
\(228\) 6.31419 + 1.69188i 0.0276938 + 0.00742054i
\(229\) 148.580 + 85.7827i 0.648821 + 0.374597i 0.788004 0.615670i \(-0.211114\pi\)
−0.139183 + 0.990267i \(0.544448\pi\)
\(230\) 181.628 227.148i 0.789685 0.987598i
\(231\) −7.82527 + 126.866i −0.0338756 + 0.549203i
\(232\) 327.173 + 327.173i 1.41023 + 1.41023i
\(233\) 51.2177 + 191.147i 0.219818 + 0.820373i 0.984415 + 0.175863i \(0.0562717\pi\)
−0.764596 + 0.644510i \(0.777062\pi\)
\(234\) −9.85323 + 5.68877i −0.0421078 + 0.0243110i
\(235\) 5.24816 + 7.13038i 0.0223326 + 0.0303421i
\(236\) −12.0173 + 20.8145i −0.0509207 + 0.0881972i
\(237\) −141.315 141.315i −0.596266 0.596266i
\(238\) 107.507 320.752i 0.451708 1.34770i
\(239\) 88.3669i 0.369736i 0.982763 + 0.184868i \(0.0591857\pi\)
−0.982763 + 0.184868i \(0.940814\pi\)
\(240\) 114.468 + 50.1190i 0.476950 + 0.208829i
\(241\) −107.657 186.468i −0.446711 0.773727i 0.551458 0.834203i \(-0.314072\pi\)
−0.998170 + 0.0604755i \(0.980738\pi\)
\(242\) −5.47802 + 20.4442i −0.0226364 + 0.0844804i
\(243\) 4.03459 + 15.0573i 0.0166032 + 0.0619642i
\(244\) 4.44210i 0.0182053i
\(245\) 66.3182 235.854i 0.270686 0.962668i
\(246\) 94.9373 0.385924
\(247\) −20.1143 + 5.38962i −0.0814346 + 0.0218203i
\(248\) 130.597 + 34.9933i 0.526600 + 0.141102i
\(249\) 51.4368 29.6970i 0.206573 0.119265i
\(250\) −234.143 45.2485i −0.936574 0.180994i
\(251\) 202.957 0.808594 0.404297 0.914628i \(-0.367516\pi\)
0.404297 + 0.914628i \(0.367516\pi\)
\(252\) 7.17373 + 2.40442i 0.0284672 + 0.00954135i
\(253\) −226.015 + 226.015i −0.893340 + 0.893340i
\(254\) 233.880 + 135.031i 0.920789 + 0.531618i
\(255\) −216.882 32.9780i −0.850518 0.129326i
\(256\) 34.2982 + 59.4062i 0.133977 + 0.232055i
\(257\) 65.6771 17.5981i 0.255553 0.0684752i −0.128768 0.991675i \(-0.541102\pi\)
0.384321 + 0.923200i \(0.374436\pi\)
\(258\) −10.4755 + 10.4755i −0.0406026 + 0.0406026i
\(259\) −107.159 6.60975i −0.413743 0.0255203i
\(260\) 3.55903 0.396323i 0.0136886 0.00152432i
\(261\) −83.4325 + 144.509i −0.319665 + 0.553676i
\(262\) −63.3243 + 236.330i −0.241696 + 0.902021i
\(263\) −445.592 119.396i −1.69427 0.453977i −0.722781 0.691077i \(-0.757137\pi\)
−0.971485 + 0.237099i \(0.923803\pi\)
\(264\) −130.813 75.5248i −0.495503 0.286079i
\(265\) 32.6310 + 293.031i 0.123136 + 1.10578i
\(266\) −116.616 77.2733i −0.438407 0.290501i
\(267\) 25.9715 + 25.9715i 0.0972714 + 0.0972714i
\(268\) 10.3002 + 38.4407i 0.0384334 + 0.143435i
\(269\) −37.2279 + 21.4935i −0.138394 + 0.0799016i −0.567598 0.823306i \(-0.692127\pi\)
0.429205 + 0.903207i \(0.358794\pi\)
\(270\) −7.45115 + 49.0029i −0.0275968 + 0.181492i
\(271\) 84.6401 146.601i 0.312325 0.540963i −0.666540 0.745469i \(-0.732226\pi\)
0.978865 + 0.204506i \(0.0655589\pi\)
\(272\) 258.452 + 258.452i 0.950191 + 0.950191i
\(273\) −23.6205 + 4.79294i −0.0865222 + 0.0175566i
\(274\) 209.367i 0.764113i
\(275\) 250.244 + 77.9030i 0.909980 + 0.283284i
\(276\) 9.51299 + 16.4770i 0.0344673 + 0.0596992i
\(277\) −59.9500 + 223.736i −0.216426 + 0.807712i 0.769234 + 0.638967i \(0.220638\pi\)
−0.985660 + 0.168745i \(0.946029\pi\)
\(278\) 14.7753 + 55.1422i 0.0531486 + 0.198353i
\(279\) 48.7598i 0.174766i
\(280\) 215.769 + 195.479i 0.770603 + 0.698140i
\(281\) −86.0504 −0.306229 −0.153115 0.988208i \(-0.548930\pi\)
−0.153115 + 0.988208i \(0.548930\pi\)
\(282\) 5.65179 1.51439i 0.0200418 0.00537019i
\(283\) 65.1101 + 17.4462i 0.230071 + 0.0616474i 0.372013 0.928228i \(-0.378668\pi\)
−0.141941 + 0.989875i \(0.545334\pi\)
\(284\) −9.34181 + 5.39350i −0.0328937 + 0.0189912i
\(285\) −36.3860 + 83.1027i −0.127670 + 0.291588i
\(286\) 39.7592 0.139018
\(287\) 190.687 + 63.9127i 0.664416 + 0.222692i
\(288\) −12.1900 + 12.1900i −0.0423265 + 0.0423265i
\(289\) −305.423 176.336i −1.05683 0.610159i
\(290\) −427.310 + 314.512i −1.47348 + 1.08452i
\(291\) 69.4798 + 120.342i 0.238762 + 0.413548i
