Properties

Label 105.3.v.a.37.2
Level 105
Weight 3
Character 105.37
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.2
Character \(\chi\) \(=\) 105.37
Dual form 105.3.v.a.88.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-3.18498 + 0.853412i) q^{2} +(1.67303 + 0.448288i) q^{3} +(5.95167 - 3.43620i) q^{4} +(-4.91224 + 0.932701i) q^{5} -5.71115 q^{6} +(5.00478 + 4.89410i) q^{7} +(-6.69718 + 6.69718i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-3.18498 + 0.853412i) q^{2} +(1.67303 + 0.448288i) q^{3} +(5.95167 - 3.43620i) q^{4} +(-4.91224 + 0.932701i) q^{5} -5.71115 q^{6} +(5.00478 + 4.89410i) q^{7} +(-6.69718 + 6.69718i) q^{8} +(2.59808 + 1.50000i) q^{9} +(14.8494 - 7.16279i) q^{10} +(-0.581984 - 1.00803i) q^{11} +(11.4977 - 3.08081i) q^{12} +(-14.6930 + 14.6930i) q^{13} +(-20.1168 - 11.3165i) q^{14} +(-8.63645 - 0.641657i) q^{15} +(1.87012 - 3.23914i) q^{16} +(-6.97229 + 26.0209i) q^{17} +(-9.55493 - 2.56024i) q^{18} +(-24.9464 - 14.4028i) q^{19} +(-26.0311 + 22.4305i) q^{20} +(6.17919 + 10.4316i) q^{21} +(2.71387 + 2.71387i) q^{22} +(3.19577 + 11.9268i) q^{23} +(-14.2069 + 8.20233i) q^{24} +(23.2601 - 9.16329i) q^{25} +(34.2576 - 59.3359i) q^{26} +(3.67423 + 3.67423i) q^{27} +(46.6039 + 11.9307i) q^{28} +12.5542i q^{29} +(28.0545 - 5.32679i) q^{30} +(8.24013 + 14.2723i) q^{31} +(6.61339 - 24.6815i) q^{32} +(-0.521792 - 1.94736i) q^{33} -88.8263i q^{34} +(-29.1494 - 19.3730i) q^{35} +20.6172 q^{36} +(13.6641 - 3.66129i) q^{37} +(91.7452 + 24.5830i) q^{38} +(-31.1685 + 17.9951i) q^{39} +(26.6517 - 39.1446i) q^{40} +48.3009 q^{41} +(-28.5830 - 27.9509i) q^{42} +(-0.357576 + 0.357576i) q^{43} +(-6.92755 - 3.99962i) q^{44} +(-14.1614 - 4.94513i) q^{45} +(-20.3569 - 35.2592i) q^{46} +(27.3656 - 7.33258i) q^{47} +(4.58084 - 4.58084i) q^{48} +(1.09559 + 48.9878i) q^{49} +(-66.2630 + 49.0354i) q^{50} +(-23.3297 + 40.4083i) q^{51} +(-36.9597 + 137.936i) q^{52} +(-45.5418 - 12.2029i) q^{53} +(-14.8380 - 8.56672i) q^{54} +(3.79903 + 4.40884i) q^{55} +(-66.2945 + 0.741234i) q^{56} +(-35.2795 - 35.2795i) q^{57} +(-10.7139 - 39.9849i) q^{58} +(49.5210 - 28.5910i) q^{59} +(-53.6062 + 25.8576i) q^{60} +(6.30786 - 10.9255i) q^{61} +(-38.4248 - 38.4248i) q^{62} +(5.66164 + 20.2224i) q^{63} +99.2149i q^{64} +(58.4712 - 85.8794i) q^{65} +(3.32379 + 5.75698i) q^{66} +(12.0537 - 44.9851i) q^{67} +(47.9163 + 178.826i) q^{68} +21.3865i q^{69} +(109.373 + 36.8262i) q^{70} +19.0442 q^{71} +(-27.4455 + 7.35401i) q^{72} +(-118.629 - 31.7865i) q^{73} +(-40.3953 + 23.3222i) q^{74} +(43.0228 - 4.90325i) q^{75} -197.963 q^{76} +(2.02068 - 7.89323i) q^{77} +(83.9136 - 83.9136i) q^{78} +(74.1583 + 42.8153i) q^{79} +(-6.16532 + 17.6557i) q^{80} +(4.50000 + 7.79423i) q^{81} +(-153.837 + 41.2206i) q^{82} +(18.0900 - 18.0900i) q^{83} +(72.6214 + 40.8523i) q^{84} +(9.97979 - 134.324i) q^{85} +(0.833713 - 1.44403i) q^{86} +(-5.62791 + 21.0036i) q^{87} +(10.6486 + 2.85328i) q^{88} +(-78.1616 - 45.1266i) q^{89} +(49.3240 + 3.66460i) q^{90} +(-145.444 + 1.62620i) q^{91} +(60.0029 + 60.0029i) q^{92} +(7.38790 + 27.5720i) q^{93} +(-80.9010 + 46.7082i) q^{94} +(135.976 + 47.4824i) q^{95} +(22.1288 - 38.3282i) q^{96} +(84.2362 + 84.2362i) q^{97} +(-45.2962 - 155.090i) q^{98} -3.49190i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.18498 + 0.853412i −1.59249 + 0.426706i −0.942763 0.333463i \(-0.891783\pi\)
−0.649726 + 0.760169i \(0.725116\pi\)
\(3\) 1.67303 + 0.448288i 0.557678 + 0.149429i
\(4\) 5.95167 3.43620i 1.48792 0.859049i
\(5\) −4.91224 + 0.932701i −0.982447 + 0.186540i
\(6\) −5.71115 −0.951858
\(7\) 5.00478 + 4.89410i 0.714968 + 0.699157i
\(8\) −6.69718 + 6.69718i −0.837147 + 0.837147i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) 14.8494 7.16279i 1.48494 0.716279i
\(11\) −0.581984 1.00803i −0.0529076 0.0916387i 0.838359 0.545119i \(-0.183516\pi\)
−0.891266 + 0.453480i \(0.850182\pi\)
\(12\) 11.4977 3.08081i 0.958145 0.256734i
\(13\) −14.6930 + 14.6930i −1.13023 + 1.13023i −0.140089 + 0.990139i \(0.544739\pi\)
−0.990139 + 0.140089i \(0.955261\pi\)
\(14\) −20.1168 11.3165i −1.43691 0.808318i
\(15\) −8.63645 0.641657i −0.575763 0.0427771i
\(16\) 1.87012 3.23914i 0.116882 0.202446i
\(17\) −6.97229 + 26.0209i −0.410135 + 1.53064i 0.384251 + 0.923229i \(0.374460\pi\)
−0.794385 + 0.607414i \(0.792207\pi\)
\(18\) −9.55493 2.56024i −0.530830 0.142235i
\(19\) −24.9464 14.4028i −1.31297 0.758042i −0.330381 0.943848i \(-0.607177\pi\)
−0.982586 + 0.185806i \(0.940510\pi\)
\(20\) −26.0311 + 22.4305i −1.30155 + 1.12153i
\(21\) 6.17919 + 10.4316i 0.294247 + 0.496741i
\(22\) 2.71387 + 2.71387i 0.123358 + 0.123358i
\(23\) 3.19577 + 11.9268i 0.138946 + 0.518555i 0.999950 + 0.00995696i \(0.00316945\pi\)
−0.861004 + 0.508598i \(0.830164\pi\)
\(24\) −14.2069 + 8.20233i −0.591953 + 0.341764i
\(25\) 23.2601 9.16329i 0.930406 0.366532i
\(26\) 34.2576 59.3359i 1.31760 2.28215i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) 46.6039 + 11.9307i 1.66442 + 0.426095i
\(29\) 12.5542i 0.432905i 0.976293 + 0.216452i \(0.0694486\pi\)
−0.976293 + 0.216452i \(0.930551\pi\)
\(30\) 28.0545 5.32679i 0.935150 0.177560i
\(31\) 8.24013 + 14.2723i 0.265811 + 0.460398i 0.967776 0.251814i \(-0.0810271\pi\)
−0.701965 + 0.712211i \(0.747694\pi\)
\(32\) 6.61339 24.6815i 0.206668 0.771297i
\(33\) −0.521792 1.94736i −0.0158119 0.0590108i
\(34\) 88.8263i 2.61254i
\(35\) −29.1494 19.3730i −0.832839 0.553515i
\(36\) 20.6172 0.572700
\(37\) 13.6641 3.66129i 0.369300 0.0989538i −0.0693957 0.997589i \(-0.522107\pi\)
0.438696 + 0.898635i \(0.355440\pi\)
\(38\) 91.7452 + 24.5830i 2.41435 + 0.646922i
\(39\) −31.1685 + 17.9951i −0.799192 + 0.461414i
\(40\) 26.6517 39.1446i 0.666292 0.978615i
\(41\) 48.3009 1.17807 0.589036 0.808107i \(-0.299508\pi\)
0.589036 + 0.808107i \(0.299508\pi\)
\(42\) −28.5830 27.9509i −0.680548 0.665498i
\(43\) −0.357576 + 0.357576i −0.00831573 + 0.00831573i −0.711252 0.702937i \(-0.751872\pi\)
