Properties

Label 105.3.v.a.37.7
Level 105
Weight 3
Character 105.37
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.7
Character \(\chi\) \(=\) 105.37
Dual form 105.3.v.a.88.7

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.445275 + 0.119311i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(-3.28007 + 1.89375i) q^{4} +(4.59550 - 1.97013i) q^{5} +0.798445 q^{6} +(-0.171680 - 6.99789i) q^{7} +(2.53844 - 2.53844i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-0.445275 + 0.119311i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(-3.28007 + 1.89375i) q^{4} +(4.59550 - 1.97013i) q^{5} +0.798445 q^{6} +(-0.171680 - 6.99789i) q^{7} +(2.53844 - 2.53844i) q^{8} +(2.59808 + 1.50000i) q^{9} +(-1.81120 + 1.42554i) q^{10} +(-7.70109 - 13.3387i) q^{11} +(6.33660 - 1.69789i) q^{12} +(17.1139 - 17.1139i) q^{13} +(0.911371 + 3.09550i) q^{14} +(-8.57160 + 1.23599i) q^{15} +(6.74755 - 11.6871i) q^{16} +(-5.59776 + 20.8911i) q^{17} +(-1.33582 - 0.357933i) q^{18} +(-15.6219 - 9.01929i) q^{19} +(-11.3426 + 15.1649i) q^{20} +(-2.84984 + 11.7847i) q^{21} +(5.02055 + 5.02055i) q^{22} +(2.98781 + 11.1507i) q^{23} +(-5.38485 + 3.10894i) q^{24} +(17.2372 - 18.1075i) q^{25} +(-5.57852 + 9.66228i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(13.8154 + 22.6284i) q^{28} -1.87676i q^{29} +(3.66925 - 1.57304i) q^{30} +(9.52708 + 16.5014i) q^{31} +(-5.32665 + 19.8793i) q^{32} +(6.90461 + 25.7683i) q^{33} -9.97017i q^{34} +(-14.5757 - 31.8206i) q^{35} -11.3625 q^{36} +(-4.95991 + 1.32900i) q^{37} +(8.03212 + 2.15220i) q^{38} +(-36.3041 + 20.9602i) q^{39} +(6.66433 - 16.6665i) q^{40} -51.4301 q^{41} +(-0.137077 - 5.58743i) q^{42} +(18.4492 - 18.4492i) q^{43} +(50.5202 + 29.1678i) q^{44} +(14.8946 + 1.77469i) q^{45} +(-2.66080 - 4.60863i) q^{46} +(22.4470 - 6.01467i) q^{47} +(-16.5281 + 16.5281i) q^{48} +(-48.9411 + 2.40280i) q^{49} +(-5.51485 + 10.1194i) q^{50} +(18.7305 - 32.4422i) q^{51} +(-23.7254 + 88.5443i) q^{52} +(75.2491 + 20.1629i) q^{53} +(2.07442 + 1.19767i) q^{54} +(-61.6693 - 46.1257i) q^{55} +(-18.1995 - 17.3279i) q^{56} +(22.0927 + 22.0927i) q^{57} +(0.223918 + 0.835675i) q^{58} +(-40.1729 + 23.1938i) q^{59} +(25.7748 - 20.2866i) q^{60} +(12.3169 - 21.3335i) q^{61} +(-6.21097 - 6.21097i) q^{62} +(10.0508 - 18.4386i) q^{63} +44.4931i q^{64} +(44.9303 - 112.364i) q^{65} +(-6.14889 - 10.6502i) q^{66} +(29.9876 - 111.915i) q^{67} +(-21.2015 - 79.1251i) q^{68} -19.9948i q^{69} +(10.2867 + 12.4298i) q^{70} +63.9145 q^{71} +(10.4027 - 2.78740i) q^{72} +(13.3047 + 3.56497i) q^{73} +(2.04996 - 1.18354i) q^{74} +(-36.9557 + 22.5672i) q^{75} +68.3210 q^{76} +(-92.0205 + 56.1814i) q^{77} +(13.6645 - 13.6645i) q^{78} +(45.3292 + 26.1708i) q^{79} +(7.98321 - 67.0016i) q^{80} +(4.50000 + 7.79423i) q^{81} +(22.9005 - 6.13617i) q^{82} +(-34.3710 + 34.3710i) q^{83} +(-12.9695 - 44.0514i) q^{84} +(15.4338 + 107.033i) q^{85} +(-6.01376 + 10.4161i) q^{86} +(-0.841330 + 3.13989i) q^{87} +(-53.4082 - 14.3107i) q^{88} +(44.5648 + 25.7295i) q^{89} +(-6.84395 + 0.986870i) q^{90} +(-122.700 - 116.823i) q^{91} +(-30.9168 - 30.9168i) q^{92} +(-8.54175 - 31.8782i) q^{93} +(-9.27748 + 5.35636i) q^{94} +(-89.5594 - 10.6710i) q^{95} +(17.8233 - 30.8709i) q^{96} +(39.0134 + 39.0134i) q^{97} +(21.5055 - 6.90911i) q^{98} -46.2065i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.445275 + 0.119311i −0.222637 + 0.0596555i −0.368413 0.929662i \(-0.620099\pi\)
0.145776 + 0.989318i \(0.453432\pi\)
\(3\) −1.67303 0.448288i −0.557678 0.149429i
\(4\) −3.28007 + 1.89375i −0.820017 + 0.473437i
\(5\) 4.59550 1.97013i 0.919099 0.394026i
\(6\) 0.798445 0.133074
\(7\) −0.171680 6.99789i −0.0245257 0.999699i
\(8\) 2.53844 2.53844i 0.317305 0.317305i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) −1.81120 + 1.42554i −0.181120 + 0.142554i
\(11\) −7.70109 13.3387i −0.700099 1.21261i −0.968431 0.249280i \(-0.919806\pi\)
0.268333 0.963326i \(-0.413527\pi\)
\(12\) 6.33660 1.69789i 0.528050 0.141491i
\(13\) 17.1139 17.1139i 1.31646 1.31646i 0.399894 0.916561i \(-0.369047\pi\)
0.916561 0.399894i \(-0.130953\pi\)
\(14\) 0.911371 + 3.09550i 0.0650979 + 0.221107i
\(15\) −8.57160 + 1.23599i −0.571440 + 0.0823994i
\(16\) 6.74755 11.6871i 0.421722 0.730444i
\(17\) −5.59776 + 20.8911i −0.329280 + 1.22889i 0.580658 + 0.814147i \(0.302795\pi\)
−0.909938 + 0.414743i \(0.863871\pi\)
\(18\) −1.33582 0.357933i −0.0742124 0.0198852i
\(19\) −15.6219 9.01929i −0.822203 0.474699i 0.0289723 0.999580i \(-0.490777\pi\)
−0.851176 + 0.524881i \(0.824110\pi\)
\(20\) −11.3426 + 15.1649i −0.567130 + 0.758244i
\(21\) −2.84984 + 11.7847i −0.135707 + 0.561175i
\(22\) 5.02055 + 5.02055i 0.228207 + 0.228207i
\(23\) 2.98781 + 11.1507i 0.129905 + 0.484812i 0.999967 0.00813035i \(-0.00258800\pi\)
−0.870062 + 0.492942i \(0.835921\pi\)
\(24\) −5.38485 + 3.10894i −0.224369 + 0.129539i
\(25\) 17.2372 18.1075i 0.689486 0.724299i
\(26\) −5.57852 + 9.66228i −0.214558 + 0.371626i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) 13.8154 + 22.6284i 0.493406 + 0.808159i
\(29\) 1.87676i 0.0647160i −0.999476 0.0323580i \(-0.989698\pi\)
0.999476 0.0323580i \(-0.0103017\pi\)
\(30\) 3.66925 1.57304i 0.122308 0.0524347i
\(31\) 9.52708 + 16.5014i 0.307325 + 0.532303i 0.977776 0.209651i \(-0.0672327\pi\)
−0.670451 + 0.741954i \(0.733899\pi\)
\(32\) −5.32665 + 19.8793i −0.166458 + 0.621229i
\(33\) 6.90461 + 25.7683i 0.209230 + 0.780859i
\(34\) 9.97017i 0.293240i
\(35\) −14.5757 31.8206i −0.416449 0.909159i
\(36\) −11.3625 −0.315625
\(37\) −4.95991 + 1.32900i −0.134052 + 0.0359190i −0.325221 0.945638i \(-0.605439\pi\)
0.191169 + 0.981557i \(0.438772\pi\)
\(38\) 8.03212 + 2.15220i 0.211372 + 0.0566369i
\(39\) −36.3041 + 20.9602i −0.930875 + 0.537441i
\(40\) 6.66433 16.6665i 0.166608 0.416661i
\(41\) −51.4301 −1.25439 −0.627196 0.778861i \(-0.715797\pi\)
−0.627196 + 0.778861i \(0.715797\pi\)
\(42\) −0.137077 5.58743i −0.00326374 0.133034i
\(43\) 18.4492 18.4492i 0.429051 0.429051i −0.459254 0.888305i \(-0.651883\pi\)