\(292\) −41.5357 + 11.1295i −0.142246 + 0.0381146i
\(293\) 360.421 360.421i 1.23011 1.23011i 0.266183 0.963923i \(-0.414238\pi\)
0.963923 0.266183i \(-0.0857625\pi\)
\(294\) −129.211 97.5773i −0.439494 0.331895i
\(295\) −260.510 208.304i −0.883084 0.706116i
\(296\) 63.7933 110.493i 0.215518 0.373288i
\(297\) 14.0990 52.6182i 0.0474714 0.177166i
\(298\) 43.3275 + 11.6096i 0.145394 + 0.0389583i
\(299\) −52.4887 30.3043i −0.175547 0.101352i
\(300\) 8.33439 13.1879i 0.0277813 0.0439597i
\(301\) −28.0928 + 13.9884i −0.0933316 + 0.0464732i
\(302\) −5.62693 5.62693i −0.0186322 0.0186322i
\(303\) −24.2161 90.3758i −0.0799212 0.298270i
\(304\) 130.899 75.5748i 0.430590 0.248601i
\(305\) −60.9467 9.26726i −0.199825 0.0303845i
\(306\) −72.4906 + 125.557i −0.236897 + 0.410318i
\(307\) 22.4453 + 22.4453i 0.0731116 + 0.0731116i 0.742717 0.669605i \(-0.233537\pi\)
−0.669605 + 0.742717i \(0.733537\pi\)
\(308\) −17.5091 19.8110i −0.0568477 0.0643216i
\(309\) 271.533i 0.878747i
\(310\) −62.1839 + 142.023i −0.200593 + 0.458140i
\(311\) 186.522 + 323.065i 0.599749 + 1.03880i 0.992858 + 0.119304i \(0.0380663\pi\)
−0.393109 + 0.919492i \(0.628600\pi\)
\(312\) 7.41307 27.6660i 0.0237599 0.0886730i
\(313\) −32.1578 120.014i −0.102741 0.383433i 0.895339 0.445386i \(-0.146934\pi\)
−0.998079 + 0.0619535i \(0.980267\pi\)
\(314\) 525.484i 1.67351i
\(315\) −47.9553 + 93.4092i −0.152239 + 0.296537i
\(316\) 41.5707 0.131553
\(317\) 325.028 87.0910i 1.02532 0.274735i 0.293306 0.956019i \(-0.405245\pi\)
0.732019 + 0.681284i \(0.238578\pi\)
\(318\) 188.216 + 50.4324i 0.591875 + 0.158593i
\(319\) 504.993 291.558i 1.58305 0.913974i
\(320\) −319.822 + 125.041i −0.999443 + 0.390754i
\(321\) −143.709 −0.447691
\(322\) −80.9700 399.036i −0.251460 1.23924i
\(323\) −187.634 + 187.634i −0.580909 + 0.580909i
\(324\) −2.80813 1.62128i −0.00866707 0.00500394i
\(325\) −1.98731 + 49.6576i −0.00611481 + 0.152793i
\(326\) 37.9606 + 65.7496i 0.116443 + 0.201686i
\(327\) 281.590 75.4519i 0.861133 0.230740i
\(328\) −168.996 + 168.996i −0.515231 + 0.515231i
\(329\) 12.3715 + 0.763091i 0.0376033 + 0.00231942i
\(330\) 108.171 135.281i 0.327791 0.409943i
\(331\) 41.0476 71.0966i 0.124011 0.214793i −0.797335 0.603537i \(-0.793758\pi\)
0.921346 + 0.388744i \(0.127091\pi\)
\(332\) −3.19759 + 11.9336i −0.00963130 + 0.0359445i
\(333\) 44.4449 + 11.9090i 0.133468 + 0.0357627i
\(334\) 452.591 + 261.304i 1.35506 + 0.782346i
\(335\) −548.905 + 61.1244i −1.63852 + 0.182461i
\(336\) 156.603 77.9783i 0.466080 0.232078i
\(337\) 55.2295 + 55.2295i 0.163886 + 0.163886i 0.784286 0.620400i \(-0.213030\pi\)
−0.620400 + 0.784286i \(0.713030\pi\)
\(338\) −81.4969 304.151i −0.241115 0.899854i
\(339\) 224.570 129.656i 0.662448 0.382465i
\(340\) 36.7507 27.0496i 0.108090 0.0795575i
\(341\) 85.1963 147.564i 0.249843 0.432740i
\(342\) 42.3945 + 42.3945i 0.123960 + 0.123960i
\(343\) −193.839 282.976i −0.565128 0.825004i
\(344\) 37.2943i 0.108414i
\(345\) −245.915 + 96.1458i −0.712796 + 0.278683i
\(346\) −181.051 313.589i −0.523268 0.906326i
\(347\) −24.0575 + 89.7837i −0.0693299 + 0.258743i −0.991888 0.127116i \(-0.959428\pi\)
0.922558 + 0.385858i \(0.126095\pi\)
\(348\) −8.98349 33.5269i −0.0258146 0.0963415i
\(349\) 372.327i 1.06684i −0.845851 0.533419i \(-0.820907\pi\)
0.845851 0.533419i \(-0.179093\pi\)
\(350\) −258.806 + 210.916i −0.739446 + 0.602618i
\(351\) 10.3294 0.0294285
\(352\) 58.1907 15.5921i 0.165314 0.0442959i
\(353\) −110.010 29.4770i −0.311642 0.0835042i 0.0996082 0.995027i \(-0.468241\pi\)
−0.411250 + 0.911523i \(0.634908\pi\)
\(354\) −190.905 + 110.219i −0.539279 + 0.311353i
\(355\) −54.5110 139.424i −0.153552 0.392744i
\(356\) −7.64003 −0.0214608
\(357\) −230.128 + 203.388i −0.644617 + 0.569715i
\(358\) 34.5408 34.5408i 0.0964827 0.0964827i
\(359\) −85.1134 49.1402i −0.237085 0.136881i 0.376751 0.926314i \(-0.377041\pi\)