0.702937 + 0.711252i \(0.251872\pi\)
\(44\) −6.92755 3.99962i −0.157444 0.0909005i
\(45\) −14.1614 4.94513i −0.314698 0.109892i
\(46\) −20.3569 35.2592i −0.442541 0.766504i
\(47\) 27.3656 7.33258i 0.582246 0.156012i 0.0443391 0.999017i \(-0.485882\pi\)
0.537907 + 0.843004i \(0.319215\pi\)
\(48\) 4.58084 4.58084i 0.0954341 0.0954341i
\(49\) 1.09559 + 48.9878i 0.0223590 + 0.999750i
\(50\) −66.2630 + 49.0354i −1.32526 + 0.980707i
\(51\) −23.3297 + 40.4083i −0.457446 + 0.792319i
\(52\) −36.9597 + 137.936i −0.710764 + 2.65261i
\(53\) −45.5418 12.2029i −0.859280 0.230243i −0.197834 0.980236i \(-0.563391\pi\)
−0.661447 + 0.749992i \(0.730057\pi\)
\(54\) −14.8380 8.56672i −0.274778 0.158643i
\(55\) 3.79903 + 4.40884i 0.0690732 + 0.0801608i
\(56\) −66.2945 + 0.741234i −1.18383 + 0.0132363i
\(57\) −35.2795 35.2795i −0.618939 0.618939i
\(58\) −10.7139 39.9849i −0.184723 0.689396i
\(59\) 49.5210 28.5910i 0.839340 0.484593i −0.0177000 0.999843i \(-0.505634\pi\)
0.857040 + 0.515250i \(0.172301\pi\)
\(60\) −53.6062 + 25.8576i −0.893436 + 0.430960i
\(61\) 6.30786 10.9255i 0.103408 0.179107i −0.809679 0.586873i \(-0.800359\pi\)
0.913086 + 0.407766i \(0.133692\pi\)
\(62\) −38.4248 38.4248i −0.619755 0.619755i
\(63\) 5.66164 + 20.2224i 0.0898674 + 0.320991i
\(64\) 99.2149i 1.55023i
\(65\) 58.4712 85.8794i 0.899556 1.32122i
\(66\) 3.32379 + 5.75698i 0.0503605 + 0.0872270i
\(67\) 12.0537 44.9851i 0.179906 0.671419i −0.815758 0.578394i \(-0.803680\pi\)
0.995664 0.0930251i \(-0.0296537\pi\)
\(68\) 47.9163 + 178.826i 0.704652 + 2.62980i
\(69\) 21.3865i 0.309949i
\(70\) 109.373 + 36.8262i 1.56248 + 0.526088i
\(71\) 19.0442 0.268228 0.134114 0.990966i \(-0.457181\pi\)
0.134114 + 0.990966i \(0.457181\pi\)
\(72\) −27.4455 + 7.35401i −0.381188 + 0.102139i
\(73\) −118.629 31.7865i −1.62505 0.435432i −0.672573 0.740031i \(-0.734811\pi\)
−0.952481 + 0.304599i \(0.901477\pi\)
\(74\) −40.3953 + 23.3222i −0.545883 + 0.315165i
\(75\) 43.0228 4.90325i 0.573637 0.0653767i
\(76\) −197.963 −2.60478
\(77\) 2.02068 7.89323i 0.0262426 0.102509i
\(78\) 83.9136 83.9136i 1.07582 1.07582i
\(79\) 74.1583 + 42.8153i 0.938712 + 0.541966i 0.889556 0.456825i \(-0.151014\pi\)
0.0491557 + 0.998791i \(0.484347\pi\)
\(80\) −6.16532 + 17.6557i −0.0770665 + 0.220696i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) −153.837 + 41.2206i −1.87607 + 0.502690i
\(83\) 18.0900 18.0900i 0.217952 0.217952i −0.589683 0.807635i \(-0.700747\pi\)
0.807635 + 0.589683i \(0.200747\pi\)
\(84\) 72.6214 + 40.8523i 0.864541 + 0.486337i
\(85\) 9.97979 134.324i 0.117409 1.58028i
\(86\) 0.833713 1.44403i 0.00969433 0.0167911i
\(87\) −5.62791 + 21.0036i −0.0646886 + 0.241421i
\(88\) 10.6486 + 2.85328i 0.121007 + 0.0324236i
\(89\) −78.1616 45.1266i −0.878220 0.507041i −0.00814896 0.999967i \(-0.502594\pi\)
−0.870071 + 0.492926i \(0.835927\pi\)
\(90\) 49.3240 + 3.66460i 0.548045 + 0.0407177i
\(91\) −145.444 + 1.62620i −1.59828 + 0.0178703i
\(92\) 60.0029 + 60.0029i 0.652205 + 0.652205i
\(93\) 7.38790 + 27.5720i 0.0794398 + 0.296473i
\(94\) −80.9010 + 46.7082i −0.860649 + 0.496896i
\(95\) 135.976 + 47.4824i 1.43133 + 0.499815i
\(96\) 22.1288 38.3282i 0.230509 0.399252i
\(97\) 84.2362 + 84.2362i 0.868414 + 0.868414i 0.992297 0.123883i \(-0.0395347\pi\)
−0.123883 + 0.992297i \(0.539535\pi\)
\(98\) −45.2962 155.090i −0.462206 1.58255i
\(99\) 3.49190i 0.0352717i
\(100\) 106.950 134.463i 1.06950 1.34463i
\(101\) 37.0883 + 64.2388i 0.367211 + 0.636028i 0.989128 0.147055i \(-0.0469794\pi\)
−0.621917 + 0.783083i \(0.713646\pi\)
\(102\) 39.8198 148.609i 0.390390 1.45695i
\(103\) 24.8309 + 92.6702i 0.241077 + 0.899711i 0.975315 + 0.220819i \(0.0708729\pi\)
−0.734238 + 0.678892i \(0.762460\pi\)
\(104\) 196.803i 1.89233i
\(105\) −40.0832 45.4790i −0.381745 0.433133i
\(106\) 155.464 1.46664
\(107\) −42.6823 + 11.4367i −0.398900 + 0.106885i −0.452692 0.891667i \(-0.649536\pi\)
0.0537912 + 0.998552i \(0.482869\pi\)
\(108\) 34.4932 + 9.24243i 0.319382 + 0.0855781i
\(109\) 117.615 67.9052i 1.07904 0.622984i 0.148403 0.988927i \(-0.452587\pi\)
0.930637 + 0.365943i \(0.119254\pi\)
\(110\) −15.8624 10.7999i −0.144203 0.0981812i
\(111\) 24.5018 0.220737
\(112\) 25.2122 7.05863i 0.225109 0.0630235i
\(113\) −4.59841 + 4.59841i −0.0406939 + 0.0406939i −0.727161 0.686467i \(-0.759161\pi\)
0.686467 + 0.727161i \(0.259161\pi\)
\(114\) 142.472 + 82.2565i 1.24976 + 0.721548i
\(115\) −26.8225 55.6064i −0.233239 0.483534i
\(116\) 43.1388 + 74.7186i 0.371886 + 0.644126i
\(117\) −60.2129 + 16.1340i −0.514640 + 0.137897i
\(118\) −133.324 + 133.324i −1.12986 + 1.12986i
\(119\) −162.244 + 96.1059i −1.36339 + 0.807613i
\(120\) 62.1371 53.5426i 0.517809 0.446188i
\(121\) 59.8226 103.616i 0.494402 0.856329i
\(122\) −10.7664 + 40.1808i −0.0882492 + 0.329351i
\(123\) 80.8090 + 21.6527i 0.656984 + 0.176038i
\(124\) 98.0851 + 56.6294i 0.791009 + 0.456689i
\(125\) −105.713 + 66.7070i −0.845702 + 0.533656i
\(126\) −35.2903 59.5762i −0.280081 0.472827i
\(127\) 16.6949 + 16.6949i 0.131456 + 0.131456i 0.769773 0.638317i \(-0.220369\pi\)
−0.638317 + 0.769773i \(0.720369\pi\)
\(128\) −58.2177 217.271i −0.454825 1.69743i
\(129\) −0.758534 + 0.437940i −0.00588011 + 0.00339488i
\(130\) −112.939 + 323.424i −0.868760 + 2.48788i
\(131\) −63.4004 + 109.813i −0.483973 + 0.838266i −0.999831 0.0184088i \(-0.994140\pi\)
0.515858 + 0.856674i \(0.327473\pi\)
\(132\) −9.79703 9.79703i −0.0742200 0.0742200i
\(133\) −54.3623 194.173i −0.408739 1.45995i
\(134\) 153.563i 1.14599i
\(135\) −21.4757 14.6217i −0.159079 0.108309i
\(136\) −127.572 220.961i −0.938031 1.62472i
\(137\) 41.8269 156.100i 0.305306 1.13942i −0.627377 0.778716i \(-0.715871\pi\)
0.932682 0.360700i \(-0.117462\pi\)
\(138\) −18.2515 68.1155i −0.132257 0.493591i
\(139\) 92.5186i 0.665601i 0.942997 + 0.332801i \(0.107994\pi\)
−0.942997 + 0.332801i \(0.892006\pi\)
\(140\) −240.057 15.1387i −1.71469 0.108134i
\(141\) 49.0706 0.348018