0.888305 + 0.459254i \(0.151883\pi\)
\(44\) 50.5202 + 29.1678i 1.14819 + 0.662905i
\(45\) 14.8946 + 1.77469i 0.330992 + 0.0394376i
\(46\) −2.66080 4.60863i −0.0578434 0.100188i
\(47\) 22.4470 6.01467i 0.477597 0.127972i −0.0119867 0.999928i \(-0.503816\pi\)
0.489583 + 0.871957i \(0.337149\pi\)
\(48\) −16.5281 + 16.5281i −0.344335 + 0.344335i
\(49\) −48.9411 + 2.40280i −0.998797 + 0.0490367i
\(50\) −5.51485 + 10.1194i −0.110297 + 0.202388i
\(51\) 18.7305 32.4422i 0.367264 0.636121i
\(52\) −23.7254 + 88.5443i −0.456257 + 1.70277i
\(53\) 75.2491 + 20.1629i 1.41979 + 0.380433i 0.885411 0.464809i \(-0.153877\pi\)
0.534384 + 0.845242i \(0.320544\pi\)
\(54\) 2.07442 + 1.19767i 0.0384152 + 0.0221790i
\(55\) −61.6693 46.1257i −1.12126 0.838648i
\(56\) −18.1995 17.3279i −0.324992 0.309428i
\(57\) 22.0927 + 22.0927i 0.387590 + 0.387590i
\(58\) 0.223918 + 0.835675i 0.00386066 + 0.0144082i
\(59\) −40.1729 + 23.1938i −0.680897 + 0.393116i −0.800193 0.599743i \(-0.795270\pi\)
0.119296 + 0.992859i \(0.461936\pi\)
\(60\) 25.7748 20.2866i 0.429579 0.338110i
\(61\) 12.3169 21.3335i 0.201917 0.349730i −0.747229 0.664566i \(-0.768616\pi\)
0.949146 + 0.314836i \(0.101950\pi\)
\(62\) −6.21097 6.21097i −0.100177 0.100177i
\(63\) 10.0508 18.4386i 0.159537 0.292676i
\(64\) 44.4931i 0.695205i
\(65\) 44.9303 112.364i 0.691235 1.72867i
\(66\) −6.14889 10.6502i −0.0931650 0.161367i
\(67\) 29.9876 111.915i 0.447576 1.67038i −0.261467 0.965212i \(-0.584206\pi\)
0.709043 0.705165i \(-0.249127\pi\)
\(68\) −21.2015 79.1251i −0.311787 1.16360i
\(69\) 19.9948i 0.289780i
\(70\) 10.2867 + 12.4298i 0.146954 + 0.177569i
\(71\) 63.9145 0.900204 0.450102 0.892977i \(-0.351388\pi\)
0.450102 + 0.892977i \(0.351388\pi\)
\(72\) 10.4027 2.78740i 0.144482 0.0387139i
\(73\) 13.3047 + 3.56497i 0.182256 + 0.0488352i 0.348792 0.937200i \(-0.386592\pi\)
−0.166537 + 0.986035i \(0.553258\pi\)
\(74\) 2.04996 1.18354i 0.0277021 0.0159938i
\(75\) −36.9557 + 22.5672i −0.492742 + 0.300896i
\(76\) 68.3210 0.898961
\(77\) −92.0205 + 56.1814i −1.19507 + 0.729628i
\(78\) 13.6645 13.6645i 0.175186 0.175186i
\(79\) 45.3292 + 26.1708i 0.573788 + 0.331276i 0.758661 0.651486i \(-0.225854\pi\)
−0.184873 + 0.982762i \(0.559187\pi\)
\(80\) 7.98321 67.0016i 0.0997901 0.837520i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 22.9005 6.13617i 0.279274 0.0748314i
\(83\) −34.3710 + 34.3710i −0.414109 + 0.414109i −0.883167 0.469058i \(-0.844593\pi\)
0.469058 + 0.883167i \(0.344593\pi\)
\(84\) −12.9695 44.0514i −0.154399 0.524421i
\(85\) 15.4338 + 107.033i 0.181574 + 1.25922i
\(86\) −6.01376 + 10.4161i −0.0699275 + 0.121118i
\(87\) −0.841330 + 3.13989i −0.00967046 + 0.0360906i
\(88\) −53.4082 14.3107i −0.606911 0.162621i
\(89\) 44.5648 + 25.7295i 0.500728 + 0.289095i 0.729014 0.684499i \(-0.239979\pi\)
−0.228286 + 0.973594i \(0.573312\pi\)
\(90\) −6.84395 + 0.986870i −0.0760439 + 0.0109652i
\(91\) −122.700 116.823i −1.34835 1.28377i
\(92\) −30.9168 30.9168i −0.336052 0.336052i
\(93\) −8.54175 31.8782i −0.0918468 0.342777i
\(94\) −9.27748 + 5.35636i −0.0986966 + 0.0569825i
\(95\) −89.5594 10.6710i −0.942731 0.112326i
\(96\) 17.8233 30.8709i 0.185660 0.321572i
\(97\) 39.0134 + 39.0134i 0.402200 + 0.402200i 0.879008 0.476808i \(-0.158206\pi\)
−0.476808 + 0.879008i \(0.658206\pi\)
\(98\) 21.5055 6.90911i 0.219444 0.0705011i
\(99\) 46.2065i 0.466733i
\(100\) −22.2481 + 92.0365i −0.222481 + 0.920365i
\(101\) 79.6712 + 137.995i 0.788824 + 1.36628i 0.926688 + 0.375832i \(0.122643\pi\)
−0.137864 + 0.990451i \(0.544024\pi\)
\(102\) −4.46951 + 16.6804i −0.0438187 + 0.163534i
\(103\) 26.2481 + 97.9591i 0.254835 + 0.951059i 0.968182 + 0.250247i \(0.0805119\pi\)
−0.713346 + 0.700812i \(0.752821\pi\)
\(104\) 86.8854i 0.835436i
\(105\) 10.1209 + 59.7710i 0.0963896 + 0.569247i
\(106\) −35.9122 −0.338794
\(107\) −9.51326 + 2.54907i −0.0889090 + 0.0238231i −0.302999 0.952991i \(-0.597988\pi\)
0.214090 + 0.976814i \(0.431321\pi\)
\(108\) 19.0098 + 5.09366i 0.176017 + 0.0471635i
\(109\) −38.6718 + 22.3271i −0.354787 + 0.204836i −0.666792 0.745244i \(-0.732333\pi\)
0.312005 + 0.950081i \(0.399000\pi\)
\(110\) 32.9631 + 13.1808i 0.299664 + 0.119825i
\(111\) 8.89386 0.0801249
\(112\) −82.9435 45.2122i −0.740567 0.403680i
\(113\) 34.1599 34.1599i 0.302300 0.302300i −0.539613 0.841913i \(-0.681429\pi\)
0.841913 + 0.539613i \(0.181429\pi\)
\(114\) −12.4732 7.20140i −0.109414 0.0631702i
\(115\) 35.6988 + 45.3565i 0.310424 + 0.394404i
\(116\) 3.55412 + 6.15591i 0.0306389 + 0.0530682i
\(117\) 70.1342 18.7924i 0.599437 0.160619i
\(118\) 15.1207 15.1207i 0.128141 0.128141i
\(119\) 147.155 + 35.5860i 1.23660 + 0.299042i
\(120\) −18.6210 + 24.8960i −0.155175 + 0.207467i
\(121\) −58.1135 + 100.655i −0.480277 + 0.831863i
\(122\) −2.93909 + 10.9688i −0.0240909 + 0.0899084i
\(123\) 86.0442 + 23.0555i 0.699546 + 0.187443i
\(124\) −62.4989 36.0838i −0.504024 0.290998i
\(125\) 43.5392 117.172i 0.348314 0.937378i
\(126\) −2.27544 + 9.40941i −0.0180591 + 0.0746778i
\(127\) 44.4734 + 44.4734i 0.350184 + 0.350184i 0.860178 0.509994i \(-0.170352\pi\)
−0.509994 + 0.860178i \(0.670352\pi\)
\(128\) −26.6151 99.3290i −0.207931 0.776008i
\(129\) −39.1366 + 22.5955i −0.303385 + 0.175159i
\(130\) −6.60009 + 55.3934i −0.0507700 + 0.426103i
\(131\) −112.718 + 195.234i −0.860446 + 1.49034i 0.0110531 + 0.999939i \(0.496482\pi\)
−0.871499 + 0.490397i \(0.836852\pi\)
\(132\) −71.4463 71.4463i −0.541260 0.541260i
\(133\) −60.4341 + 110.869i −0.454391 + 0.833598i
\(134\) 53.4109i 0.398589i
\(135\) −24.1237 9.64620i −0.178694 0.0714533i
\(136\) 38.8213 + 67.2405i 0.285451 + 0.494416i
\(137\) 9.15488 34.1665i 0.0668239 0.249390i −0.924431 0.381349i \(-0.875460\pi\)
0.991255 + 0.131958i \(0.0421265\pi\)
\(138\) 2.38560 + 8.90320i 0.0172870 + 0.0645159i
\(139\) 56.7049i 0.407949i 0.978976 + 0.203974i \(0.0653859\pi\)
−0.978976 + 0.203974i \(0.934614\pi\)
\(140\) 108.069 + 76.7708i 0.771925 + 0.548363i