−0.613836 + 0.789434i \(0.710374\pi\)
\(360\) −73.9655 100.493i −0.205460 0.279146i
\(361\) −125.633 217.603i −0.348015 0.602780i
\(362\) −411.480 + 110.256i −1.13669 + 0.304574i
\(363\) 13.5875 13.5875i 0.0374311 0.0374311i
\(364\) 2.76926 4.17920i 0.00760786 0.0114813i
\(365\) −66.0458 593.099i −0.180947 1.62493i
\(366\) −20.3708 + 35.2833i −0.0556580 + 0.0964024i
\(367\) 156.895 585.540i 0.427507 1.59548i −0.330881 0.943673i \(-0.607346\pi\)
0.758387 0.651804i \(-0.225988\pi\)
\(368\) 424.936 + 113.861i 1.15472 + 0.309406i
\(369\) −74.6439 43.0957i −0.202287 0.116790i
\(370\) 114.268 + 91.3685i 0.308831 + 0.246942i
\(371\) 344.093 + 228.006i 0.927473 + 0.614571i
\(372\) −7.17184 7.17184i −0.0192791 0.0192791i
\(373\) −131.534 490.890i −0.352637 1.31606i −0.883432 0.468560i \(-0.844773\pi\)
0.530795 0.847501i \(-0.321894\pi\)
\(374\) 438.764 253.321i 1.17317 0.677328i
\(375\) 163.554 + 141.863i 0.436144 + 0.378302i
\(376\) −7.36489 + 12.7564i −0.0195875 + 0.0339265i
\(377\) 78.1848 + 78.1848i 0.207387 + 0.207387i
\(378\) 45.9541 + 51.9958i 0.121572 + 0.137555i
\(379\) 329.156i 0.868486i −0.900796 0.434243i \(-0.857016\pi\)
0.900796 0.434243i \(-0.142984\pi\)
\(380\) −6.87133 17.5750i −0.0180825 0.0462500i
\(381\) −122.591 212.334i −0.321762 0.557308i
\(382\) 78.1655 291.718i 0.204622 0.763659i
\(383\) 16.9976 + 63.4359i 0.0443801 + 0.165629i 0.984559 0.175052i \(-0.0560092\pi\)
−0.940179 + 0.340680i \(0.889343\pi\)
\(384\) 187.132i 0.487324i
\(385\) 308.341 198.899i 0.800885 0.516620i
\(386\) −68.1470 −0.176547
\(387\) 12.9915 3.48106i 0.0335698 0.00899499i
\(388\) −27.9200 7.48115i −0.0719588 0.0192813i
\(389\) −203.539 + 117.513i −0.523236 + 0.302091i −0.738258 0.674519i \(-0.764351\pi\)
0.215021 + 0.976609i \(0.431018\pi\)
\(390\) 30.0866 + 13.1732i 0.0771451 + 0.0337774i
\(391\) −772.322 −1.97525
\(392\) 403.701 56.3110i 1.02985 0.143651i
\(393\) 157.067 157.067i 0.399663 0.399663i
\(394\) 546.377 + 315.451i 1.38674 + 0.800636i
\(395\) −86.7262 + 570.360i −0.219560 + 1.44395i
\(396\) 5.66560 + 9.81311i 0.0143071 + 0.0247806i
\(397\) 167.401 44.8551i 0.421666 0.112985i −0.0417456 0.999128i \(-0.513292\pi\)
0.463411 + 0.886143i \(0.346625\pi\)
\(398\) 210.358 210.358i 0.528537 0.528537i
\(399\) 56.6115 + 113.692i 0.141883 + 0.284943i
\(400\) −79.3549 351.890i −0.198387 0.879725i
\(401\) −255.698 + 442.881i −0.637650 + 1.10444i 0.348297 + 0.937384i \(0.386760\pi\)
−0.985947 + 0.167058i \(0.946573\pi\)
\(402\) −94.4700 + 352.567i −0.235000 + 0.877032i
\(403\) 31.2088 + 8.36237i 0.0774412 + 0.0207503i
\(404\) 16.8548 + 9.73111i 0.0417197 + 0.0240869i
\(405\) 28.1027 35.1459i 0.0693895 0.0867801i
\(406\) −45.7305 + 741.398i −0.112637 + 1.82610i
\(407\) −113.698 113.698i −0.279356 0.279356i
\(408\) −94.4630 352.541i −0.231527 0.864071i
\(409\) −603.075 + 348.185i −1.47451 + 0.851309i −0.999588 0.0287182i \(-0.990857\pi\)
−0.474923 + 0.880027i \(0.657524\pi\)
\(410\) −162.456 220.720i −0.396234 0.538341i
\(411\) 95.0397 164.614i 0.231240 0.400520i
\(412\) −39.9384 39.9384i −0.0969379 0.0969379i
\(413\) −457.644 + 92.8625i −1.10810 + 0.224849i
\(414\) 174.501i 0.421499i
\(415\) −157.061 68.7680i −0.378460 0.165706i
\(416\) 5.71166 + 9.89288i 0.0137299 + 0.0237810i
\(417\) 13.4142 50.0623i 0.0321682 0.120053i
\(418\) −54.2262 202.375i −0.129728 0.484151i
\(419\) 751.985i 1.79471i 0.441305 + 0.897357i \(0.354516\pi\)
−0.441305 + 0.897357i \(0.645484\pi\)
\(420\) −6.68559 20.7926i −0.0159181 0.0495062i
\(421\) 666.816 1.58389 0.791943 0.610596i \(-0.209070\pi\)
0.791943 + 0.610596i \(0.209070\pi\)
\(422\) −131.415 + 35.2125i −0.311410 + 0.0834420i
\(423\) −5.13113 1.37488i −0.0121303 0.00325031i
\(424\) −424.814 + 245.266i −1.00192 + 0.578458i
\(425\) 294.456 + 560.661i 0.692838 + 1.31920i
\(426\) −98.9352 −0.232242