\(142\) −60.6552 + 16.2525i −0.427149 + 0.114454i
\(143\) 23.3619 + 6.25981i 0.163370 + 0.0437749i
\(144\) 9.71742 5.61036i 0.0674821 0.0389608i
\(145\) −11.7093 61.6694i −0.0807541 0.425306i
\(146\) 404.957 2.77368
\(147\) −20.1276 + 82.4492i −0.136923 + 0.560879i
\(148\) 68.7434 68.7434i 0.464482 0.464482i
\(149\) −140.299 81.0014i −0.941601 0.543634i −0.0511394 0.998692i \(-0.516285\pi\)
−0.890462 + 0.455058i \(0.849619\pi\)
\(150\) −132.842 + 52.3329i −0.885614 + 0.348886i
\(151\) 143.434 + 248.435i 0.949893 + 1.64526i 0.745645 + 0.666344i \(0.232142\pi\)
0.204248 + 0.978919i \(0.434525\pi\)
\(152\) 263.528 70.6122i 1.73374 0.464554i
\(153\) −57.1459 + 57.1459i −0.373503 + 0.373503i
\(154\) 0.300367 + 26.8642i 0.00195043 + 0.174443i
\(155\) −53.7893 62.4235i −0.347028 0.402732i
\(156\) −123.670 + 214.202i −0.792754 + 1.37309i
\(157\) 74.0497 276.357i 0.471654 1.76024i −0.162174 0.986762i \(-0.551851\pi\)
0.633828 0.773474i \(-0.281483\pi\)
\(158\) −272.731 73.0782i −1.72615 0.462520i
\(159\) −70.7226 40.8317i −0.444796 0.256803i
\(160\) −9.46607 + 127.410i −0.0591630 + 0.796310i
\(161\) −42.3767 + 75.3312i −0.263209 + 0.467896i
\(162\) −20.9841 20.9841i −0.129531 0.129531i
\(163\) −2.63680 9.84068i −0.0161767 0.0603722i 0.957366 0.288879i \(-0.0932824\pi\)
−0.973542 + 0.228507i \(0.926616\pi\)
\(164\) 287.471 165.972i 1.75287 1.01202i
\(165\) 4.37947 + 9.07920i 0.0265422 + 0.0550254i
\(166\) −42.1781 + 73.0547i −0.254085 + 0.440088i
\(167\) −71.1342 71.1342i −0.425954 0.425954i 0.461294 0.887247i \(-0.347385\pi\)
−0.887247 + 0.461294i \(0.847385\pi\)
\(168\) −111.245 28.4789i −0.662174 0.169517i
\(169\) 262.766i 1.55483i
\(170\) 82.8484 + 436.336i 0.487343 + 2.56668i
\(171\) −43.2084 74.8391i −0.252681 0.437656i
\(172\) −0.899473 + 3.35688i −0.00522949 + 0.0195167i
\(173\) 77.4717 + 289.128i 0.447813 + 1.67126i 0.708401 + 0.705811i \(0.249417\pi\)
−0.260588 + 0.965450i \(0.583916\pi\)
\(174\) 71.6990i 0.412063i
\(175\) 161.258 + 67.9772i 0.921474 + 0.388441i
\(176\) −4.35351 −0.0247359
\(177\) 95.6673 25.6340i 0.540493 0.144825i
\(178\) 287.455 + 77.0232i 1.61491 + 0.432715i
\(179\) 280.191 161.768i 1.56531 0.903733i 0.568608 0.822609i \(-0.307482\pi\)
0.996704 0.0811241i \(-0.0258510\pi\)
\(180\) −101.276 + 19.2297i −0.562647 + 0.106831i
\(181\) 43.2716 0.239069 0.119535 0.992830i \(-0.461860\pi\)
0.119535 + 0.992830i \(0.461860\pi\)
\(182\) 461.847 129.303i 2.53762 0.710456i
\(183\) 15.4510 15.4510i 0.0844319 0.0844319i
\(184\) −101.278 58.4731i −0.550426 0.317788i
\(185\) −63.7065 + 30.7296i −0.344359 + 0.166106i
\(186\) −47.0606 81.5113i −0.253014 0.438233i
\(187\) 30.2875 8.11552i 0.161965 0.0433985i
\(188\) 137.675 137.675i 0.732312 0.732312i
\(189\) 0.406659 + 36.3708i 0.00215163 + 0.192438i
\(190\) −473.603 35.1870i −2.49265 0.185195i
\(191\) −19.2949 + 33.4198i −0.101021 + 0.174973i −0.912105 0.409956i \(-0.865544\pi\)
0.811085 + 0.584929i \(0.198877\pi\)
\(192\) −44.4768 + 165.990i −0.231650 + 0.864530i
\(193\) −233.231 62.4940i −1.20845 0.323803i −0.402296 0.915509i \(-0.631788\pi\)
−0.806154 + 0.591706i \(0.798455\pi\)
\(194\) −340.178 196.402i −1.75350 1.01238i
\(195\) 136.323 117.467i 0.699092 0.602396i
\(196\) 174.852 + 287.794i 0.892103 + 1.46834i
\(197\) 217.403 + 217.403i 1.10357 + 1.10357i 0.993976 + 0.109594i \(0.0349551\pi\)
0.109594 + 0.993976i \(0.465045\pi\)
\(198\) 2.98003 + 11.1216i 0.0150507 + 0.0561699i
\(199\) −168.448 + 97.2533i −0.846470 + 0.488710i −0.859458 0.511206i \(-0.829199\pi\)
0.0129880 + 0.999916i \(0.495866\pi\)
\(200\) −94.4091 + 217.145i −0.472045 + 1.08573i
\(201\) 40.3325 69.8580i 0.200659 0.347552i
\(202\) −172.948 172.948i −0.856177 0.856177i
\(203\) −61.4416 + 62.8311i −0.302668 + 0.309513i
\(204\) 320.662i 1.57187i
\(205\) −237.266 + 45.0503i −1.15739 + 0.219758i
\(206\) −158.172 273.962i −0.767824 1.32991i
\(207\) −9.58730 + 35.7803i −0.0463155 + 0.172852i
\(208\) 20.1150 + 75.0701i 0.0967066 + 0.360914i
\(209\) 33.5288i 0.160425i
\(210\) 166.476 + 110.642i 0.792745 + 0.526867i
\(211\) −67.4406 −0.319624 −0.159812 0.987147i \(-0.551089\pi\)
−0.159812 + 0.987147i \(0.551089\pi\)
\(212\) −312.982 + 83.8632i −1.47633 + 0.395581i
\(213\) 31.8615 + 8.53726i 0.149584 + 0.0400810i
\(214\) 126.182 72.8513i 0.589636 0.340426i
\(215\) 1.42299 2.09001i 0.00661855 0.00972098i
\(216\) −49.2140 −0.227843
\(217\) −28.6101 + 111.758i −0.131844 + 0.515013i
\(218\) −316.651 + 316.651i −1.45253 + 1.45253i
\(219\) −184.220 106.360i −0.841189 0.485661i
\(220\) 37.7602 + 13.1858i 0.171637 + 0.0599353i
\(221\) −279.881 484.768i −1.26643 2.19352i
\(222\) −78.0378 + 20.9102i −0.351521 + 0.0941899i
\(223\) 17.6765 17.6765i 0.0792670 0.0792670i −0.666362 0.745629i \(-0.732149\pi\)
0.745629 + 0.666362i \(0.232149\pi\)
\(224\) 153.892 91.1588i 0.687019 0.406959i
\(225\) 74.1766 + 11.0833i 0.329674 + 0.0492590i
\(226\) 10.7215 18.5702i 0.0474402 0.0821689i
\(227\) −83.0011 + 309.764i −0.365644 + 1.36460i 0.500903 + 0.865504i \(0.333001\pi\)
−0.866546 + 0.499097i \(0.833665\pi\)
\(228\) −331.199 88.7446i −1.45263 0.389231i
\(229\) 290.289 + 167.598i 1.26764 + 0.731870i 0.974540 0.224213i \(-0.0719813\pi\)
0.293096 + 0.956083i \(0.405315\pi\)
\(230\) 132.884 + 154.215i 0.577757 + 0.670498i
\(231\) 6.91910 12.2998i 0.0299528 0.0532458i
\(232\) −84.0779 84.0779i −0.362405 0.362405i
\(233\) 71.7786 + 267.882i 0.308063 + 1.14971i 0.930277 + 0.366859i \(0.119567\pi\)
−0.622214 + 0.782847i \(0.713767\pi\)
\(234\) 178.008 102.773i 0.760717 0.439200i
\(235\) −127.587 + 61.5433i −0.542924 + 0.261886i
\(236\) 196.489 340.328i 0.832579 1.44207i
\(237\) 104.876 + 104.876i 0.442513 + 0.442513i
\(238\) 434.725 444.556i 1.82657 1.86788i
\(239\) 57.1966i 0.239316i 0.992815 + 0.119658i \(0.0381799\pi\)
−0.992815 + 0.119658i \(0.961820\pi\)
\(240\) −18.2296 + 26.7747i −0.0759567 + 0.111561i
\(241\) −4.95051 8.57453i −0.0205415 0.0355790i 0.855572 0.517684i \(-0.173206\pi\)