\(141\) −40.2509 −0.285468
\(142\) −28.4595 + 7.62570i −0.200419 + 0.0537021i
\(143\) −360.073 96.4812i −2.51799 0.674694i
\(144\) 35.0613 20.2427i 0.243481 0.140574i
\(145\) −3.69747 8.62466i −0.0254998 0.0594804i
\(146\) −6.34957 −0.0434902
\(147\) 82.9571 + 17.9197i 0.564334 + 0.121903i
\(148\) 13.7520 13.7520i 0.0929191 0.0929191i
\(149\) 79.1387 + 45.6907i 0.531132 + 0.306649i 0.741477 0.670978i \(-0.234125\pi\)
−0.210345 + 0.977627i \(0.567459\pi\)
\(150\) 13.7629 14.4578i 0.0917528 0.0963854i
\(151\) −45.6835 79.1262i −0.302540 0.524015i 0.674171 0.738576i \(-0.264501\pi\)
−0.976711 + 0.214561i \(0.931168\pi\)
\(152\) −62.5501 + 16.7603i −0.411514 + 0.110265i
\(153\) −45.8801 + 45.8801i −0.299870 + 0.299870i
\(154\) 34.2713 35.9952i 0.222541 0.233735i
\(155\) 76.2916 + 57.0625i 0.492204 + 0.368145i
\(156\) 79.3866 137.502i 0.508889 0.881421i
\(157\) 46.7269 174.387i 0.297623 1.11075i −0.641488 0.767133i \(-0.721683\pi\)
0.939112 0.343613i \(-0.111651\pi\)
\(158\) −23.3064 6.24494i −0.147509 0.0395249i
\(159\) −116.855 67.4665i −0.734940 0.424318i
\(160\) 14.6863 + 101.850i 0.0917894 + 0.636560i
\(161\) 77.5183 22.8228i 0.481480 0.141756i
\(162\) −2.93367 2.93367i −0.0181091 0.0181091i
\(163\) 20.5517 + 76.7000i 0.126084 + 0.470552i 0.999876 0.0157477i \(-0.00501286\pi\)
−0.873792 + 0.486300i \(0.838346\pi\)
\(164\) 168.694 97.3956i 1.02862 0.593875i
\(165\) 82.4971 + 104.815i 0.499982 + 0.635244i
\(166\) 11.2037 19.4054i 0.0674922 0.116900i
\(167\) 15.2411 + 15.2411i 0.0912643 + 0.0912643i 0.751265 0.660001i \(-0.229444\pi\)
−0.660001 + 0.751265i \(0.729444\pi\)
\(168\) 22.6805 + 37.1488i 0.135003 + 0.221124i
\(169\) 416.773i 2.46611i
\(170\) −19.6426 45.8179i −0.115544 0.269517i
\(171\) −27.0579 46.8656i −0.158233 0.274068i
\(172\) −25.5765 + 95.4527i −0.148700 + 0.554957i
\(173\) 1.14313 + 4.26621i 0.00660768 + 0.0246602i 0.969151 0.246468i \(-0.0792700\pi\)
−0.962543 + 0.271128i \(0.912603\pi\)
\(174\) 1.49849i 0.00861202i
\(175\) −129.673 117.515i −0.740991 0.671515i
\(176\) −207.854 −1.18099
\(177\) 77.6081 20.7950i 0.438464 0.117486i
\(178\) −22.9134 6.13962i −0.128727 0.0344923i
\(179\) 9.12125 5.26616i 0.0509567 0.0294199i −0.474305 0.880360i \(-0.657301\pi\)
0.525262 + 0.850941i \(0.323967\pi\)
\(180\) −52.2163 + 22.3856i −0.290090 + 0.124364i
\(181\) 325.032 1.79575 0.897877 0.440246i \(-0.145109\pi\)
0.897877 + 0.440246i \(0.145109\pi\)
\(182\) 68.5733 + 37.3791i 0.376776 + 0.205379i
\(183\) −30.1702 + 30.1702i −0.164864 + 0.164864i
\(184\) 35.8897 + 20.7209i 0.195053 + 0.112614i
\(185\) −20.1749 + 15.8791i −0.109054 + 0.0858330i
\(186\) 7.60685 + 13.1754i 0.0408970 + 0.0708357i
\(187\) 321.769 86.2177i 1.72069 0.461057i
\(188\) −62.2375 + 62.2375i −0.331051 + 0.331051i
\(189\) −25.0811 + 26.3427i −0.132704 + 0.139379i
\(190\) 41.1517 5.93391i 0.216588 0.0312311i
\(191\) 119.545 207.058i 0.625891 1.08408i −0.362477 0.931993i \(-0.618069\pi\)
0.988368 0.152082i \(-0.0485979\pi\)
\(192\) 19.9457 74.4384i 0.103884 0.387700i
\(193\) −184.527 49.4439i −0.956100 0.256186i −0.253151 0.967427i \(-0.581467\pi\)
−0.702949 + 0.711241i \(0.748134\pi\)
\(194\) −22.0264 12.7170i −0.113538 0.0655513i
\(195\) −125.541 + 167.846i −0.643800 + 0.860751i
\(196\) 155.980 100.563i 0.795815 0.513078i
\(197\) −60.9439 60.9439i −0.309360 0.309360i 0.535301 0.844661i \(-0.320198\pi\)
−0.844661 + 0.535301i \(0.820198\pi\)
\(198\) 5.51295 + 20.5746i 0.0278432 + 0.103912i
\(199\) −48.7356 + 28.1375i −0.244903 + 0.141395i −0.617428 0.786627i \(-0.711825\pi\)
0.372525 + 0.928022i \(0.378492\pi\)
\(200\) −2.20922 89.7202i −0.0110461 0.448601i
\(201\) −100.340 + 173.795i −0.499206 + 0.864651i
\(202\) −51.9399 51.9399i −0.257128 0.257128i
\(203\) −13.1334 + 0.322203i −0.0646965 + 0.00158721i
\(204\) 141.883i 0.695506i
\(205\) −236.347 + 101.324i −1.15291 + 0.494264i
\(206\) −23.3752 40.4870i −0.113472 0.196539i
\(207\) −8.96344 + 33.4520i −0.0433017 + 0.161604i
\(208\) −84.5351 315.489i −0.406419 1.51678i
\(209\) 277.833i 1.32935i
\(210\) −11.6379 25.4070i −0.0554186 0.120986i
\(211\) −57.8783 −0.274305 −0.137152 0.990550i \(-0.543795\pi\)
−0.137152 + 0.990550i \(0.543795\pi\)
\(212\) −285.006 + 76.3670i −1.34437 + 0.360222i
\(213\) −106.931 28.6521i −0.502023 0.134517i
\(214\) 3.93188 2.27007i 0.0183733 0.0106078i
\(215\) 48.4358 121.130i 0.225283 0.563398i
\(216\) −18.6537 −0.0863595
\(217\) 113.839 69.5025i 0.524605 0.320288i
\(218\) 14.5557 14.5557i 0.0667692 0.0667692i
\(219\) −20.6610 11.9286i −0.0943424 0.0544686i
\(220\) 289.630 + 34.5092i 1.31650 + 0.156860i
\(221\) 261.730 + 453.329i 1.18430 + 2.05126i
\(222\) −3.96021 + 1.06114i −0.0178388 + 0.00477989i
\(223\) 118.966 118.966i 0.533481 0.533481i −0.388125 0.921607i \(-0.626877\pi\)
0.921607 + 0.388125i \(0.126877\pi\)
\(224\) 140.028 + 33.8624i 0.625125 + 0.151172i
\(225\) 71.9447 21.1888i 0.319754 0.0941726i
\(226\) −11.1349 + 19.2862i −0.0492694 + 0.0853371i
\(227\) 87.4561 326.391i 0.385269 1.43784i −0.452473 0.891778i \(-0.649458\pi\)
0.837742 0.546066i \(-0.183875\pi\)
\(228\) −114.303 30.6275i −0.501330 0.134331i
\(229\) −6.66275 3.84674i −0.0290950 0.0167980i 0.485382 0.874302i \(-0.338681\pi\)
−0.514477 + 0.857504i \(0.672014\pi\)
\(230\) −21.3073 15.9368i −0.0926404 0.0692906i
\(231\) 179.139 52.7416i 0.775492 0.228319i
\(232\) −4.76405 4.76405i −0.0205347 0.0205347i
\(233\) 66.8075 + 249.329i 0.286728 + 1.07008i 0.947568 + 0.319555i \(0.103534\pi\)
−0.660840 + 0.750527i \(0.729800\pi\)
\(234\) −28.9868 + 16.7356i −0.123875 + 0.0715195i
\(235\) 91.3056 71.8640i 0.388534 0.305804i
\(236\) 87.8465 152.155i 0.372231 0.644723i
\(237\) −64.1052 64.1052i −0.270486 0.270486i
\(238\) −69.7702 + 1.71168i −0.293152 + 0.00719193i
\(239\) 252.435i 1.05621i −0.849178 0.528107i \(-0.822902\pi\)
0.849178 0.528107i \(-0.177098\pi\)
\(240\) −43.3922 + 108.517i −0.180801 + 0.452154i
\(241\) 7.25757 + 12.5705i 0.0301144 + 0.0521597i 0.880690 0.473693i \(-0.157080\pi\)