\(427\) −64.6691 + 57.1548i −0.151450 + 0.133852i
\(428\) 21.1374 21.1374i 0.0493865 0.0493865i
\(429\) −31.2604 18.0482i −0.0728681 0.0420704i
\(430\) 42.2799 + 6.42888i 0.0983254 + 0.0149509i
\(431\) 131.194 + 227.235i 0.304395 + 0.527228i 0.977127 0.212659i \(-0.0682123\pi\)
−0.672731 + 0.739887i \(0.734879\pi\)
\(432\) −72.4209 + 19.4051i −0.167641 + 0.0449192i
\(433\) 375.850 375.850i 0.868014 0.868014i −0.124239 0.992252i \(-0.539649\pi\)
0.992252 + 0.124239i \(0.0396488\pi\)
\(434\) 96.7496 + 194.301i 0.222925 + 0.447698i
\(435\) 478.739 53.3110i 1.10055 0.122554i
\(436\) −30.3199 + 52.5156i −0.0695410 + 0.120449i
\(437\) −82.6623 + 308.500i −0.189158 + 0.705949i
\(438\) −380.953 102.076i −0.869757 0.233051i
\(439\) 597.304 + 344.854i 1.36060 + 0.785544i 0.989704 0.143129i \(-0.0457165\pi\)
0.370898 + 0.928673i \(0.379050\pi\)
\(440\) 48.2582 + 433.364i 0.109678 + 0.984918i
\(441\) 57.2976 + 135.374i 0.129926 + 0.306969i
\(442\) 67.9311 + 67.9311i 0.153690 + 0.153690i
\(443\) 17.6494 + 65.8683i 0.0398405 + 0.148687i 0.982981 0.183708i \(-0.0588100\pi\)
−0.943140 + 0.332395i \(0.892143\pi\)
\(444\) −8.28881 + 4.78555i −0.0186685 + 0.0107783i
\(445\) 15.9389 104.823i 0.0358177 0.235558i
\(446\) 88.1401 152.663i 0.197623 0.342294i
\(447\) −28.7960 28.7960i −0.0644205 0.0644205i
\(448\) −152.782 + 455.833i −0.341030 + 1.01748i
\(449\) 255.244i 0.568472i −0.958754 0.284236i \(-0.908260\pi\)
0.958754 0.284236i \(-0.0917398\pi\)
\(450\) 126.677 66.5303i 0.281505 0.147845i
\(451\) 150.599 + 260.846i 0.333923 + 0.578372i
\(452\) −13.9605 + 52.1013i −0.0308861 + 0.115268i
\(453\) 1.86986 + 6.97842i 0.00412773 + 0.0154049i
\(454\) 160.441i 0.353394i
\(455\) 51.5624 + 46.7138i 0.113324 + 0.102668i
\(456\) −150.931 −0.330989
\(457\) 8.92672 2.39191i 0.0195333 0.00523394i −0.249039 0.968493i \(-0.580115\pi\)
0.268572 + 0.963259i \(0.413448\pi\)
\(458\) −316.160 84.7149i −0.690306 0.184967i
\(459\) 113.991 65.8125i 0.248346 0.143382i
\(460\) 22.0288 50.3120i 0.0478886 0.109374i
\(461\) −410.809 −0.891127 −0.445563 0.895250i \(-0.646997\pi\)
−0.445563 + 0.895250i \(0.646997\pi\)
\(462\) −48.2229 237.652i −0.104379 0.514398i
\(463\) −321.399 + 321.399i −0.694166 + 0.694166i −0.963146 0.268980i \(-0.913314\pi\)
0.268980 + 0.963146i \(0.413314\pi\)
\(464\) −695.045 401.284i −1.49794 0.864837i
\(465\) 113.362 83.4373i 0.243788 0.179435i
\(466\) −188.768 326.955i −0.405081 0.701620i
\(467\) 465.574 124.750i 0.996946 0.267131i 0.276781 0.960933i \(-0.410732\pi\)
0.720166 + 0.693802i \(0.244066\pi\)
\(468\) −1.51930 + 1.51930i −0.00324637 + 0.00324637i
\(469\) −427.100 + 644.554i −0.910661 + 1.37431i
\(470\) −13.1921 10.5484i −0.0280683 0.0224435i
\(471\) −238.537 + 413.159i −0.506448 + 0.877194i
\(472\) 143.627 536.024i 0.304295 1.13564i
\(473\) −45.3992 12.1647i −0.0959814 0.0257181i
\(474\) 330.193 + 190.637i 0.696610 + 0.402188i
\(475\) 255.469 57.6109i 0.537829 0.121286i
\(476\) 3.93305 63.7638i 0.00826270 0.133958i
\(477\) −125.091 125.091i −0.262245 0.262245i
\(478\) −43.6334 162.842i −0.0912833 0.340674i
\(479\) 679.727 392.441i 1.41905 0.819291i 0.422838 0.906205i \(-0.361034\pi\)
0.996216 + 0.0869137i \(0.0277004\pi\)
\(480\) 49.2001 + 7.48113i 0.102500 + 0.0155857i
\(481\) 15.2447 26.4046i 0.0316938 0.0548953i
\(482\) 290.464 + 290.464i 0.602623 + 0.602623i
\(483\) −117.476 + 350.495i −0.243221 + 0.725663i
\(484\) 3.99703i 0.00825833i
\(485\) 160.891 367.462i 0.331734 0.757655i
\(486\) −14.8699 25.7554i −0.0305964 0.0529946i
\(487\) −93.7930 + 350.040i −0.192593 + 0.718769i 0.800283 + 0.599622i \(0.204682\pi\)
−0.992877 + 0.119146i \(0.961984\pi\)
\(488\) −26.5454 99.0686i −0.0543962 0.203009i
\(489\) 68.9270i 0.140955i
\(490\) −5.75213 + 467.377i −0.0117390 + 0.953830i
\(491\) 672.749 1.37016 0.685080 0.728468i \(-0.259767\pi\)