−0.876113 + 0.482105i \(0.839872\pi\)
\(242\) −102.107 + 381.067i −0.421928 + 1.57466i
\(243\) 4.03459 + 15.0573i 0.0166032 + 0.0619642i
\(244\) 86.7002i 0.355329i
\(245\) −51.0727 239.618i −0.208460 0.978031i
\(246\) −275.854 −1.12136
\(247\) 578.156 154.916i 2.34071 0.627192i
\(248\) −150.770 40.3987i −0.607943 0.162898i
\(249\) 38.3748 22.1557i 0.154116 0.0889787i
\(250\) 279.764 302.677i 1.11906 1.21071i
\(251\) −187.727 −0.747915 −0.373957 0.927446i \(-0.621999\pi\)
−0.373957 + 0.927446i \(0.621999\pi\)
\(252\) 103.184 + 100.903i 0.409462 + 0.400407i
\(253\) 10.1626 10.1626i 0.0401684 0.0401684i
\(254\) −67.4206 38.9253i −0.265436 0.153249i
\(255\) 76.9123 220.255i 0.301617 0.863744i
\(256\) 172.414 + 298.630i 0.673493 + 1.16652i
\(257\) −119.767 + 32.0914i −0.466018 + 0.124869i −0.484185 0.874966i \(-0.660884\pi\)
0.0181666 + 0.999835i \(0.494217\pi\)
\(258\) 2.04217 2.04217i 0.00791539 0.00791539i
\(259\) 86.3046 + 48.5496i 0.333222 + 0.187450i
\(260\) 52.9023 712.044i 0.203470 2.73863i
\(261\) −18.8313 + 32.6168i −0.0721508 + 0.124969i
\(262\) 108.213 403.858i 0.413028 1.54144i
\(263\) 11.8632 + 3.17875i 0.0451074 + 0.0120865i 0.281302 0.959619i \(-0.409234\pi\)
−0.236195 + 0.971706i \(0.575900\pi\)
\(264\) 16.5363 + 9.54725i 0.0626376 + 0.0361638i
\(265\) 235.094 + 17.4666i 0.887147 + 0.0659118i
\(266\) 338.852 + 572.043i 1.27388 + 2.15054i
\(267\) −110.537 110.537i −0.413997 0.413997i
\(268\) −82.8379 309.155i −0.309097 1.15356i
\(269\) 16.4548 9.50018i 0.0611703 0.0353167i −0.469103 0.883143i \(-0.655423\pi\)
0.530273 + 0.847827i \(0.322089\pi\)
\(270\) 80.8779 + 28.2423i 0.299548 + 0.104601i
\(271\) 49.9304 86.4820i 0.184245 0.319122i −0.759077 0.651001i \(-0.774349\pi\)
0.943322 + 0.331879i \(0.107683\pi\)
\(272\) 71.2465 + 71.2465i 0.261935 + 0.261935i
\(273\) −244.061 62.4800i −0.893997 0.228864i
\(274\) 532.870i 1.94478i
\(275\) −22.7739 18.1139i −0.0828140 0.0658688i
\(276\) 73.4882 + 127.285i 0.266262 + 0.461179i
\(277\) 18.4218 68.7510i 0.0665046 0.248199i −0.924668 0.380773i \(-0.875658\pi\)
0.991173 + 0.132575i \(0.0423245\pi\)
\(278\) −78.9565 294.670i −0.284016 1.05996i
\(279\) 49.4408i 0.177207i
\(280\) 324.963 65.4741i 1.16058 0.233836i
\(281\) −121.502 −0.432393 −0.216196 0.976350i \(-0.569365\pi\)
−0.216196 + 0.976350i \(0.569365\pi\)
\(282\) −156.289 + 41.8774i −0.554215 + 0.148502i
\(283\) 255.612 + 68.4910i 0.903223 + 0.242018i 0.680400 0.732841i \(-0.261806\pi\)
0.222823 + 0.974859i \(0.428473\pi\)
\(284\) 113.345 65.4395i 0.399100 0.230421i
\(285\) 206.206 + 140.396i 0.723532 + 0.492618i
\(286\) −79.7495 −0.278844
\(287\) 241.735 + 236.390i 0.842284 + 0.823657i
\(288\) 54.2043 54.2043i 0.188209 0.188209i
\(289\) −378.195 218.351i −1.30863 0.755539i
\(290\) 89.9234 + 186.423i 0.310081 + 0.642837i
\(291\) 103.168 + 178.692i 0.354529 + 0.614062i
\(292\) −815.265 + 218.449i −2.79200 + 0.748115i
\(293\) 59.1809 59.1809i 0.201983 0.201983i −0.598866 0.800849i \(-0.704382\pi\)
0.800849 + 0.598866i \(0.204382\pi\)
\(294\) −6.25709 279.776i −0.0212826 0.951620i
\(295\) −216.592 + 186.634i −0.734211 + 0.632658i
\(296\) −66.9907 + 116.031i −0.226320 + 0.391998i
\(297\) 1.56538 5.84207i 0.00527063 0.0196703i
\(298\) 515.976 + 138.255i 1.73146 + 0.463944i
\(299\) −222.195 128.284i −0.743127 0.429044i
\(300\) 239.209 177.017i 0.797362 0.590058i
\(301\) −3.53960 + 0.0395760i −0.0117595 + 0.000131482i
\(302\) −668.851 668.851i −2.21474 2.21474i
\(303\) 33.2525 + 124.100i 0.109744 + 0.409571i
\(304\) −93.3054 + 53.8699i −0.306926 + 0.177204i
\(305\) −20.7954 + 59.5521i −0.0681818 + 0.195253i
\(306\) 133.239 230.778i 0.435423 0.754175i
\(307\) −100.076 100.076i −0.325979 0.325979i 0.525076 0.851055i \(-0.324037\pi\)
−0.851055 + 0.525076i \(0.824037\pi\)
\(308\) −15.0963 53.9213i −0.0490139 0.175069i
\(309\) 166.172i 0.537772i
\(310\) 224.591 + 152.913i 0.724486 + 0.493267i
\(311\) −141.092 244.378i −0.453671 0.785781i 0.544940 0.838475i \(-0.316552\pi\)
−0.998611 + 0.0526944i \(0.983219\pi\)
\(312\) 88.2243 329.257i 0.282770 1.05531i
\(313\) −51.1230 190.794i −0.163332 0.609564i −0.998247 0.0591850i \(-0.981150\pi\)
0.834915 0.550379i \(-0.185517\pi\)
\(314\) 943.386i 3.00441i
\(315\) −46.6728 94.0566i −0.148168 0.298592i
\(316\) 588.487 1.86230
\(317\) 151.390 40.5648i 0.477571 0.127965i −0.0120003 0.999928i \(-0.503820\pi\)
0.489571 + 0.871963i \(0.337153\pi\)
\(318\) 260.096 + 69.6926i 0.817912 + 0.219159i
\(319\) 12.6550 7.30636i 0.0396708 0.0229039i
\(320\) −92.5378 487.367i −0.289181 1.52302i
\(321\) −76.5359 −0.238430
\(322\) 70.6802 276.093i 0.219504 0.857432i
\(323\) 548.708 548.708i 1.69878 1.69878i
\(324\) 53.5650 + 30.9258i 0.165324 + 0.0954499i
\(325\) −207.124 + 476.396i −0.637306 + 1.46583i
\(326\) 16.7963 + 29.0921i 0.0515224 + 0.0892394i
\(327\) 227.215 60.8822i 0.694848 0.186184i
\(328\) −323.480 + 323.480i −0.986219 + 0.986219i
\(329\) 172.845 + 97.2319i 0.525365 + 0.295538i
\(330\) −21.6968 25.1795i −0.0657479 0.0763017i
\(331\) −245.598 + 425.389i −0.741989 + 1.28516i 0.209599 + 0.977787i \(0.432784\pi\)
−0.951588 + 0.307375i \(0.900549\pi\)
\(332\) 45.5050 169.827i 0.137063 0.511527i
\(333\) 40.9923 + 10.9839i 0.123100 + 0.0329846i
\(334\) 287.268 + 165.854i 0.860083 + 0.496569i
\(335\) −17.2531 + 232.220i −0.0515018 + 0.693194i
\(336\) 45.3451 0.507000i 0.134956 0.00150893i
\(337\) −250.219 250.219i −0.742489 0.742489i 0.230567 0.973056i \(-0.425942\pi\)
−0.973056 + 0.230567i \(0.925942\pi\)
\(338\) 224.248 + 836.904i 0.663455 + 2.47605i
\(339\) −9.75470 + 5.63188i −0.0287749 + 0.0166132i
\(340\) −402.168 833.745i −1.18285 2.45219i
\(341\) 9.59124 16.6125i 0.0281268 0.0487171i
\(342\) 201.486 + 201.486i 0.589141 + 0.589141i
\(343\) −234.268 + 250.535i −0.682996 + 0.730422i
\(344\) 4.78951i 0.0139230i
\(345\) −19.9472 105.056i −0.0578180 0.304509i
\(346\) −493.491 854.751i −1.42627 2.47038i