−0.850575 + 0.525853i \(0.823746\pi\)
\(242\) 13.8672 51.7529i 0.0573023 0.213855i
\(243\) −4.03459 15.0573i −0.0166032 0.0619642i
\(244\) 93.3005i 0.382379i
\(245\) −220.175 + 107.462i −0.898672 + 0.438622i
\(246\) −41.0641 −0.166927
\(247\) −421.707 + 112.996i −1.70732 + 0.457474i
\(248\) 66.0717 + 17.7039i 0.266418 + 0.0713866i
\(249\) 72.9120 42.0957i 0.292819 0.169059i
\(250\) −5.40696 + 57.3685i −0.0216279 + 0.229474i
\(251\) −211.955 −0.844443 −0.422221 0.906493i \(-0.638749\pi\)
−0.422221 + 0.906493i \(0.638749\pi\)
\(252\) 1.95071 + 79.5135i 0.00774092 + 0.315530i
\(253\) 125.726 125.726i 0.496940 0.496940i
\(254\) −25.1090 14.4967i −0.0988545 0.0570736i
\(255\) 22.1605 185.989i 0.0869041 0.729370i
\(256\) −65.2842 113.076i −0.255016 0.441701i
\(257\) −309.551 + 82.9440i −1.20448 + 0.322739i −0.804594 0.593825i \(-0.797617\pi\)
−0.399886 + 0.916565i \(0.630950\pi\)
\(258\) 14.7307 14.7307i 0.0570956 0.0570956i
\(259\) 10.1517 + 34.4807i 0.0391959 + 0.133130i
\(260\) 65.4141 + 453.647i 0.251593 + 1.74480i
\(261\) 2.81514 4.87597i 0.0107860 0.0186819i
\(262\) 26.8971 100.381i 0.102661 0.383135i
\(263\) 125.573 + 33.6471i 0.477462 + 0.127936i 0.489521 0.871992i \(-0.337172\pi\)
−0.0120584 + 0.999927i \(0.503838\pi\)
\(264\) 82.9383 + 47.8845i 0.314160 + 0.181381i
\(265\) 385.531 55.5920i 1.45483 0.209781i
\(266\) 13.6819 56.5774i 0.0514358 0.212697i
\(267\) −63.0241 63.0241i −0.236045 0.236045i
\(268\) 113.578 + 423.879i 0.423798 + 1.58164i
\(269\) 59.9735 34.6257i 0.222950 0.128720i −0.384366 0.923181i \(-0.625580\pi\)
0.607315 + 0.794461i \(0.292246\pi\)
\(270\) 11.8926 + 1.41699i 0.0440465 + 0.00524812i
\(271\) −207.020 + 358.570i −0.763913 + 1.32314i 0.176907 + 0.984228i \(0.443391\pi\)
−0.940820 + 0.338908i \(0.889943\pi\)
\(272\) 206.386 + 206.386i 0.758771 + 0.758771i
\(273\) 152.910 + 250.454i 0.560109 + 0.917414i
\(274\) 16.3057i 0.0595100i
\(275\) −374.274 90.4737i −1.36100 0.328995i
\(276\) 37.8652 + 65.5844i 0.137193 + 0.237625i
\(277\) −13.5956 + 50.7395i −0.0490816 + 0.183175i −0.986115 0.166065i \(-0.946894\pi\)
0.937033 + 0.349241i \(0.113560\pi\)
\(278\) −6.76551 25.2492i −0.0243364 0.0908246i
\(279\) 57.1625i 0.204883i
\(280\) −117.774 43.7750i −0.420622 0.156339i
\(281\) −460.003 −1.63702 −0.818511 0.574491i \(-0.805200\pi\)
−0.818511 + 0.574491i \(0.805200\pi\)
\(282\) 17.9227 4.80238i 0.0635558 0.0170297i
\(283\) 177.279 + 47.5016i 0.626426 + 0.167850i 0.558047 0.829809i \(-0.311551\pi\)
0.0683786 + 0.997659i \(0.478217\pi\)
\(284\) −209.644 + 121.038i −0.738182 + 0.426190i
\(285\) 145.052 + 58.0013i 0.508955 + 0.203513i
\(286\) 171.843 0.600848
\(287\) 8.82952 + 359.902i 0.0307649 + 1.25401i
\(288\) −43.6580 + 43.6580i −0.151590 + 0.151590i
\(289\) −154.823 89.3874i −0.535721 0.309299i
\(290\) 2.67541 + 3.39919i 0.00922554 + 0.0117214i
\(291\) −47.7815 82.7599i −0.164197 0.284398i
\(292\) −50.3913 + 13.5023i −0.172573 + 0.0462408i
\(293\) 2.24023 2.24023i 0.00764585 0.00764585i −0.703274 0.710919i \(-0.748279\pi\)
0.710919 + 0.703274i \(0.248279\pi\)
\(294\) −39.0767 + 1.91850i −0.132914 + 0.00652552i
\(295\) −138.919 + 185.733i −0.470913 + 0.629604i
\(296\) −9.21683 + 15.9640i −0.0311379 + 0.0539325i
\(297\) −20.7138 + 77.3050i −0.0697435 + 0.260286i
\(298\) −40.6899 10.9028i −0.136543 0.0365866i
\(299\) 241.965 + 139.699i 0.809248 + 0.467219i
\(300\) 78.4806 144.007i 0.261602 0.480022i
\(301\) −132.273 125.938i −0.439445 0.418399i
\(302\) 29.7823 + 29.7823i 0.0986170 + 0.0986170i
\(303\) −71.4313 266.585i −0.235747 0.879819i
\(304\) −210.819 + 121.716i −0.693482 + 0.400382i
\(305\) 14.5725 122.304i 0.0477786 0.400997i
\(306\) 14.9553 25.9033i 0.0488734 0.0846512i
\(307\) 71.4036 + 71.4036i 0.232585 + 0.232585i 0.813771 0.581186i \(-0.197411\pi\)
−0.581186 + 0.813771i \(0.697411\pi\)
\(308\) 195.440 358.542i 0.634546 1.16410i
\(309\) 175.655i 0.568464i
\(310\) −40.7789 16.3060i −0.131545 0.0526001i
\(311\) 47.7241 + 82.6605i 0.153454 + 0.265789i 0.932495 0.361183i \(-0.117627\pi\)
−0.779041 + 0.626973i \(0.784294\pi\)
\(312\) −38.9496 + 145.362i −0.124839 + 0.465904i
\(313\) −37.5811 140.255i −0.120067 0.448098i 0.879549 0.475809i \(-0.157845\pi\)
−0.999616 + 0.0277115i \(0.991178\pi\)
\(314\) 83.2252i 0.265048i
\(315\) 9.86198 104.536i 0.0313079 0.331860i
\(316\) −198.244 −0.627354
\(317\) 444.564 119.121i 1.40241 0.375775i 0.523201 0.852209i \(-0.324738\pi\)
0.879210 + 0.476434i \(0.158071\pi\)
\(318\) 60.0823 + 16.0990i 0.188938 + 0.0506258i
\(319\) −25.0335 + 14.4531i −0.0784750 + 0.0453076i
\(320\) 87.6573 + 204.468i 0.273929 + 0.638962i
\(321\) 17.0587 0.0531424
\(322\) −31.7939 + 19.4112i −0.0987389 + 0.0602832i
\(323\) 275.871 275.871i 0.854089 0.854089i
\(324\) −29.5206 17.0437i −0.0911130 0.0526041i
\(325\) −14.8943 604.885i −0.0458287 1.86119i
\(326\) −18.3023 31.7005i −0.0561421 0.0972409i
\(327\) 74.7081 20.0180i 0.228465 0.0612170i
\(328\) −130.552 + 130.552i −0.398025 + 0.398025i
\(329\) −45.9437 156.049i −0.139647 0.474314i
\(330\) −49.2395 36.8288i −0.149211 0.111602i
\(331\) 23.3963 40.5235i 0.0706836 0.122428i −0.828517 0.559963i \(-0.810815\pi\)
0.899201 + 0.437536i \(0.144149\pi\)
\(332\) 47.6492 177.829i 0.143522 0.535630i
\(333\) −14.8797 3.98701i −0.0446838 0.0119730i
\(334\) −8.60493 4.96806i −0.0257633 0.0148744i
\(335\) −82.6799 573.386i −0.246806 1.71160i
\(336\) 118.499 + 112.824i 0.352676 + 0.335786i
\(337\) 391.846 + 391.846i 1.16275 + 1.16275i 0.983872 + 0.178877i \(0.0572463\pi\)
0.178877 + 0.983872i \(0.442754\pi\)
\(338\) 49.7256 + 185.578i 0.147117 + 0.549048i
\(339\) −72.4641 + 41.8372i −0.213758 + 0.123413i
\(340\) −253.318 321.849i −0.745054 0.946616i
\(341\) 146.738 254.157i 0.430316 0.745329i
\(342\) 17.6398 + 17.6398i 0.0515783 + 0.0515783i
\(343\) 25.2167 + 342.072i 0.0735182 + 0.997294i
\(344\) 93.6643i 0.272280i
\(345\) −39.3925 91.8862i −0.114181 0.266337i
\(346\) −1.01801 1.76325i −0.00294223 0.00509609i