0.685080 + 0.728468i \(0.259767\pi\)
\(492\) 17.3177 4.64027i 0.0351987 0.00943145i
\(493\) 1360.96 + 364.667i 2.76056 + 0.739690i
\(494\) 34.4054 19.8640i 0.0696465 0.0402104i
\(495\) −146.458 + 57.2611i −0.295875 + 0.115679i
\(496\) −234.519 −0.472821
\(497\) −198.717 66.6041i −0.399834 0.134012i
\(498\) −80.1238 + 80.1238i −0.160891 + 0.160891i
\(499\) −266.252 153.721i −0.533571 0.308057i 0.208899 0.977937i \(-0.433012\pi\)
−0.742469 + 0.669880i \(0.766345\pi\)
\(500\) −44.9223 + 3.19039i −0.0898446 + 0.00638079i
\(501\) −237.231 410.897i −0.473516 0.820153i
\(502\) −374.009 + 100.215i −0.745037 + 0.199632i
\(503\) −573.532 + 573.532i −1.14022 + 1.14022i −0.151813 + 0.988409i \(0.548511\pi\)
−0.988409 + 0.151813i \(0.951489\pi\)
\(504\) −174.359 10.7547i −0.345949 0.0213387i
\(505\) −168.676 + 210.950i −0.334012 + 0.417724i
\(506\) 304.899 528.101i 0.602567 1.04368i
\(507\) −73.9891 + 276.131i −0.145935 + 0.544637i
\(508\) 49.2626 + 13.1999i 0.0969736 + 0.0259840i
\(509\) −132.234 76.3454i −0.259792 0.149991i 0.364448 0.931224i \(-0.381258\pi\)
−0.624240 + 0.781233i \(0.714591\pi\)
\(510\) 415.954 46.3194i 0.815595 0.0908223i
\(511\) −696.450 461.488i −1.36291 0.903107i
\(512\) −398.124 398.124i −0.777586 0.777586i
\(513\) −14.0879 52.5769i −0.0274619 0.102489i
\(514\) −112.340 + 64.8596i −0.218560 + 0.126186i
\(515\) 631.286 464.645i 1.22580 0.902222i
\(516\) −1.39884 + 2.42287i −0.00271094 + 0.00469548i
\(517\) 13.1263 + 13.1263i 0.0253894 + 0.0253894i
\(518\) 200.737 40.7323i 0.387523 0.0786338i
\(519\) 328.743i 0.633417i
\(520\) −77.0058 + 30.1071i −0.148088 + 0.0578983i
\(521\) 145.704 + 252.366i 0.279662 + 0.484389i 0.971301 0.237855i \(-0.0764443\pi\)
−0.691639 + 0.722244i \(0.743111\pi\)
\(522\) 82.3940 307.498i 0.157843 0.589077i
\(523\) −149.003 556.086i −0.284900 1.06326i −0.948912 0.315540i \(-0.897814\pi\)
0.664012 0.747722i \(-0.268852\pi\)
\(524\) 46.2046i 0.0881766i
\(525\) 299.228 48.3497i 0.569958 0.0920947i
\(526\) 880.091 1.67318
\(527\) 397.686 106.560i 0.754623 0.202201i
\(528\) 253.077 + 67.8118i 0.479313 + 0.128431i
\(529\) −346.907 + 200.287i −0.655779 + 0.378614i
\(530\) −204.824 523.884i −0.386460 0.988460i
\(531\) 200.130 0.376893
\(532\) −25.0491 8.39573i −0.0470849 0.0157814i
\(533\) −40.3850 + 40.3850i −0.0757693 + 0.0757693i
\(534\) −60.6842 35.0360i −0.113641 0.0656106i
\(535\) 245.913 + 334.108i 0.459651 + 0.624502i
\(536\) −459.432 795.760i −0.857150 1.48463i
\(537\) −42.8369 + 11.4781i −0.0797707 + 0.0213745i
\(538\) 57.9905 57.9905i 0.107789 0.107789i
\(539\) 63.1309 509.802i 0.117126 0.945830i
\(540\) 1.03595 + 9.30294i 0.00191842 + 0.0172277i
\(541\) −138.214 + 239.393i −0.255478 + 0.442501i −0.965025 0.262157i \(-0.915566\pi\)
0.709547 + 0.704658i \(0.248900\pi\)
\(542\) −83.5865 + 311.949i −0.154219 + 0.575552i
\(543\) 373.573 + 100.099i 0.687980 + 0.184344i
\(544\) 126.063 + 72.7823i 0.231733 + 0.133791i
\(545\) −657.273 525.557i −1.20601 0.964324i
\(546\) 41.1612 20.4957i 0.0753869 0.0375379i
\(547\) −582.880 582.880i −1.06559 1.06559i −0.997692 0.0679024i \(-0.978369\pi\)
−0.0679024 0.997692i \(-0.521631\pi\)
\(548\) 10.2333 + 38.1911i 0.0186739 + 0.0696918i
\(549\) 32.0329 18.4942i 0.0583477 0.0336870i
\(550\) −499.616 19.9948i −0.908394 0.0363542i
\(551\) 291.329 504.596i 0.528727 0.915782i
\(552\) −310.625 310.625i −0.562726 0.562726i
\(553\) 534.874 + 605.195i 0.967223 + 1.09439i
\(554\) 441.902i 0.797658i
\(555\) −48.3665 123.708i −0.0871469 0.222898i
\(556\) 5.39040 + 9.33644i 0.00969496 + 0.0167922i
\(557\) −188.562 + 703.723i −0.338532 + 1.26342i 0.561458 + 0.827505i \(0.310241\pi\)
−0.899989 + 0.435912i \(0.856426\pi\)
\(558\) −24.0764 89.8544i −0.0431477 0.161029i
\(559\) 8.91224i 0.0159432i
\(560\) −449.269 230.650i −0.802266 0.411875i
\(561\) −459.968 −0.819907
\(562\) 158.574 42.4896i 0.282159 0.0756043i