\(347\) −160.644 + 599.530i −0.462950 + 1.72775i 0.200649 + 0.979663i \(0.435695\pi\)
−0.663598 + 0.748089i \(0.730972\pi\)
\(348\) 38.6772 + 144.345i 0.111141 + 0.414785i
\(349\) 69.6374i 0.199534i 0.995011 + 0.0997671i \(0.0318098\pi\)
−0.995011 + 0.0997671i \(0.968190\pi\)
\(350\) −571.615 78.8864i −1.63319 0.225390i
\(351\) −107.971 −0.307609
\(352\) −28.7285 + 7.69777i −0.0816149 + 0.0218687i
\(353\) −55.0131 14.7407i −0.155845 0.0417584i 0.180053 0.983657i \(-0.442373\pi\)
−0.335898 + 0.941898i \(0.609040\pi\)
\(354\) −282.822 + 163.287i −0.798932 + 0.461264i
\(355\) −93.5494 + 17.7625i −0.263519 + 0.0500352i
\(356\) −620.256 −1.74229
\(357\) −314.522 + 88.0564i −0.881015 + 0.246657i
\(358\) −754.346 + 754.346i −2.10711 + 2.10711i
\(359\) 52.7945 + 30.4809i 0.147060 + 0.0849051i 0.571725 0.820446i \(-0.306275\pi\)
−0.424665 + 0.905351i \(0.639608\pi\)
\(360\) 127.960 61.7231i 0.355444 0.171453i
\(361\) 234.381 + 405.960i 0.649255 + 1.12454i
\(362\) −137.819 + 36.9285i −0.380715 + 0.102012i
\(363\) 146.535 146.535i 0.403677 0.403677i
\(364\) −860.045 + 509.452i −2.36276 + 1.39959i
\(365\) 612.380 + 45.4976i 1.67775 + 0.124651i
\(366\) −36.0251 + 62.3973i −0.0984292 + 0.170484i
\(367\) −93.2748 + 348.106i −0.254155 + 0.948519i 0.714404 + 0.699734i \(0.246698\pi\)
−0.968559 + 0.248785i \(0.919969\pi\)
\(368\) 44.6089 + 11.9529i 0.121220 + 0.0324808i
\(369\) 125.490 + 72.4514i 0.340080 + 0.196345i
\(370\) 176.679 152.241i 0.477510 0.411463i
\(371\) −168.205 283.959i −0.453382 0.765388i
\(372\) 138.713 + 138.713i 0.372885 + 0.372885i
\(373\) −4.66229 17.3999i −0.0124994 0.0466485i 0.959394 0.282068i \(-0.0910203\pi\)
−0.971894 + 0.235419i \(0.924354\pi\)
\(374\) −89.5392 + 51.6955i −0.239410 + 0.138223i
\(375\) −206.765 + 64.2133i −0.551373 + 0.171235i
\(376\) −134.164 + 232.380i −0.356820 + 0.618031i
\(377\) −184.459 184.459i −0.489281 0.489281i
\(378\) −32.3345 115.493i −0.0855409 0.305537i
\(379\) 93.7813i 0.247444i −0.992317 0.123722i \(-0.960517\pi\)
0.992317 0.123722i \(-0.0394831\pi\)
\(380\) 972.443 184.641i 2.55906 0.485896i
\(381\) 20.4470 + 35.4153i 0.0536667 + 0.0929535i
\(382\) 32.9330 122.908i 0.0862122 0.321748i
\(383\) 107.167 + 399.952i 0.279809 + 1.04426i 0.952550 + 0.304382i \(0.0984501\pi\)
−0.672741 + 0.739878i \(0.734883\pi\)
\(384\) 389.600i 1.01458i
\(385\) −2.56402 + 40.6581i −0.00665980 + 0.105605i
\(386\) 796.168 2.06261
\(387\) −1.46538 + 0.392646i −0.00378650 + 0.00101459i
\(388\) 790.798 + 211.894i 2.03814 + 0.546118i
\(389\) 142.385 82.2062i 0.366029 0.211327i −0.305693 0.952130i \(-0.598888\pi\)
0.671722 + 0.740803i \(0.265555\pi\)
\(390\) −333.937 + 490.470i −0.856250 + 1.25762i
\(391\) −332.627 −0.850710
\(392\) −335.417 320.742i −0.855656 0.818220i
\(393\) −155.299 + 155.299i −0.395162 + 0.395162i
\(394\) −877.960 506.890i −2.22832 1.28652i
\(395\) −404.217 141.151i −1.02333 0.357345i
\(396\) −11.9989 20.7826i −0.0303002 0.0524814i
\(397\) −564.572 + 151.277i −1.42210 + 0.381050i −0.886227 0.463251i \(-0.846683\pi\)
−0.535870 + 0.844301i \(0.680016\pi\)
\(398\) 453.505 453.505i 1.13946 1.13946i
\(399\) −3.90468 349.227i −0.00978618 0.875257i
\(400\) 13.8180 92.4793i 0.0345451 0.231198i
\(401\) −80.2339 + 138.969i −0.200084 + 0.346556i −0.948555 0.316611i \(-0.897455\pi\)
0.748471 + 0.663168i \(0.230788\pi\)
\(402\) −68.8405 + 256.916i −0.171245 + 0.639095i
\(403\) −330.775 88.6308i −0.820781 0.219928i
\(404\) 441.475 + 254.886i 1.09276 + 0.630905i
\(405\) −29.3747 34.0899i −0.0725302 0.0841727i
\(406\) 142.069 252.551i 0.349925 0.622046i
\(407\) −11.6430 11.6430i −0.0286068 0.0286068i
\(408\) −114.378 426.865i −0.280338 1.04624i
\(409\) −143.273 + 82.7185i −0.350300 + 0.202246i −0.664817 0.747006i \(-0.731491\pi\)
0.314518 + 0.949252i \(0.398157\pi\)
\(410\) 717.239 345.970i 1.74936 0.843828i
\(411\) 139.955 242.410i 0.340524 0.589805i
\(412\) 466.219 + 466.219i 1.13160 + 1.13160i
\(413\) 387.769 + 99.2694i 0.938908 + 0.240362i
\(414\) 122.141i 0.295028i
\(415\) −71.9900 + 105.735i −0.173470 + 0.254784i
\(416\) 265.474 + 459.814i 0.638159 + 1.10532i
\(417\) −41.4750 + 154.787i −0.0994603 + 0.371191i
\(418\) −28.6139 106.788i −0.0684542 0.255475i
\(419\) 572.116i 1.36543i −0.730684 0.682716i \(-0.760799\pi\)
0.730684 0.682716i \(-0.239201\pi\)
\(420\) −394.837 132.942i −0.940087 0.316529i
\(421\) 259.398 0.616148 0.308074 0.951362i \(-0.400316\pi\)
0.308074 + 0.951362i \(0.400316\pi\)
\(422\) 214.797 57.5546i 0.508997 0.136385i
\(423\) 82.0967 + 21.9977i 0.194082 + 0.0520041i
\(424\) 386.727 223.277i 0.912092 0.526596i
\(425\) 76.2610 + 669.140i 0.179438 + 1.57445i
\(426\) −108.764 −0.255314
\(427\) 85.0401 23.8086i 0.199157 0.0557578i
\(428\) −214.732 + 214.732i −0.501711 + 0.501711i
\(429\) 36.2791 + 20.9457i 0.0845667 + 0.0488246i
\(430\) −2.74854 + 7.87104i −0.00639196 + 0.0183047i
\(431\) −310.336 537.517i −0.720036 1.24714i −0.960985 0.276602i \(-0.910792\pi\)
0.240948 0.970538i \(-0.422542\pi\)
\(432\) 18.7726 5.03011i 0.0434551 0.0116438i
\(433\) 334.651 334.651i 0.772865 0.772865i −0.205741 0.978606i \(-0.565961\pi\)
0.978606 + 0.205741i \(0.0659605\pi\)
\(434\) −4.25280 380.362i −0.00979908 0.876411i
\(435\) 8.05551 108.424i 0.0185184 0.249251i
\(436\) 466.672 808.299i 1.07035 1.85390i
\(437\) 92.0560 343.558i 0.210654 0.786173i
\(438\) 677.507 + 181.537i 1.54682 + 0.414469i
\(439\) 568.777 + 328.383i 1.29562 + 0.748026i 0.979644 0.200741i \(-0.0643351\pi\)
0.315975 + 0.948768i \(0.397668\pi\)
\(440\) −54.9696 4.08404i −0.124931 0.00928191i
\(441\) −70.6352 + 128.917i −0.160170 + 0.292329i
\(442\) 1305.12 + 1305.12i 2.95276 + 2.95276i
\(443\) −154.454 576.431i −0.348655 1.30120i −0.888283 0.459296i \(-0.848102\pi\)
0.539628 0.841904i \(-0.318565\pi\)
\(444\) 145.827 84.1931i 0.328439 0.189624i
\(445\) 426.038 + 148.771i 0.957388 + 0.334317i
\(446\) −41.2140 + 71.3847i −0.0924081 + 0.160055i
\(447\) −198.412 198.412i −0.443875 0.443875i