\(347\) −8.37062 + 31.2396i −0.0241228 + 0.0900276i −0.976938 0.213524i \(-0.931506\pi\)
0.952815 + 0.303552i \(0.0981725\pi\)
\(348\) −3.18653 11.8923i −0.00915670 0.0341733i
\(349\) 214.001i 0.613183i −0.951841 0.306592i \(-0.900811\pi\)
0.951841 0.306592i \(-0.0991886\pi\)
\(350\) 71.7611 + 36.8551i 0.205032 + 0.105300i
\(351\) −125.761 −0.358294
\(352\) 306.185 82.0420i 0.869843 0.233074i
\(353\) −154.485 41.3943i −0.437636 0.117264i 0.0332725 0.999446i \(-0.489407\pi\)
−0.470908 + 0.882182i \(0.656074\pi\)
\(354\) −32.0758 + 18.5190i −0.0906097 + 0.0523135i
\(355\) 293.719 125.920i 0.827376 0.354704i
\(356\) −194.901 −0.547474
\(357\) −230.242 125.504i −0.644937 0.351553i
\(358\) −3.43315 + 3.43315i −0.00958981 + 0.00958981i
\(359\) −422.373 243.857i −1.17653 0.679267i −0.221317 0.975202i \(-0.571036\pi\)
−0.955208 + 0.295935i \(0.904369\pi\)
\(360\) 42.3141 33.3042i 0.117539 0.0925117i
\(361\) −17.8049 30.8390i −0.0493210 0.0854265i
\(362\) −144.728 + 38.7798i −0.399802 + 0.107127i
\(363\) 142.348 142.348i 0.392144 0.392144i
\(364\) 623.697 + 150.826i 1.71345 + 0.414358i
\(365\) 68.1650 9.82912i 0.186753 0.0269291i
\(366\) 9.83437 17.0336i 0.0268699 0.0465400i
\(367\) −67.9239 + 253.495i −0.185079 + 0.690723i 0.809535 + 0.587072i \(0.199719\pi\)
−0.994614 + 0.103652i \(0.966947\pi\)
\(368\) 150.480 + 40.3209i 0.408912 + 0.109568i
\(369\) −133.619 77.1451i −0.362112 0.209065i
\(370\) 7.08883 9.47765i 0.0191590 0.0256153i
\(371\) 128.179 530.047i 0.345497 1.42870i
\(372\) 88.3868 + 88.3868i 0.237599 + 0.237599i
\(373\) −35.7315 133.352i −0.0957949 0.357512i 0.901344 0.433104i \(-0.142582\pi\)
−0.997139 + 0.0755927i \(0.975915\pi\)
\(374\) −132.989 + 76.7811i −0.355585 + 0.205297i
\(375\) −125.369 + 176.515i −0.334318 + 0.470706i
\(376\) 41.7126 72.2484i 0.110938 0.192150i
\(377\) −32.1188 32.1188i −0.0851957 0.0851957i
\(378\) 8.02501 14.7222i 0.0212302 0.0389476i
\(379\) 535.154i 1.41202i 0.708204 + 0.706008i \(0.249506\pi\)
−0.708204 + 0.706008i \(0.750494\pi\)
\(380\) 313.969 134.601i 0.826234 0.354214i
\(381\) −54.4685 94.3423i −0.142962 0.247618i
\(382\) −28.5261 + 106.461i −0.0746757 + 0.278693i
\(383\) 33.3533 + 124.476i 0.0870845 + 0.325004i 0.995701 0.0926283i \(-0.0295268\pi\)
−0.908616 + 0.417632i \(0.862860\pi\)
\(384\) 178.112i 0.463833i
\(385\) −312.195 + 439.474i −0.810896 + 1.14149i
\(386\) 88.0645 0.228146
\(387\) 75.6062 20.2586i 0.195365 0.0523478i
\(388\) −201.848 54.0850i −0.520227 0.139394i
\(389\) −128.234 + 74.0357i −0.329649 + 0.190323i −0.655685 0.755034i \(-0.727620\pi\)
0.326036 + 0.945357i \(0.394287\pi\)
\(390\) 35.8743 89.7162i 0.0919855 0.230041i
\(391\) −249.675 −0.638556
\(392\) −118.135 + 130.333i −0.301364 + 0.332483i
\(393\) 276.103 276.103i 0.702551 0.702551i
\(394\) 34.4080 + 19.8655i 0.0873300 + 0.0504200i
\(395\) 259.870 + 30.9634i 0.657899 + 0.0783884i
\(396\) 87.5035 + 151.560i 0.220968 + 0.382729i
\(397\) −462.699 + 123.980i −1.16549 + 0.312292i −0.789156 0.614193i \(-0.789482\pi\)
−0.376333 + 0.926485i \(0.622815\pi\)
\(398\) 18.3436 18.3436i 0.0460895 0.0460895i
\(399\) 150.809 158.395i 0.377968 0.396980i
\(400\) −95.3152 323.633i −0.238288 0.809084i
\(401\) 233.401 404.263i 0.582048 1.00814i −0.413189 0.910645i \(-0.635585\pi\)
0.995236 0.0974907i \(-0.0310816\pi\)
\(402\) 23.9434 89.3582i 0.0595608 0.222284i
\(403\) 445.449 + 119.358i 1.10533 + 0.296173i
\(404\) −522.654 301.754i −1.29370 0.746917i
\(405\) 36.0354 + 26.9527i 0.0889763 + 0.0665500i
\(406\) 5.80952 1.71043i 0.0143092 0.00421287i
\(407\) 55.9238 + 55.9238i 0.137405 + 0.137405i
\(408\) −34.8063 129.899i −0.0853094 0.318379i
\(409\) −556.548 + 321.323i −1.36075 + 0.785631i −0.989724 0.142990i \(-0.954328\pi\)
−0.371029 + 0.928621i \(0.620995\pi\)
\(410\) 93.1501 73.3158i 0.227195 0.178819i
\(411\) −30.6328 + 53.0576i −0.0745324 + 0.129094i
\(412\) −271.605 271.605i −0.659236 0.659236i
\(413\) 169.205 + 277.144i 0.409697 + 0.671050i
\(414\) 15.9648i 0.0385623i
\(415\) −90.2364 + 225.667i −0.217437 + 0.543777i
\(416\) 249.053 + 431.373i 0.598686 + 1.03695i
\(417\) 25.4201 94.8691i 0.0609595 0.227504i
\(418\) −33.1486 123.712i −0.0793028 0.295962i
\(419\) 476.798i 1.13794i 0.822358 + 0.568971i \(0.192658\pi\)
−0.822358 + 0.568971i \(0.807342\pi\)
\(420\) −146.388 176.886i −0.348544 0.421158i
\(421\) −478.207 −1.13588 −0.567942 0.823069i \(-0.692260\pi\)
−0.567942 + 0.823069i \(0.692260\pi\)
\(422\) 25.7717 6.90552i 0.0610705 0.0163638i
\(423\) 67.3411 + 18.0440i 0.159199 + 0.0426572i
\(424\) 242.198 139.833i 0.571221 0.329795i
\(425\) 281.796 + 461.465i 0.663050 + 1.08580i
\(426\) 51.0322 0.119794
\(427\) −151.404 82.5299i −0.354577 0.193279i
\(428\) 26.3768 26.3768i 0.0616281 0.0616281i
\(429\) 559.162 + 322.832i 1.30341 + 0.752523i
\(430\) −7.11505 + 59.7153i −0.0165466 + 0.138873i
\(431\) −104.378 180.788i −0.242176 0.419461i 0.719158 0.694847i \(-0.244528\pi\)
−0.961334 + 0.275386i \(0.911194\pi\)
\(432\) −67.7332 + 18.1491i −0.156790 + 0.0420117i
\(433\) −258.656 + 258.656i −0.597358 + 0.597358i −0.939609 0.342251i \(-0.888811\pi\)
0.342251 + 0.939609i \(0.388811\pi\)
\(434\) −42.3974 + 44.5300i −0.0976898 + 0.102604i
\(435\) 2.31966 + 16.0869i 0.00533256 + 0.0369813i
\(436\) 84.5640 146.469i 0.193954 0.335938i
\(437\) 53.8959 201.142i 0.123332 0.460280i
\(438\) 10.6230 + 2.84643i 0.0242535 + 0.00649871i
\(439\) 447.029 + 258.092i 1.01829 + 0.587910i 0.913608 0.406596i \(-0.133284\pi\)
0.104681 + 0.994506i \(0.466618\pi\)
\(440\) −273.631 + 39.4565i −0.621889 + 0.0896739i
\(441\) −130.757 67.1689i −0.296501 0.152310i
\(442\) −170.629 170.629i −0.386038 0.386038i
\(443\) 125.295 + 467.609i 0.282834 + 1.05555i 0.950408 + 0.311007i \(0.100666\pi\)
−0.667574 + 0.744544i \(0.732667\pi\)
\(444\) −29.1725 + 16.8427i −0.0657037 + 0.0379341i
\(445\) 255.488 + 30.4413i 0.574130 + 0.0684073i
\(446\) −38.7787 + 67.1667i −0.0869478 + 0.150598i
\(447\) −111.919 111.919i −0.250378 0.250378i
\(448\) 311.358 7.63858i 0.694996 0.0170504i