\(563\) −475.416 127.387i −0.844434 0.226265i −0.189433 0.981894i \(-0.560665\pi\)
−0.655001 + 0.755628i \(0.727332\pi\)
\(564\) 0.956937 0.552488i 0.00169670 0.000979589i
\(565\) −685.718 300.237i −1.21366 0.531393i
\(566\) −128.599 −0.227207
\(567\) −12.5283 61.7417i −0.0220957 0.108892i
\(568\) 176.112 176.112i 0.310057 0.310057i
\(569\) −742.450 428.654i −1.30483 0.753346i −0.323604 0.946192i \(-0.604895\pi\)
−0.981229 + 0.192847i \(0.938228\pi\)
\(570\) 26.0178 171.108i 0.0456453 0.300189i
\(571\) 454.669 + 787.510i 0.796268 + 1.37918i 0.922031 + 0.387117i \(0.126529\pi\)
−0.125762 + 0.992060i \(0.540138\pi\)
\(572\) 7.25256 1.94332i 0.0126793 0.00339741i
\(573\) −193.879 + 193.879i −0.338358 + 0.338358i
\(574\) −382.957 23.6213i −0.667172 0.0411522i
\(575\) 644.336 + 407.203i 1.12058 + 0.708179i
\(576\) 103.019 178.434i 0.178852 0.309782i
\(577\) −68.1343 + 254.281i −0.118084 + 0.440695i −0.999499 0.0316475i \(-0.989925\pi\)
0.881415 + 0.472342i \(0.156591\pi\)
\(578\) 649.903 + 174.141i 1.12440 + 0.301282i
\(579\) 53.5802 + 30.9346i 0.0925392 + 0.0534276i
\(580\) −62.5741 + 78.2566i −0.107886 + 0.134925i
\(581\) −214.874 + 106.993i −0.369834 + 0.184154i
\(582\) −187.459 187.459i −0.322095 0.322095i
\(583\) 160.002 + 597.136i 0.274446 + 1.02425i
\(584\) 859.830 496.423i 1.47231 0.850040i
\(585\) −17.6756 24.0148i −0.0302147 0.0410509i
\(586\) −486.215 + 842.150i −0.829719 + 1.43712i
\(587\) 507.344 + 507.344i 0.864300 + 0.864300i 0.991834 0.127534i \(-0.0407063\pi\)
−0.127534 + 0.991834i \(0.540706\pi\)
\(588\) −28.3390 11.4838i −0.0481957 0.0195303i
\(589\) 170.259i 0.289064i
\(590\) 582.922 + 255.229i 0.988004 + 0.432591i
\(591\) −286.390 496.043i −0.484586 0.839327i
\(592\) −57.2784 + 213.766i −0.0967541 + 0.361091i
\(593\) 47.3392 + 176.672i 0.0798301 + 0.297930i 0.994285 0.106758i \(-0.0340469\pi\)
−0.914455 + 0.404688i \(0.867380\pi\)
\(594\) 103.926i 0.174960i
\(595\) 866.651 + 186.989i 1.45656 + 0.314267i
\(596\) 8.47092 0.0142129
\(597\) −260.882 + 69.9031i −0.436988 + 0.117091i
\(598\) 111.690 + 29.9271i 0.186772 + 0.0500453i
\(599\) 218.188 125.971i 0.364254 0.210302i −0.306691 0.951809i \(-0.599222\pi\)
0.670945 + 0.741507i \(0.265889\pi\)
\(600\) −107.066 + 343.925i −0.178444 + 0.573208i
\(601\) 754.595 1.25557 0.627783 0.778388i \(-0.283963\pi\)
0.627783 + 0.778388i \(0.283963\pi\)
\(602\) 44.8622 39.6494i 0.0745219 0.0658628i
\(603\) 234.320 234.320i 0.388590 0.388590i
\(604\) −1.30145 0.751393i −0.00215472 0.00124403i
\(605\) −54.8403 8.33875i −0.0906452 0.0137831i
\(606\) 89.2508 + 154.587i 0.147279 + 0.255094i
\(607\) −727.749 + 195.000i −1.19893 + 0.321251i −0.802408 0.596775i \(-0.796448\pi\)
−0.396518 + 0.918027i \(0.629782\pi\)
\(608\) 42.5651 42.5651i 0.0700083 0.0700083i
\(609\) 372.504 562.161i 0.611665 0.923089i
\(610\) 116.888 13.0164i 0.191620 0.0213383i
\(611\) −1.75999 + 3.04840i −0.00288051 + 0.00498919i
\(612\) −7.08628 + 26.4464i −0.0115789 + 0.0432130i
\(613\) −225.113 60.3190i −0.367232 0.0983996i 0.0704836 0.997513i \(-0.477546\pi\)
−0.437716 + 0.899113i \(0.644212\pi\)
\(614\) −52.4450 30.2792i −0.0854154 0.0493146i
\(615\) 27.5369 + 247.285i 0.0447754 + 0.402089i
\(616\) 508.879 + 337.198i 0.826103 + 0.547400i
\(617\) 383.218 + 383.218i 0.621098 + 0.621098i 0.945812 0.324714i \(-0.105268\pi\)
−0.324714 + 0.945812i \(0.605268\pi\)
\(618\) −134.076 500.380i −0.216952 0.809676i
\(619\) 262.181 151.370i 0.423556 0.244540i −0.273042 0.962002i \(-0.588030\pi\)
0.696597 + 0.717462i \(0.254696\pi\)
\(620\) −4.40141 + 28.9462i −0.00709905 + 0.0466874i
\(621\) 79.2125 137.200i 0.127556 0.220934i
\(622\) −503.244 503.244i −0.809074 0.809074i
\(623\) −98.3013 111.225i −0.157787 0.178532i
\(624\) 49.6812i 0.0796172i
\(625\) 49.9454 623.001i 0.0799126 0.996802i
\(626\) 118.521 + 205.284i 0.189330 + 0.327929i