\(448\) −485.567 + 496.548i −1.08386 + 1.10837i
\(449\) 162.638i 0.362223i −0.983463 0.181111i \(-0.942031\pi\)
0.983463 0.181111i \(-0.0579694\pi\)
\(450\) −245.709 + 28.0032i −0.546021 + 0.0622293i
\(451\) −28.1104 48.6886i −0.0623290 0.107957i
\(452\) −11.5672 + 43.1693i −0.0255911 + 0.0955072i
\(453\) 128.599 + 479.939i 0.283884 + 1.05947i
\(454\) 1057.43i 2.32913i
\(455\) 712.938 143.644i 1.56690 0.315701i
\(456\) 472.546 1.03629
\(457\) 486.828 130.445i 1.06527 0.285438i 0.316721 0.948519i \(-0.397418\pi\)
0.748548 + 0.663081i \(0.230751\pi\)
\(458\) −1067.59 286.061i −2.33099 0.624587i
\(459\) −121.225 + 69.9892i −0.264106 + 0.152482i
\(460\) −350.713 238.784i −0.762420 0.519095i
\(461\) 323.423 0.701568 0.350784 0.936456i \(-0.385915\pi\)
0.350784 + 0.936456i \(0.385915\pi\)
\(462\) −11.5404 + 45.0794i −0.0249792 + 0.0975744i
\(463\) 108.492 108.492i 0.234324 0.234324i −0.580171 0.814495i \(-0.697014\pi\)
0.814495 + 0.580171i \(0.197014\pi\)
\(464\) 40.6649 + 23.4779i 0.0876399 + 0.0505989i
\(465\) −62.0075 128.550i −0.133350 0.276451i
\(466\) −457.227 791.940i −0.981173 1.69944i
\(467\) 454.466 121.774i 0.973161 0.260758i 0.262999 0.964796i \(-0.415288\pi\)
0.710162 + 0.704038i \(0.248622\pi\)
\(468\) −302.927 + 302.927i −0.647281 + 0.647281i
\(469\) 280.488 166.148i 0.598055 0.354261i
\(470\) 353.840 304.898i 0.752851 0.648720i
\(471\) 247.775 429.159i 0.526062 0.911165i
\(472\) −140.172 + 523.130i −0.296975 + 1.10833i
\(473\) 0.568550 + 0.152342i 0.00120201 + 0.000322077i
\(474\) −423.529 244.524i −0.893520 0.515874i
\(475\) −712.233 106.420i −1.49944 0.224042i
\(476\) −635.382 + 1129.49i −1.33484 + 2.37288i
\(477\) −100.017 100.017i −0.209679 0.209679i
\(478\) −48.8123 182.170i −0.102118 0.381109i
\(479\) −79.9576 + 46.1636i −0.166926 + 0.0963749i −0.581136 0.813807i \(-0.697391\pi\)
0.414209 + 0.910182i \(0.364058\pi\)
\(480\) −72.9532 + 208.917i −0.151986 + 0.435244i
\(481\) −146.971 + 254.561i −0.305553 + 0.529234i
\(482\) 23.0849 + 23.0849i 0.0478939 + 0.0478939i
\(483\) −104.668 + 107.035i −0.216703 + 0.221604i
\(484\) 822.249i 1.69886i
\(485\) −492.355 335.221i −1.01517 0.691177i
\(486\) −25.7002 44.5140i −0.0528810 0.0915925i
\(487\) −206.367 + 770.171i −0.423751 + 1.58146i 0.342884 + 0.939378i \(0.388596\pi\)
−0.766635 + 0.642083i \(0.778071\pi\)
\(488\) 30.9254 + 115.415i 0.0633717 + 0.236506i
\(489\) 17.6458i 0.0360855i
\(490\) 367.158 + 719.591i 0.749302 + 1.46855i
\(491\) 442.461 0.901143 0.450572 0.892740i \(-0.351220\pi\)
0.450572 + 0.892740i \(0.351220\pi\)
\(492\) 555.352 148.806i 1.12876 0.302451i
\(493\) −326.673 87.5317i −0.662622 0.177549i
\(494\) −1709.21 + 986.810i −3.45993 + 1.99759i
\(495\) 3.25690 + 17.1531i 0.00657960 + 0.0346526i
\(496\) 61.6401 0.124274
\(497\) 95.3118 + 93.2040i 0.191774 + 0.187533i
\(498\) −103.315 + 103.315i −0.207460 + 0.207460i
\(499\) 59.9751 + 34.6267i 0.120191 + 0.0693921i 0.558890 0.829242i \(-0.311227\pi\)
−0.438699 + 0.898634i \(0.644561\pi\)
\(500\) −399.949 + 760.268i −0.799897 + 1.52054i
\(501\) −87.1213 150.899i −0.173895 0.301195i
\(502\) 597.905 160.208i 1.19105 0.319140i
\(503\) 570.214 570.214i 1.13363 1.13363i 0.144057 0.989569i \(-0.453985\pi\)
0.989569 0.144057i \(-0.0460148\pi\)
\(504\) −173.350 97.5160i −0.343949 0.193484i
\(505\) −242.102 280.964i −0.479410 0.556365i
\(506\) −23.6948 + 41.0405i −0.0468276 + 0.0811078i
\(507\) 117.795 439.616i 0.232337 0.867093i
\(508\) 156.730 + 41.9956i 0.308523 + 0.0826685i
\(509\) −252.827 145.970i −0.496713 0.286778i 0.230642 0.973039i \(-0.425917\pi\)
−0.727355 + 0.686261i \(0.759251\pi\)
\(510\) −56.9960 + 767.144i −0.111757 + 1.50420i
\(511\) −438.145 739.666i −0.857426 1.44749i
\(512\) −167.775 167.775i −0.327686 0.327686i
\(513\) −38.7396 144.578i −0.0755158 0.281829i
\(514\) 354.067 204.421i 0.688846 0.397706i
\(515\) −208.409 432.058i −0.404677 0.838948i
\(516\) −3.00970 + 5.21295i −0.00583274 + 0.0101026i
\(517\) −23.3177 23.3177i −0.0451020 0.0451020i
\(518\) −316.311 80.9760i −0.610639 0.156324i
\(519\) 518.450i 0.998941i
\(520\) 183.558 + 966.742i 0.352996 + 1.85912i
\(521\) 204.719 + 354.584i 0.392935 + 0.680583i 0.992835 0.119491i \(-0.0381264\pi\)
−0.599900 + 0.800075i \(0.704793\pi\)
\(522\) 32.1418 119.955i 0.0615743 0.229799i
\(523\) −37.0443 138.251i −0.0708305 0.264343i 0.921425 0.388556i \(-0.127026\pi\)
−0.992256 + 0.124213i \(0.960359\pi\)
\(524\) 871.426i 1.66303i
\(525\) 239.316 + 186.018i 0.455841 + 0.354320i
\(526\) −40.4970 −0.0769904
\(527\) −428.832 + 114.905i −0.813723 + 0.218036i
\(528\) −7.28357 1.95163i −0.0137946 0.00369626i
\(529\) 326.093 188.270i 0.616432 0.355897i
\(530\) −763.675 + 145.001i −1.44090 + 0.273587i
\(531\) 171.546 0.323062
\(532\) −990.763 968.853i −1.86234 1.82115i
\(533\) −709.684 + 709.684i −1.33149 + 1.33149i
\(534\) 446.392 + 257.725i 0.835940 + 0.482630i
\(535\) 198.999 95.9896i 0.371960 0.179420i
\(536\) 220.547 + 381.999i 0.411469 + 0.712685i
\(537\) 541.287 145.037i 1.00798 0.270088i
\(538\) −44.3006 + 44.3006i −0.0823431 + 0.0823431i
\(539\) 48.7433 29.6145i 0.0904328 0.0549433i
\(540\) −178.059 13.2292i −0.329739 0.0244984i
\(541\) −97.2826 + 168.498i −0.179820 + 0.311457i −0.941819 0.336121i \(-0.890885\pi\)
0.761999 + 0.647578i \(0.224218\pi\)
\(542\) −85.2224 + 318.054i −0.157237 + 0.586816i
\(543\) 72.3947 + 19.3981i 0.133324 + 0.0357240i
\(544\) 596.125 + 344.173i 1.09582 + 0.632671i
\(545\) −514.419 + 443.267i −0.943888 + 0.813333i
\(546\) 830.651 9.28744i 1.52134 0.0170100i
\(547\) −170.750 170.750i −0.312158 0.312158i 0.533587 0.845745i \(-0.320844\pi\)
−0.845745 + 0.533587i \(0.820844\pi\)
\(548\) −287.451 1072.78i −0.524545 1.95763i
\(549\) 32.7766 18.9236i 0.0597024 0.0344692i
\(550\) 87.9929 + 38.2570i 0.159987 + 0.0695581i
\(551\) 180.816 313.183i 0.328160 0.568389i
\(552\) −143.229 143.229i −0.259473 0.259473i
\(553\) 161.603 + 577.219i 0.292230 + 1.04380i