\(449\) 290.894i 0.647871i −0.946079 0.323936i \(-0.894994\pi\)
0.946079 0.323936i \(-0.105006\pi\)
\(450\) −29.5071 + 18.0186i −0.0655713 + 0.0400414i
\(451\) 396.067 + 686.009i 0.878198 + 1.52108i
\(452\) −47.3565 + 176.737i −0.104771 + 0.391011i
\(453\) 40.9587 + 152.860i 0.0904166 + 0.337439i
\(454\) 155.768i 0.343101i
\(455\) −794.023 295.127i −1.74510 0.648630i
\(456\) 112.162 0.245969
\(457\) 80.7582 21.6391i 0.176714 0.0473503i −0.169377 0.985551i \(-0.554176\pi\)
0.346091 + 0.938201i \(0.387509\pi\)
\(458\) 3.42571 + 0.917917i 0.00747972 + 0.00200419i
\(459\) 97.3265 56.1915i 0.212040 0.122421i
\(460\) −202.988 81.1678i −0.441279 0.176452i
\(461\) 579.921 1.25796 0.628982 0.777420i \(-0.283472\pi\)
0.628982 + 0.777420i \(0.283472\pi\)
\(462\) −73.4733 + 44.8577i −0.159033 + 0.0970946i
\(463\) 340.706 340.706i 0.735865 0.735865i −0.235910 0.971775i \(-0.575807\pi\)
0.971775 + 0.235910i \(0.0758069\pi\)
\(464\) −21.9339 12.6636i −0.0472714 0.0272921i
\(465\) −102.058 129.668i −0.219479 0.278856i
\(466\) −59.4954 103.049i −0.127673 0.221135i
\(467\) 393.823 105.524i 0.843304 0.225963i 0.188794 0.982017i \(-0.439542\pi\)
0.654509 + 0.756054i \(0.272875\pi\)
\(468\) −194.457 + 194.457i −0.415506 + 0.415506i
\(469\) −788.320 190.636i −1.68085 0.406474i
\(470\) −32.0819 + 42.8930i −0.0682594 + 0.0912617i
\(471\) −156.351 + 270.808i −0.331956 + 0.574964i
\(472\) −43.1004 + 160.853i −0.0913143 + 0.340790i
\(473\) −388.166 104.009i −0.820648 0.219892i
\(474\) 36.1929 + 20.8960i 0.0763563 + 0.0440843i
\(475\) −432.593 + 127.405i −0.910722 + 0.268222i
\(476\) −550.069 + 161.950i −1.15561 + 0.340231i
\(477\) 165.259 + 165.259i 0.346454 + 0.346454i
\(478\) 30.1183 + 112.403i 0.0630089 + 0.235152i
\(479\) −547.299 + 315.983i −1.14259 + 0.659673i −0.947070 0.321027i \(-0.895972\pi\)
−0.195517 + 0.980700i \(0.562639\pi\)
\(480\) 21.0872 176.981i 0.0439318 0.368711i
\(481\) −62.1390 + 107.628i −0.129187 + 0.223759i
\(482\) −4.73141 4.73141i −0.00981620 0.00981620i
\(483\) −139.922 + 3.43272i −0.289693 + 0.00710708i
\(484\) 440.209i 0.909523i
\(485\) 256.147 + 102.424i 0.528139 + 0.211184i
\(486\) 3.59300 + 6.22326i 0.00739301 + 0.0128051i
\(487\) −14.3646 + 53.6096i −0.0294962 + 0.110081i −0.979104 0.203358i \(-0.934815\pi\)
0.949608 + 0.313439i \(0.101481\pi\)
\(488\) −22.8881 85.4196i −0.0469019 0.175040i
\(489\) 137.535i 0.281257i
\(490\) 85.2167 74.1195i 0.173912 0.151264i
\(491\) 328.623 0.669293 0.334646 0.942344i \(-0.391383\pi\)
0.334646 + 0.942344i \(0.391383\pi\)
\(492\) −325.892 + 87.3225i −0.662382 + 0.177485i
\(493\) 39.2077 + 10.5057i 0.0795288 + 0.0213097i
\(494\) 174.294 100.629i 0.352821 0.203701i
\(495\) −91.0329 212.342i −0.183905 0.428973i
\(496\) 257.138 0.518423
\(497\) −10.9728 447.267i −0.0220782 0.899933i
\(498\) −27.4434 + 27.4434i −0.0551072 + 0.0551072i
\(499\) 794.743 + 458.845i 1.59267 + 0.919529i 0.992846 + 0.119398i \(0.0380965\pi\)
0.599825 + 0.800131i \(0.295237\pi\)
\(500\) 79.0832 + 466.785i 0.158166 + 0.933570i
\(501\) −18.6665 32.3313i −0.0372585 0.0645336i
\(502\) 94.3782 25.2886i 0.188004 0.0503756i
\(503\) 268.947 268.947i 0.534685 0.534685i −0.387278 0.921963i \(-0.626585\pi\)
0.921963 + 0.387278i \(0.126585\pi\)
\(504\) −21.2919 72.3186i −0.0422458 0.143489i
\(505\) 637.996 + 477.191i 1.26336 + 0.944932i
\(506\) −40.9821 + 70.9830i −0.0809922 + 0.140283i
\(507\) −186.834 + 697.274i −0.368509 + 1.37529i
\(508\) −230.097 61.6543i −0.452947 0.121367i
\(509\) −288.616 166.632i −0.567025 0.327372i 0.188935 0.981990i \(-0.439496\pi\)
−0.755960 + 0.654618i \(0.772830\pi\)
\(510\) 12.3230 + 85.4603i 0.0241628 + 0.167569i
\(511\) 22.6632 93.7166i 0.0443506 0.183398i
\(512\) 333.416 + 333.416i 0.651203 + 0.651203i
\(513\) 24.2594 + 90.5374i 0.0472893 + 0.176486i
\(514\) 127.939 73.8658i 0.248909 0.143708i
\(515\) 313.615 + 398.458i 0.608961 + 0.773706i
\(516\) 85.5805 148.230i 0.165854 0.287267i
\(517\) −253.094 253.094i −0.489544 0.489544i
\(518\) −8.63424 14.1422i −0.0166684 0.0273015i
\(519\) 7.64996i 0.0147398i
\(520\) −171.176 399.281i −0.329184 0.767849i
\(521\) 186.745 + 323.451i 0.358435 + 0.620828i 0.987700 0.156363i \(-0.0499771\pi\)
−0.629264 + 0.777191i \(0.716644\pi\)
\(522\) −0.671755 + 2.50703i −0.00128689 + 0.00480273i
\(523\) −48.0280 179.243i −0.0918317 0.342721i 0.904688 0.426074i \(-0.140104\pi\)
−0.996520 + 0.0833533i \(0.973437\pi\)
\(524\) 853.841i 1.62947i
\(525\) 164.267 + 254.738i 0.312890 + 0.485215i
\(526\) −59.9288 −0.113933
\(527\) −398.063 + 106.661i −0.755338 + 0.202392i
\(528\) 347.746 + 93.1784i 0.658611 + 0.176474i
\(529\) 342.717 197.868i 0.647858 0.374041i
\(530\) −165.034 + 70.7517i −0.311385 + 0.133494i
\(531\) −139.163 −0.262077
\(532\) −11.7294 478.103i −0.0220477 0.898690i
\(533\) −880.170 + 880.170i −1.65135 + 1.65135i
\(534\) 35.5825 + 20.5436i 0.0666339 + 0.0384711i
\(535\) −38.6962 + 30.4566i −0.0723293 + 0.0569283i
\(536\) −207.969 360.212i −0.388001 0.672037i
\(537\) −17.6209 + 4.72151i −0.0328136 + 0.00879238i
\(538\) −22.5735 + 22.5735i −0.0419581 + 0.0419581i
\(539\) 408.949 + 634.305i 0.758719 + 1.17682i
\(540\) 97.3947 14.0439i 0.180361 0.0260073i
\(541\) 493.154 854.168i 0.911560 1.57887i 0.0996992 0.995018i \(-0.468212\pi\)
0.811861 0.583851i \(-0.198455\pi\)
\(542\) 49.3996 184.362i 0.0911432 0.340151i
\(543\) −543.788 145.708i −1.00145 0.268338i
\(544\) −385.484 222.560i −0.708611 0.409117i
\(545\) −133.728 + 178.793i −0.245373 + 0.328060i
\(546\) −97.9688 93.2769i −0.179430 0.170837i
\(547\) 414.571 + 414.571i 0.757899 + 0.757899i 0.975940 0.218040i \(-0.0699664\pi\)
−0.218040 + 0.975940i \(0.569966\pi\)
\(548\) 34.6741 + 129.405i 0.0632738 + 0.236141i
\(549\) 64.0006 36.9507i 0.116577 0.0673055i
\(550\) 177.449 4.36941i 0.322635 0.00794438i
\(551\) −16.9271 + 29.3185i −0.0307206 + 0.0532097i
\(552\) −50.7557 50.7557i −0.0919488 0.0919488i
\(553\) 175.359 321.702i 0.317104 0.581740i
\(554\) 24.2151i 0.0437096i