\(627\) −49.2307 + 183.732i −0.0785179 + 0.293033i
\(628\) −25.6842 95.8547i −0.0408984 0.152635i
\(629\) 388.520i 0.617679i
\(630\) 42.2487 195.813i 0.0670615 0.310815i
\(631\) −616.232 −0.976596 −0.488298 0.872677i \(-0.662382\pi\)
−0.488298 + 0.872677i \(0.662382\pi\)
\(632\) −927.118 + 248.421i −1.46696 + 0.393071i
\(633\) 119.309 + 31.9686i 0.188481 + 0.0505034i
\(634\) −555.957 + 320.982i −0.876904 + 0.506281i
\(635\) −283.879 + 648.358i −0.447054 + 1.02104i
\(636\) 36.7980 0.0578585
\(637\) 96.4728 13.4567i 0.151449 0.0211251i
\(638\) −786.635 + 786.635i −1.23297 + 1.23297i
\(639\) 77.7872 + 44.9105i 0.121733 + 0.0702824i
\(640\) 435.064 320.219i 0.679788 0.500343i
\(641\) −315.011 545.614i −0.491436 0.851192i 0.508515 0.861053i \(-0.330195\pi\)
−0.999951 + 0.00986074i \(0.996861\pi\)
\(642\) 264.826 70.9600i 0.412502 0.110530i
\(643\) −129.985 + 129.985i −0.202154 + 0.202154i −0.800922 0.598768i \(-0.795657\pi\)
0.598768 + 0.800922i \(0.295657\pi\)
\(644\) −34.2737 68.8315i −0.0532200 0.106881i
\(645\) −30.3240 24.2472i −0.0470140 0.0375925i
\(646\) 253.122 438.420i 0.391829 0.678668i
\(647\) 243.586 909.075i 0.376485 1.40506i −0.474678 0.880160i \(-0.657435\pi\)
0.851163 0.524902i \(-0.175898\pi\)
\(648\) 72.3161 + 19.3770i 0.111599 + 0.0299028i
\(649\) −605.665 349.681i −0.933229 0.538800i
\(650\) −20.8575 92.4901i −0.0320885 0.142292i
\(651\) 12.1319 196.686i 0.0186358 0.302130i
\(652\) 10.1381 + 10.1381i 0.0155493 + 0.0155493i
\(653\) 79.6499 + 297.258i 0.121975 + 0.455218i 0.999714 0.0239217i \(-0.00761523\pi\)
−0.877738 + 0.479140i \(0.840949\pi\)
\(654\) −481.658 + 278.085i −0.736480 + 0.425207i
\(655\) −633.939 96.3936i −0.967845 0.147166i
\(656\) 207.277 359.014i 0.315971 0.547277i
\(657\) 253.186 + 253.186i 0.385367 + 0.385367i
\(658\) −23.1749 + 4.70252i −0.0352202 + 0.00714668i
\(659\) 6.50016i 0.00986367i 0.999988 + 0.00493183i \(0.00156986\pi\)
−0.999988 + 0.00493183i \(0.998430\pi\)
\(660\) 13.1196 29.9641i 0.0198781 0.0454001i
\(661\) −268.548 465.138i −0.406275 0.703688i 0.588194 0.808720i \(-0.299839\pi\)
−0.994469 + 0.105031i \(0.966506\pi\)
\(662\) −40.5367 + 151.285i −0.0612336 + 0.228527i
\(663\) −22.5739 84.2469i −0.0340481 0.127069i
\(664\) 285.253i 0.429598i
\(665\) 167.450 326.165i 0.251804 0.490474i
\(666\) −87.7833 −0.131807
\(667\) 1638.06 438.917i 2.45586 0.658046i
\(668\) 95.3300 + 25.5436i 0.142710 + 0.0382389i
\(669\) −138.599 + 80.0203i −0.207174 + 0.119612i
\(670\) 981.338 383.676i 1.46468 0.572651i
\(671\) −129.257 −0.192633
\(672\) 52.2050 46.1390i 0.0776861 0.0686593i
\(673\) −502.493 + 502.493i −0.746646 + 0.746646i −0.973848 0.227202i \(-0.927042\pi\)
0.227202 + 0.973848i \(0.427042\pi\)
\(674\) −129.048 74.5058i −0.191466 0.110543i
\(675\) −129.800 5.19463i −0.192296 0.00769575i
\(676\) −29.7321 51.4975i −0.0439824 0.0761797i
\(677\) −79.0768 + 21.1886i −0.116805 + 0.0312977i −0.316748 0.948510i \(-0.602591\pi\)
0.199943 + 0.979807i \(0.435924\pi\)
\(678\) −349.816 + 349.816i −0.515953 + 0.515953i
\(679\) −250.324 502.723i −0.368666 0.740387i
\(680\) −657.978 + 822.882i −0.967614 + 1.21012i
\(681\) 72.8303 126.146i 0.106946 0.185236i
\(682\) −84.1358 + 313.999i −0.123366 + 0.460409i
\(683\) 670.938 + 179.777i 0.982340 + 0.263217i 0.714030 0.700115i \(-0.246868\pi\)
0.268310 + 0.963333i \(0.413535\pi\)
\(684\) 9.80540 + 5.66115i 0.0143354 + 0.00827653i
\(685\) −545.341 + 60.7276i −0.796118 + 0.0886534i
\(686\) 496.932 + 425.755i 0.724391 + 0.620634i
\(687\) 210.124 + 210.124i 0.305857 + 0.305857i
\(688\) 16.7428 + 62.4850i 0.0243355 + 0.0908213i
\(689\) −101.518 + 58.6114i −0.147341 + 0.0850674i
\(690\) 405.696 298.604i 0.587966 0.432759i
\(691\) 57.5433 99.6680i 0.0832755 0.144237i −0.821380 0.570382i \(-0.806795\pi\)
0.904655 + 0.426145i \(0.140129\pi\)
\(692\) −48.3532 48.3532i −0.0698746 0.0698746i