\(554\) 234.692i 0.423631i
\(555\) −120.359 + 22.8529i −0.216863 + 0.0411763i
\(556\) 317.912 + 550.640i 0.571785 + 0.990360i
\(557\) 150.676 562.331i 0.270514 1.00957i −0.688275 0.725450i \(-0.741632\pi\)
0.958789 0.284121i \(-0.0917016\pi\)
\(558\) −42.1934 157.468i −0.0756154 0.282200i
\(559\) 10.5077i 0.0187973i
\(560\) −117.265 + 58.1891i −0.209401 + 0.103909i
\(561\) 54.3101 0.0968094
\(562\) 386.982 103.692i 0.688581 0.184505i
\(563\) 403.835 + 108.207i 0.717291 + 0.192197i 0.598963 0.800777i \(-0.295580\pi\)
0.118328 + 0.992975i \(0.462246\pi\)
\(564\) 292.052 168.616i 0.517823 0.298965i
\(565\) 18.2995 26.8774i 0.0323886 0.0475706i
\(566\) −872.570 −1.54164
\(567\) −15.6242 + 61.0318i −0.0275560 + 0.107640i
\(568\) −127.542 + 127.542i −0.224546 + 0.224546i
\(569\) 424.932 + 245.335i 0.746806 + 0.431168i 0.824539 0.565806i \(-0.191435\pi\)
−0.0777329 + 0.996974i \(0.524768\pi\)
\(570\) −776.579 271.179i −1.36242 0.475753i
\(571\) 105.483 + 182.702i 0.184734 + 0.319969i 0.943487 0.331410i \(-0.107524\pi\)
−0.758753 + 0.651379i \(0.774191\pi\)
\(572\) 160.553 43.0199i 0.280686 0.0752096i
\(573\) −47.2627 + 47.2627i −0.0824829 + 0.0824829i
\(574\) −971.660 546.595i −1.69279 0.952257i
\(575\) 183.622 + 248.135i 0.319343 + 0.431538i
\(576\) −148.822 + 257.768i −0.258372 + 0.447514i
\(577\) 18.3165 68.3580i 0.0317443 0.118471i −0.948236 0.317568i \(-0.897134\pi\)
0.979980 + 0.199096i \(0.0638006\pi\)
\(578\) 1390.89 + 372.687i 2.40638 + 0.644787i
\(579\) −362.188 209.109i −0.625540 0.361156i
\(580\) −281.598 326.800i −0.485514 0.563448i
\(581\) 179.071 2.00218i 0.308212 0.00344609i
\(582\) −481.085 481.085i −0.826607 0.826607i
\(583\) 14.2038 + 53.0092i 0.0243633 + 0.0909249i
\(584\) 1007.36 581.599i 1.72493 0.995888i
\(585\) 280.732 135.415i 0.479883 0.231478i
\(586\) −137.984 + 238.996i −0.235468 + 0.407842i
\(587\) −716.384 716.384i −1.22042 1.22042i −0.967484 0.252932i \(-0.918605\pi\)
−0.252932 0.967484i \(-0.581395\pi\)
\(588\) 163.519 + 559.873i 0.278093 + 0.952165i
\(589\) 474.724i 0.805982i
\(590\) 530.566 779.268i 0.899264 1.32079i
\(591\) 266.264 + 461.182i 0.450531 + 0.780342i
\(592\) 13.6941 51.1070i 0.0231319 0.0863294i
\(593\) −181.380 676.921i −0.305869 1.14152i −0.932194 0.361958i \(-0.882108\pi\)
0.626325 0.779562i \(-0.284558\pi\)
\(594\) 19.9428i 0.0335737i
\(595\) 707.342 623.420i 1.18881 1.04776i
\(596\) −1113.35 −1.86803
\(597\) −325.416 + 87.1949i −0.545085 + 0.146055i
\(598\) 817.165 + 218.959i 1.36650 + 0.366152i
\(599\) 39.4905 22.7998i 0.0659273 0.0380632i −0.466674 0.884429i \(-0.654548\pi\)
0.532601 + 0.846366i \(0.321215\pi\)
\(600\) −255.293 + 320.969i −0.425489 + 0.534948i
\(601\) 1084.31 1.80418 0.902092 0.431544i \(-0.142031\pi\)
0.902092 + 0.431544i \(0.142031\pi\)
\(602\) 11.2398 3.14679i 0.0186707 0.00522723i
\(603\) 98.7941 98.7941i 0.163838 0.163838i
\(604\) 1707.34 + 985.734i 2.82672 + 1.63201i
\(605\) −197.220 + 564.782i −0.325984 + 0.933524i
\(606\) −211.817 366.877i −0.349533 0.605408i
\(607\) 409.938 109.843i 0.675351 0.180960i 0.0951869 0.995459i \(-0.469655\pi\)
0.580164 + 0.814500i \(0.302988\pi\)
\(608\) −520.462 + 520.462i −0.856024 + 0.856024i
\(609\) −130.960 + 77.5750i −0.215042 + 0.127381i
\(610\) 15.4105 207.419i 0.0252631 0.340032i
\(611\) −294.344 + 509.819i −0.481741 + 0.834400i
\(612\) −143.749 + 536.478i −0.234884 + 0.876599i
\(613\) −558.097 149.542i −0.910435 0.243950i −0.226943 0.973908i \(-0.572873\pi\)
−0.683492 + 0.729958i \(0.739540\pi\)
\(614\) 404.144 + 233.333i 0.658215 + 0.380021i
\(615\) −417.149 30.9926i −0.678290 0.0503945i
\(616\) 39.3295 + 66.3952i 0.0638466 + 0.107784i
\(617\) 23.3244 + 23.3244i 0.0378030 + 0.0378030i 0.725756 0.687953i \(-0.241490\pi\)
−0.687953 + 0.725756i \(0.741490\pi\)
\(618\) −141.813 529.253i −0.229471 0.856397i
\(619\) −534.066 + 308.343i −0.862788 + 0.498131i −0.864945 0.501867i \(-0.832647\pi\)
0.00215709 + 0.999998i \(0.499313\pi\)
\(620\) −534.635 186.693i −0.862315 0.301118i
\(621\) −32.0797 + 55.5637i −0.0516582 + 0.0894746i
\(622\) 657.928 + 657.928i 1.05776 + 1.05776i
\(623\) −170.327 608.379i −0.273398 0.976532i
\(624\) 134.612i 0.215725i
\(625\) 457.068 426.279i 0.731309 0.682046i
\(626\) 325.651 + 564.044i 0.520210 + 0.901029i
\(627\) −15.0305 + 56.0947i −0.0239722 + 0.0894653i
\(628\) −508.899 1899.24i −0.810348 3.02426i
\(629\) 381.081i 0.605852i
\(630\) 228.921 + 259.737i 0.363366 + 0.412281i
\(631\) 524.168 0.830695 0.415347 0.909663i \(-0.363660\pi\)
0.415347 + 0.909663i \(0.363660\pi\)
\(632\) −783.393 + 209.909i −1.23955 + 0.332135i
\(633\) −112.830 30.2328i −0.178247 0.0477611i
\(634\) −447.555 + 258.396i −0.705923 + 0.407565i
\(635\) −97.5808 66.4381i −0.153671 0.104627i
\(636\) −561.223 −0.882426
\(637\) −735.873 703.678i −1.15522 1.10467i
\(638\) −34.0705 + 34.0705i −0.0534020 + 0.0534020i
\(639\) 49.4782 + 28.5662i 0.0774306 + 0.0447046i
\(640\) 488.628 + 1012.99i 0.763481 + 1.58279i
\(641\) 29.7943 + 51.6052i 0.0464809 + 0.0805074i 0.888330 0.459206i \(-0.151866\pi\)
−0.841849 + 0.539713i \(0.818533\pi\)
\(642\) 243.765 65.3167i 0.379696 0.101739i
\(643\) −282.054 + 282.054i −0.438653 + 0.438653i −0.891558 0.452906i \(-0.850387\pi\)
0.452906 + 0.891558i \(0.350387\pi\)
\(644\) 6.64103 + 593.961i 0.0103122 + 0.922300i
\(645\) 3.31763 2.85875i 0.00514362 0.00443217i
\(646\) −1279.35 + 2215.89i −1.98041 + 3.43018i
\(647\) 113.319 422.913i 0.175145 0.653652i −0.821381 0.570379i \(-0.806796\pi\)
0.996527 0.0832724i \(-0.0265372\pi\)
\(648\) −82.3366 22.0620i −0.127063 0.0340464i
\(649\) −57.6409 33.2790i −0.0888149 0.0512773i
\(650\) 253.124 1694.07i 0.389422 2.60627i
\(651\) −97.9654 + 174.149i −0.150484 + 0.267510i
\(652\) −49.5079 49.5079i −0.0759323 0.0759323i
\(653\) 121.826 + 454.660i 0.186563 + 0.696263i 0.994291 + 0.106707i \(0.0340307\pi\)
−0.807727 + 0.589556i \(0.799303\pi\)
\(654\) −671.718 + 387.817i −1.02709 + 0.592992i