\(555\) 40.8717 17.5221i 0.0736427 0.0315713i
\(556\) −107.385 185.996i −0.193138 0.334525i
\(557\) 231.777 865.003i 0.416116 1.55297i −0.366472 0.930429i \(-0.619435\pi\)
0.782589 0.622539i \(-0.213899\pi\)
\(558\) −6.82011 25.4530i −0.0122224 0.0456147i
\(559\) 631.476i 1.12965i
\(560\) −470.241 44.3628i −0.839715 0.0792193i
\(561\) −576.980 −1.02849
\(562\) 204.828 54.8834i 0.364462 0.0976574i
\(563\) −787.593 211.035i −1.39892 0.374840i −0.520964 0.853578i \(-0.674428\pi\)
−0.877958 + 0.478738i \(0.841094\pi\)
\(564\) 132.026 76.2251i 0.234088 0.135151i
\(565\) 89.6822 224.281i 0.158729 0.396958i
\(566\) −84.6051 −0.149479
\(567\) 53.7706 32.8286i 0.0948336 0.0578988i
\(568\) 162.243 162.243i 0.285639 0.285639i
\(569\) −161.663 93.3360i −0.284117 0.164035i 0.351169 0.936312i \(-0.385784\pi\)
−0.635286 + 0.772277i \(0.719118\pi\)
\(570\) −71.5082 8.52017i −0.125453 0.0149477i
\(571\) 399.962 + 692.755i 0.700459 + 1.21323i 0.968305 + 0.249769i \(0.0803548\pi\)
−0.267846 + 0.963462i \(0.586312\pi\)
\(572\) 1363.77 365.422i 2.38422 0.638850i
\(573\) −292.825 + 292.825i −0.511038 + 0.511038i
\(574\) −46.8718 159.202i −0.0816583 0.277355i
\(575\) 253.412 + 138.104i 0.440716 + 0.240181i
\(576\) −66.7397 + 115.597i −0.115868 + 0.200688i
\(577\) 38.8655 145.048i 0.0673579 0.251383i −0.924034 0.382310i \(-0.875129\pi\)
0.991392 + 0.130927i \(0.0417953\pi\)
\(578\) 79.6039 + 21.3298i 0.137723 + 0.0369027i
\(579\) 286.555 + 165.443i 0.494914 + 0.285739i
\(580\) 28.4609 + 21.2874i 0.0490705 + 0.0367024i
\(581\) 246.426 + 234.624i 0.424140 + 0.403828i
\(582\) 31.1500 + 31.1500i 0.0535224 + 0.0535224i
\(583\) −310.553 1159.00i −0.532681 1.98799i
\(584\) 42.8226 24.7236i 0.0733263 0.0423350i
\(585\) 285.278 224.534i 0.487654 0.383819i
\(586\) −0.730235 + 1.26480i −0.00124613 + 0.00215837i
\(587\) 153.429 + 153.429i 0.261378 + 0.261378i 0.825614 0.564236i \(-0.190829\pi\)
−0.564236 + 0.825614i \(0.690829\pi\)
\(588\) −306.040 + 98.3220i −0.520477 + 0.167214i
\(589\) 343.710i 0.583548i
\(590\) 39.6973 99.2769i 0.0672836 0.168266i
\(591\) 74.6407 + 129.281i 0.126296 + 0.218750i
\(592\) −17.9350 + 66.9344i −0.0302957 + 0.113065i
\(593\) 0.220820 + 0.824110i 0.000372377 + 0.00138973i 0.966112 0.258124i \(-0.0831043\pi\)
−0.965739 + 0.259514i \(0.916438\pi\)
\(594\) 36.8934i 0.0621100i
\(595\) 746.359 126.380i 1.25439 0.212403i
\(596\) −346.107 −0.580716
\(597\) 94.1500 25.2274i 0.157705 0.0422570i
\(598\) −124.408 33.3352i −0.208041 0.0557444i
\(599\) −696.721 + 402.252i −1.16314 + 0.671539i −0.952054 0.305929i \(-0.901033\pi\)
−0.211085 + 0.977468i \(0.567700\pi\)
\(600\) −36.5244 + 151.095i −0.0608740 + 0.251825i
\(601\) −635.940 −1.05814 −0.529068 0.848579i \(-0.677458\pi\)
−0.529068 + 0.848579i \(0.677458\pi\)
\(602\) 73.9235 + 40.2954i 0.122797 + 0.0669360i
\(603\) 245.783 245.783i 0.407600 0.407600i
\(604\) 299.690 + 173.026i 0.496176 + 0.286467i
\(605\) −68.7556 + 577.053i −0.113646 + 0.953807i
\(606\) 63.6131 + 110.181i 0.104972 + 0.181817i
\(607\) −248.787 + 66.6623i −0.409864 + 0.109823i −0.457859 0.889025i \(-0.651383\pi\)
0.0479951 + 0.998848i \(0.484717\pi\)
\(608\) 262.510 262.510i 0.431759 0.431759i
\(609\) 22.1170 + 5.34848i 0.0363170 + 0.00878240i
\(610\) 8.10346 + 56.1976i 0.0132844 + 0.0921271i
\(611\) 281.222 487.091i 0.460266 0.797204i
\(612\) 63.6045 237.375i 0.103929 0.387868i
\(613\) −1115.56 298.914i −1.81984 0.487624i −0.823069 0.567941i \(-0.807740\pi\)
−0.996769 + 0.0803163i \(0.974407\pi\)
\(614\) −40.3134 23.2750i −0.0656571 0.0379071i
\(615\) 440.838 63.5671i 0.716810 0.103361i
\(616\) −90.9755 + 376.202i −0.147687 + 0.610717i
\(617\) −265.010 265.010i −0.429514 0.429514i 0.458949 0.888463i \(-0.348226\pi\)
−0.888463 + 0.458949i \(0.848226\pi\)
\(618\) 20.9576 + 78.2149i 0.0339120 + 0.126561i
\(619\) 758.758 438.069i 1.22578 0.707704i 0.259635 0.965707i \(-0.416398\pi\)
0.966144 + 0.258003i \(0.0830643\pi\)
\(620\) −358.303 42.6917i −0.577909 0.0688576i
\(621\) 29.9923 51.9481i 0.0482967 0.0836524i
\(622\) −31.1126 31.1126i −0.0500203 0.0500203i
\(623\) 172.401 316.277i 0.276728 0.507668i
\(624\) 565.720i 0.906602i
\(625\) −30.7606 624.243i −0.0492170 0.998788i
\(626\) 33.4678 + 57.9680i 0.0534630 + 0.0926006i
\(627\) 124.549 464.824i 0.198643 0.741346i
\(628\) 176.978 + 660.490i 0.281812 + 1.05174i
\(629\) 111.058i 0.176562i
\(630\) 8.08098 + 47.7238i 0.0128270 + 0.0757521i
\(631\) 247.281 0.391888 0.195944 0.980615i \(-0.437223\pi\)
0.195944 + 0.980615i \(0.437223\pi\)
\(632\) 181.499 48.6324i 0.287181 0.0769500i
\(633\) 96.8323 + 25.9461i 0.152974 + 0.0409892i
\(634\) −183.741 + 106.083i −0.289812 + 0.167323i
\(635\) 291.996 + 116.759i 0.459836 + 0.183872i
\(636\) 511.058 0.803551
\(637\) −796.452 + 878.695i −1.25032 + 1.37943i
\(638\) 9.42238 9.42238i 0.0147686 0.0147686i
\(639\) 166.055 + 95.8717i 0.259866 + 0.150034i
\(640\) −318.001 404.031i −0.496876 0.631298i
\(641\) −540.040 935.377i −0.842497 1.45925i −0.887778 0.460273i \(-0.847752\pi\)
0.0452811 0.998974i \(-0.485582\pi\)
\(642\) −7.59582 + 2.03529i −0.0118315 + 0.00317024i
\(643\) −40.2830 + 40.2830i −0.0626485 + 0.0626485i −0.737737 0.675088i \(-0.764105\pi\)
0.675088 + 0.737737i \(0.264105\pi\)
\(644\) −211.045 + 221.660i −0.327709 + 0.344193i
\(645\) −135.336 + 180.942i −0.209823 + 0.280530i
\(646\) −89.9238 + 155.753i −0.139201 + 0.241103i
\(647\) −71.9712 + 268.600i −0.111238 + 0.415147i −0.998978 0.0451988i \(-0.985608\pi\)
0.887740 + 0.460346i \(0.152275\pi\)
\(648\) 31.2082 + 8.36220i 0.0481608 + 0.0129046i
\(649\) 618.750 + 357.235i 0.953390 + 0.550440i
\(650\) 78.8015 + 267.563i 0.121233 + 0.411635i
\(651\) −221.614 + 65.2471i −0.340421 + 0.100226i
\(652\) −212.662 212.662i −0.326168 0.326168i
\(653\) 228.842 + 854.052i 0.350448 + 1.30789i 0.886117 + 0.463461i \(0.153393\pi\)
−0.535669 + 0.844428i \(0.679941\pi\)
\(654\) −30.8773 + 17.8270i −0.0472129 + 0.0272584i
\(655\) −133.360 + 1119.27i −0.203603 + 1.70881i