\(693\) −69.9643 + 208.743i −0.100959 + 0.301216i
\(694\) 177.332i 0.255522i
\(695\) −139.344 + 54.4796i −0.200495 + 0.0783879i
\(696\) 400.704 + 694.039i 0.575724 + 0.997182i
\(697\) −188.363 + 702.980i −0.270248 + 1.00858i
\(698\) 183.846 + 686.123i 0.263390 + 0.982984i
\(699\) 342.755i 0.490351i
\(700\) −36.9004 + 51.1235i −0.0527149 + 0.0730335i
\(701\) 809.046 1.15413 0.577066 0.816698i \(-0.304198\pi\)
0.577066 + 0.816698i \(0.304198\pi\)
\(702\) −19.0350 + 5.10041i −0.0271154 + 0.00726554i
\(703\) −155.192 41.5836i −0.220757 0.0591516i
\(704\) −623.544 + 360.003i −0.885716 + 0.511368i
\(705\) 5.58388 + 14.2820i 0.00792040 + 0.0202582i
\(706\) 217.280 0.307763
\(707\) 75.1963 + 370.582i 0.106360 + 0.524161i
\(708\) −29.4362 + 29.4362i −0.0415765 + 0.0415765i
\(709\) 1134.05 + 654.745i 1.59951 + 0.923477i 0.991582 + 0.129483i \(0.0413319\pi\)
0.607927 + 0.793993i \(0.292001\pi\)
\(710\) 169.297 + 230.014i 0.238446 + 0.323964i
\(711\) −173.075 299.775i −0.243425 0.421624i
\(712\) 170.390 45.6557i 0.239311 0.0641232i
\(713\) 350.403 350.403i 0.491448 0.491448i
\(714\) 323.651 488.435i 0.453293 0.684083i
\(715\) 11.5323 + 103.561i 0.0161291 + 0.144841i
\(716\) 4.61241 7.98893i 0.00644191 0.0111577i
\(717\) −39.6138 + 147.841i −0.0552493 + 0.206193i
\(718\) 181.111 + 48.5285i 0.252244 + 0.0675885i
\(719\) −968.813 559.345i −1.34745 0.777948i −0.359559 0.933123i \(-0.617073\pi\)
−0.987887 + 0.155174i \(0.950406\pi\)
\(720\) 169.041 + 135.165i 0.234779 + 0.187730i
\(721\) 67.5600 1095.30i 0.0937032 1.51915i
\(722\) 338.964 + 338.964i 0.469480 + 0.469480i
\(723\) −96.5230 360.229i −0.133504 0.498242i
\(724\) −69.6700 + 40.2240i −0.0962293 + 0.0555580i
\(725\) −943.156 1021.79i −1.30091 1.40937i
\(726\) −18.3298 + 31.7482i −0.0252477 + 0.0437302i
\(727\) −28.5376 28.5376i −0.0392540 0.0392540i 0.687207 0.726461i \(-0.258836\pi\)
−0.726461 + 0.687207i \(0.758836\pi\)
\(728\) −36.7863 + 109.754i −0.0505307 + 0.150761i
\(729\) 27.0000i 0.0370370i
\(730\) 414.567 + 1060.35i 0.567901 + 1.45253i
\(731\) −56.7833 98.3516i −0.0776789 0.134544i
\(732\) −1.99134 + 7.43178i −0.00272041 + 0.0101527i
\(733\) 167.588 + 625.448i 0.228633 + 0.853272i 0.980916 + 0.194431i \(0.0622861\pi\)
−0.752283 + 0.658841i \(0.771047\pi\)
\(734\) 1156.50i 1.57562i
\(735\) 216.683 364.861i 0.294806 0.496410i
\(736\) 175.203 0.238047
\(737\) −1118.55 + 299.716i −1.51771 + 0.406670i
\(738\) 158.833 + 42.5592i 0.215221 + 0.0576683i
\(739\) 838.233 483.954i 1.13428 0.654877i 0.189272 0.981925i \(-0.439387\pi\)
0.945008 + 0.327048i \(0.106054\pi\)
\(740\) 25.3097 + 11.0817i 0.0342022 + 0.0149752i
\(741\) −36.0681 −0.0486748
\(742\) −746.677 250.264i −1.00630 0.337283i
\(743\) −243.308 + 243.308i −0.327467 + 0.327467i −0.851623 0.524155i \(-0.824381\pi\)
0.524155 + 0.851623i \(0.324381\pi\)
\(744\) 202.806 + 117.090i 0.272588 + 0.157379i
\(745\) −17.6723 + 116.223i −0.0237212 + 0.156004i
\(746\) 484.780 + 839.663i 0.649839 + 1.12555i
\(747\) 99.3682 26.6256i 0.133023 0.0356434i
\(748\) 67.6544 67.6544i 0.0904471 0.0904471i
\(749\) 579.690 + 35.7562i 0.773952 + 0.0477385i
\(750\) −371.445 180.666i −0.495260 0.240888i
\(751\) 75.0735 130.031i 0.0999647 0.173144i −0.811705 0.584067i \(-0.801460\pi\)
0.911670 + 0.410923i \(0.134794\pi\)
\(752\) 6.61275 24.6791i 0.00879356 0.0328180i
\(753\) 339.554 + 90.9831i 0.450934 + 0.120828i
\(754\) −182.684 105.473i −0.242287 0.139884i
\(755\) 13.0244 16.2886i 0.0172509 0.0215744i
\(756\) 10.9240 + 7.23857i 0.0144498 + 0.00957483i
\(757\) 405.586 + 405.586i 0.535780 + 0.535780i 0.922287 0.386507i \(-0.126318\pi\)
−0.386507 + 0.922287i \(0.626318\pi\)
\(758\) 162.529 + 606.568i 0.214419 + 0.800222i
\(759\) −479.450 + 276.811i −0.631687 + 0.364705i
\(760\) 258.272 + 350.899i 0.339831 + 0.461709i
\(761\) −529.787 + 917.617i