\(655\) 209.016 598.560i 0.319108 0.913832i
\(656\) 90.3285 156.454i 0.137696 0.238496i
\(657\) −260.527 260.527i −0.396541 0.396541i
\(658\) −633.486 162.173i −0.962745 0.246464i
\(659\) 1076.98i 1.63426i 0.576454 + 0.817129i \(0.304436\pi\)
−0.576454 + 0.817129i \(0.695564\pi\)
\(660\) 57.2631 + 38.9877i 0.0867622 + 0.0590722i
\(661\) −36.2193 62.7337i −0.0547948 0.0949073i 0.837327 0.546702i \(-0.184117\pi\)
−0.892122 + 0.451795i \(0.850784\pi\)
\(662\) 419.193 1564.45i 0.633222 2.36322i
\(663\) −250.934 936.500i −0.378483 1.41252i
\(664\) 242.305i 0.364916i
\(665\) 448.146 + 903.119i 0.673904 + 1.35807i
\(666\) −139.933 −0.210110
\(667\) −149.731 + 40.1204i −0.224485 + 0.0601505i
\(668\) −667.799 178.936i −0.999699 0.267868i
\(669\) 37.4976 21.6492i 0.0560502 0.0323606i
\(670\) −143.229 754.339i −0.213774 1.12588i
\(671\) −14.6843 −0.0218842
\(672\) 298.332 83.5237i 0.443946 0.124291i
\(673\) −217.067 + 217.067i −0.322537 + 0.322537i −0.849740 0.527203i \(-0.823241\pi\)
0.527203 + 0.849740i \(0.323241\pi\)
\(674\) 1010.48 + 583.402i 1.49923 + 0.865581i
\(675\) 119.131 + 51.7951i 0.176491 + 0.0767335i
\(676\) −902.916 1563.90i −1.33568 2.31346i
\(677\) −712.265 + 190.851i −1.05209 + 0.281907i −0.743115 0.669164i \(-0.766652\pi\)
−0.308975 + 0.951070i \(0.599986\pi\)
\(678\) 26.2622 26.2622i 0.0387348 0.0387348i
\(679\) 9.32314 + 833.843i 0.0137307 + 1.22805i
\(680\) 832.756 + 966.428i 1.22464 + 1.42122i
\(681\) −277.727 + 481.037i −0.407822 + 0.706369i
\(682\) −16.3706 + 61.0958i −0.0240038 + 0.0895833i
\(683\) 447.760 + 119.977i 0.655579 + 0.175662i 0.571250 0.820776i \(-0.306459\pi\)
0.0843288 + 0.996438i \(0.473125\pi\)
\(684\) −514.324 296.945i −0.751936 0.434130i
\(685\) −59.8689 + 805.812i −0.0873998 + 1.17637i
\(686\) 532.328 997.874i 0.775988 1.45463i
\(687\) 410.530 + 410.530i 0.597569 + 0.597569i
\(688\) 0.489530 + 1.82695i 0.000711526 + 0.00265545i
\(689\) 848.441 489.848i 1.23141 0.710955i
\(690\) 153.187 + 317.576i 0.222010 + 0.460256i
\(691\) 206.290 357.305i 0.298538 0.517084i −0.677263 0.735741i \(-0.736834\pi\)
0.975802 + 0.218657i \(0.0701676\pi\)
\(692\) 1454.59 + 1454.59i 2.10200 + 2.10200i
\(693\) 17.0897 17.4762i 0.0246605 0.0252182i
\(694\) 2046.58i 2.94897i
\(695\) −86.2922 454.473i −0.124161 0.653918i
\(696\) −102.974 178.356i −0.147951 0.256259i
\(697\) −336.768 + 1256.84i −0.483168 + 1.80321i
\(698\) −59.4294 221.794i −0.0851424 0.317756i
\(699\) 480.352i 0.687199i
\(700\) 1193.34 149.536i 1.70477 0.213623i
\(701\) −946.008 −1.34951 −0.674756 0.738041i \(-0.735751\pi\)
−0.674756 + 0.738041i \(0.735751\pi\)
\(702\) 343.884 92.1436i 0.489864 0.131259i
\(703\) −393.603 105.466i −0.559890 0.150022i
\(704\) 100.011 57.7415i 0.142061 0.0820191i
\(705\) −241.046 + 45.7682i −0.341910 + 0.0649194i
\(706\) 187.795 0.265999
\(707\) −128.772 + 503.015i −0.182139 + 0.711478i
\(708\) 481.297 481.297i 0.679798 0.679798i
\(709\) −66.1749 38.2061i −0.0933355 0.0538873i 0.452606 0.891711i \(-0.350495\pi\)
−0.545941 + 0.837823i \(0.683828\pi\)
\(710\) 282.794 136.409i 0.398301 0.192126i
\(711\) 128.446 + 222.475i 0.180655 + 0.312904i
\(712\) 825.683 221.241i 1.15967 0.310732i
\(713\) −143.889 + 143.889i −0.201808 + 0.201808i
\(714\) 926.598 548.875i 1.29776 0.768732i
\(715\) −120.598 8.95999i −0.168668 0.0125315i
\(716\) 1111.74 1925.58i 1.55270 2.68936i
\(717\) −25.6405 + 95.6918i −0.0357609 + 0.133461i
\(718\) −194.162 52.0256i −0.270421 0.0724591i
\(719\) 726.346 + 419.356i 1.01022 + 0.583249i 0.911255 0.411842i \(-0.135114\pi\)
0.0989618 + 0.995091i \(0.468448\pi\)
\(720\) −42.5015 + 36.6228i −0.0590298 + 0.0508651i
\(721\) −329.264 + 585.319i −0.456677 + 0.811815i
\(722\) −1092.95 1092.95i −1.51378 1.51378i
\(723\) −4.43850 16.5647i −0.00613901 0.0229111i
\(724\) 257.538 148.690i 0.355715 0.205372i
\(725\) 115.038 + 292.013i 0.158673 + 0.402777i
\(726\) −341.656 + 591.765i −0.470600 + 0.815103i
\(727\) 325.814 + 325.814i 0.448162 + 0.448162i 0.894743 0.446581i \(-0.147359\pi\)
−0.446581 + 0.894743i \(0.647359\pi\)
\(728\) 963.172 984.954i 1.32304 1.35296i
\(729\) 27.0000i 0.0370370i
\(730\) −1989.25 + 377.704i −2.72500 + 0.517403i
\(731\) −6.81135 11.7976i −0.00931785 0.0161390i
\(732\) 38.8666 145.052i 0.0530965 0.198159i
\(733\) −176.158 657.430i −0.240324 0.896903i −0.975676 0.219217i \(-0.929650\pi\)
0.735352 0.677686i \(-0.237017\pi\)
\(734\) 1188.31i 1.61896i
\(735\) 21.9713 423.783i 0.0298929 0.576576i
\(736\) 315.505 0.428676
\(737\) −52.3612 + 14.0301i −0.0710464 + 0.0190368i
\(738\) −461.512 123.662i −0.625355 0.167563i
\(739\) −1219.14 + 703.869i −1.64971 + 0.952461i −0.672526 + 0.740074i \(0.734791\pi\)
−0.977185 + 0.212388i \(0.931876\pi\)
\(740\) −273.567 + 401.801i −0.369685 + 0.542974i
\(741\) 1036.72 1.39908
\(742\) 778.062 + 760.856i 1.04860 + 1.02541i
\(743\) −431.433 + 431.433i −0.580664 + 0.580664i −0.935086 0.354422i \(-0.884678\pi\)
0.354422 + 0.935086i \(0.384678\pi\)
\(744\) −234.133 135.177i −0.314695 0.181689i
\(745\) 764.730 + 267.042i 1.02648 + 0.358445i
\(746\) 29.6986 + 51.4394i 0.0398104 + 0.0689537i
\(747\) 74.1344 19.8642i 0.0992428 0.0265920i
\(748\) 152.375 152.375i 0.203710 0.203710i
\(749\) −269.588 151.653i −0.359931 0.202475i
\(750\) 603.741 380.973i 0.804988 0.507965i
\(751\) 98.6211 170.817i 0.131320 0.227452i −0.792866 0.609396i \(-0.791412\pi\)
0.924186 + 0.381944i \(0.124745\pi\)
\(752\) 27.4256 102.354i 0.0364702 0.136109i
\(753\) −314.073 84.1555i −0.417095 0.111760i
\(754\) 744.917 + 430.078i 0.987953 + 0.570395i
\(755\) −936.296 1086.59i −1.24013 1.43919i
\(756\) 127.398 + 215.070i 0.168515 + 0.284484i
\(757\) −925.874 925.874i −1.22308 1.22308i −0.966530 0.256553i \(-0.917413\pi\)
−0.256553 0.966530i \(-0.582587\pi\)
\(758\) 80.0341 + 298.691i 0.105586 + 0.394052i
\(759\) 21.5581 12.4466i 0.0284033 0.0163987i
\(760\) −1228.65 + 592.657i −1.61665 + 0.779812i
\(761\) 148.294 256.852i 0.194867