\(656\) −347.027 + 601.068i −0.529005 + 0.916263i
\(657\) 29.2191 + 29.2191i 0.0444735 + 0.0444735i
\(658\) 39.0760 + 64.0033i 0.0593860 + 0.0972694i
\(659\) 431.384i 0.654604i −0.944920 0.327302i \(-0.893861\pi\)
0.944920 0.327302i \(-0.106139\pi\)
\(660\) −469.090 187.573i −0.710742 0.284201i
\(661\) −185.671 321.591i −0.280894 0.486522i 0.690711 0.723130i \(-0.257297\pi\)
−0.971605 + 0.236608i \(0.923964\pi\)
\(662\) −5.58286 + 20.8355i −0.00843333 + 0.0314736i
\(663\) −234.660 875.765i −0.353937 1.32091i
\(664\) 174.498i 0.262798i
\(665\) −59.2987 + 628.559i −0.0891710 + 0.945202i
\(666\) 7.10126 0.0106625
\(667\) 20.9272 5.60742i 0.0313751 0.00840693i
\(668\) −78.8548 21.1291i −0.118046 0.0316304i
\(669\) −252.366 + 145.703i −0.377228 + 0.217793i
\(670\) 105.227 + 245.450i 0.157054 + 0.366343i
\(671\) −379.414 −0.565446
\(672\) −219.091 119.426i −0.326028 0.177717i
\(673\) −306.397 + 306.397i −0.455271 + 0.455271i −0.897100 0.441828i \(-0.854330\pi\)
0.441828 + 0.897100i \(0.354330\pi\)
\(674\) −221.231 127.728i −0.328235 0.189507i
\(675\) −129.864 + 3.19771i −0.192392 + 0.00473734i
\(676\) 789.262 + 1367.04i 1.16755 + 2.02225i
\(677\) −1114.67 + 298.674i −1.64648 + 0.441173i −0.958624 0.284674i \(-0.908115\pi\)
−0.687856 + 0.725847i \(0.741448\pi\)
\(678\) 27.2748 27.2748i 0.0402283 0.0402283i
\(679\) 266.314 279.709i 0.392215 0.411943i
\(680\) 310.876 + 232.520i 0.457170 + 0.341942i
\(681\) −292.634 + 506.857i −0.429712 + 0.744283i
\(682\) −35.0149 + 130.677i −0.0513414 + 0.191609i
\(683\) 890.075 + 238.495i 1.30318 + 0.349187i 0.842653 0.538456i \(-0.180992\pi\)
0.460531 + 0.887644i \(0.347659\pi\)
\(684\) 177.503 + 102.482i 0.259508 + 0.149827i
\(685\) −25.2413 175.048i −0.0368485 0.255545i
\(686\) −52.0413 149.307i −0.0758620 0.217649i
\(687\) 9.42255 + 9.42255i 0.0137155 + 0.0137155i
\(688\) −91.1307 340.104i −0.132457 0.494338i
\(689\) 1632.87 942.741i 2.36992 1.36827i
\(690\) 28.5035 + 36.2147i 0.0413094 + 0.0524850i
\(691\) 84.0700 145.613i 0.121664 0.210729i −0.798760 0.601650i \(-0.794510\pi\)
0.920424 + 0.390921i \(0.127844\pi\)
\(692\) −11.8287 11.8287i −0.0170934 0.0170934i
\(693\) −323.348 + 7.93274i −0.466592 + 0.0114470i
\(694\) 14.9089i 0.0214826i
\(695\) 111.716 + 260.587i 0.160743 + 0.374945i
\(696\) 5.83475 + 10.1061i 0.00838326 + 0.0145202i
\(697\) 287.893 1074.43i 0.413046 1.54151i
\(698\) 25.5327 + 95.2892i 0.0365797 + 0.136517i
\(699\) 447.085i 0.639606i
\(700\) 647.882 + 139.889i 0.925545 + 0.199841i
\(701\) 958.494 1.36732 0.683662 0.729799i \(-0.260386\pi\)
0.683662 + 0.729799i \(0.260386\pi\)
\(702\) 55.9982 15.0047i 0.0797696 0.0213742i
\(703\) 89.4696 + 23.9733i 0.127268 + 0.0341014i
\(704\) 593.479 342.645i 0.843010 0.486712i
\(705\) −184.973 + 79.2997i −0.262373 + 0.112482i
\(706\) 73.7273 0.104430
\(707\) 951.994 581.222i 1.34653 0.822096i
\(708\) −215.179 + 215.179i −0.303925 + 0.303925i
\(709\) 30.6249 + 17.6813i 0.0431945 + 0.0249383i 0.521442 0.853287i \(-0.325394\pi\)
−0.478247 + 0.878225i \(0.658728\pi\)
\(710\) −115.762 + 91.1128i −0.163045 + 0.128328i
\(711\) 78.5125 + 135.988i 0.110425 + 0.191263i
\(712\) 178.438 47.8123i 0.250615 0.0671521i
\(713\) −155.537 + 155.537i −0.218144 + 0.218144i
\(714\) 117.495 + 28.4134i 0.164559 + 0.0397947i
\(715\) −1844.79 + 266.012i −2.58013 + 0.372045i
\(716\) −19.9456 + 34.5467i −0.0278569 + 0.0482496i
\(717\) −113.163 + 422.332i −0.157829 + 0.589026i
\(718\) 217.167 + 58.1896i 0.302460 + 0.0810440i
\(719\) −983.525 567.839i −1.36791 0.789762i −0.377247 0.926113i \(-0.623129\pi\)
−0.990661 + 0.136351i \(0.956463\pi\)
\(720\) 121.243 162.100i 0.168394 0.225139i
\(721\) 681.001 200.499i 0.944523 0.278084i
\(722\) 11.6075 + 11.6075i 0.0160769 + 0.0160769i
\(723\) −6.50696 24.2843i −0.00899995 0.0335883i
\(724\) −1066.13 + 615.528i −1.47255 + 0.850177i
\(725\) −33.9834 32.3501i −0.0468737 0.0446208i
\(726\) −46.4004 + 80.3678i −0.0639124 + 0.110700i
\(727\) −12.8697 12.8697i −0.0177025 0.0177025i 0.698200 0.715903i \(-0.253985\pi\)
−0.715903 + 0.698200i \(0.753985\pi\)
\(728\) −608.015 + 14.9165i −0.835185 + 0.0204897i
\(729\) 27.0000i 0.0370370i
\(730\) −29.1794 + 12.5095i −0.0399718 + 0.0171363i
\(731\) 282.150 + 488.699i 0.385979 + 0.668535i
\(732\) 41.8255 156.095i 0.0571386 0.213244i
\(733\) 141.743 + 528.993i 0.193374 + 0.721682i 0.992682 + 0.120760i \(0.0385332\pi\)
−0.799308 + 0.600922i \(0.794800\pi\)
\(734\) 120.979i 0.164822i
\(735\) 416.533 81.0865i 0.566712 0.110322i
\(736\) −237.583 −0.322803
\(737\) −1723.74 + 461.874i −2.33886 + 0.626695i
\(738\) 68.7015 + 18.4085i 0.0930915 + 0.0249438i
\(739\) −312.563 + 180.459i −0.422955 + 0.244193i −0.696341 0.717711i \(-0.745190\pi\)
0.273386 + 0.961904i \(0.411856\pi\)
\(740\) 36.1041 90.2907i 0.0487893 0.122014i
\(741\) 756.184 1.02049
\(742\) 6.16541 + 251.310i 0.00830918 + 0.338692i
\(743\) 416.926 416.926i 0.561138 0.561138i −0.368492 0.929631i \(-0.620126\pi\)
0.929631 + 0.368492i \(0.120126\pi\)
\(744\) −102.604 59.2383i −0.137908 0.0796214i
\(745\) 453.698 + 54.0579i 0.608991 + 0.0725610i
\(746\) 31.8207 + 55.1150i 0.0426551 + 0.0738807i
\(747\) −140.855 + 37.7420i −0.188561 + 0.0505248i
\(748\) −892.149 + 892.149i −1.19271 + 1.19271i
\(749\) 19.4714 + 66.1352i 0.0259965 + 0.0882980i
\(750\) 34.7636 93.5556i 0.0463515 0.124741i
\(751\) −521.992 + 904.116i −0.695062 + 1.20388i 0.275097 + 0.961416i \(0.411290\pi\)
−0.970160 + 0.242467i \(0.922043\pi\)
\(752\) 81.1685 302.925i 0.107937 0.402826i
\(753\) 354.608 + 95.0169i 0.470927 + 0.126184i
\(754\) 18.1338 + 10.4696i 0.0240501 + 0.0138854i
\(755\) −365.828 273.621i −0.484540 0.362413i
\(756\) 32.3813 133.903i 0.0428324 0.177121i
\(757\) −691.527 691.527i −0.913510 0.913510i 0.0830364 0.996547i \(-0.473538\pi\)
−0.996547 + 0.0830364i \(0.973538\pi\)
\(758\) −63.8497 238.291i −0.0842345 0.314367i
\(759\) −266.705 + 153.982i −0.351390 + 0.202875i
\(760\) −254.429 + 200.254i −0.334775 + 0.263492i
\(761\) 553.925 959.427i