Properties

Label 105.3.v.a.37.13
Level 105
Weight 3
Character 105.37
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.13
Character \(\chi\) \(=\) 105.37
Dual form 105.3.v.a.88.13

$q$-expansion

\(f(q)\) \(=\) \(q+(2.56059 - 0.686107i) q^{2} +(1.67303 + 0.448288i) q^{3} +(2.62176 - 1.51367i) q^{4} +(1.32982 - 4.81992i) q^{5} +4.59152 q^{6} +(0.158915 + 6.99820i) q^{7} +(-1.82323 + 1.82323i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(2.56059 - 0.686107i) q^{2} +(1.67303 + 0.448288i) q^{3} +(2.62176 - 1.51367i) q^{4} +(1.32982 - 4.81992i) q^{5} +4.59152 q^{6} +(0.158915 + 6.99820i) q^{7} +(-1.82323 + 1.82323i) q^{8} +(2.59808 + 1.50000i) q^{9} +(0.0981374 - 13.2542i) q^{10} +(-8.05696 - 13.9551i) q^{11} +(5.06484 - 1.35712i) q^{12} +(-0.148341 + 0.148341i) q^{13} +(5.20843 + 17.8104i) q^{14} +(4.38554 - 7.46773i) q^{15} +(-9.47228 + 16.4065i) q^{16} +(-5.20277 + 19.4170i) q^{17} +(7.68176 + 2.05832i) q^{18} +(10.9984 + 6.34991i) q^{19} +(-3.80931 - 14.6495i) q^{20} +(-2.87134 + 11.7794i) q^{21} +(-30.2052 - 30.2052i) q^{22} +(-4.18723 - 15.6270i) q^{23} +(-3.86765 + 2.23299i) q^{24} +(-21.4632 - 12.8192i) q^{25} +(-0.278063 + 0.481619i) q^{26} +(3.67423 + 3.67423i) q^{27} +(11.0096 + 18.1070i) q^{28} -21.7589i q^{29} +(6.10588 - 22.1307i) q^{30} +(7.17206 + 12.4224i) q^{31} +(-10.3286 + 38.5469i) q^{32} +(-7.22367 - 26.9591i) q^{33} +53.2886i q^{34} +(33.9420 + 8.54037i) q^{35} +9.08203 q^{36} +(-62.8854 + 16.8501i) q^{37} +(32.5190 + 8.71343i) q^{38} +(-0.314680 + 0.181680i) q^{39} +(6.36323 + 11.2124i) q^{40} +2.26939 q^{41} +(0.729660 + 32.1323i) q^{42} +(35.1154 - 35.1154i) q^{43} +(-42.2467 - 24.3912i) q^{44} +(10.6848 - 10.5278i) q^{45} +(-21.4435 - 37.1413i) q^{46} +(55.8413 - 14.9626i) q^{47} +(-23.2023 + 23.2023i) q^{48} +(-48.9495 + 2.22423i) q^{49} +(-63.7536 - 18.0987i) q^{50} +(-17.4088 + 30.1529i) q^{51} +(-0.164375 + 0.613455i) q^{52} +(101.322 + 27.1491i) q^{53} +(11.9291 + 6.88728i) q^{54} +(-77.9765 + 20.2762i) q^{55} +(-13.0490 - 12.4696i) q^{56} +(15.5540 + 15.5540i) q^{57} +(-14.9290 - 55.7156i) q^{58} +(59.5129 - 34.3598i) q^{59} +(0.194116 - 26.2168i) q^{60} +(17.3661 - 30.0790i) q^{61} +(26.8877 + 26.8877i) q^{62} +(-10.0844 + 18.4202i) q^{63} +30.0109i q^{64} +(0.517726 + 0.912260i) q^{65} +(-36.9937 - 64.0749i) q^{66} +(8.56515 - 31.9656i) q^{67} +(15.7506 + 58.7819i) q^{68} -28.0215i q^{69} +(92.7711 - 1.41951i) q^{70} -59.5469 q^{71} +(-7.47172 + 2.00204i) q^{72} +(33.4534 + 8.96382i) q^{73} +(-149.462 + 86.2922i) q^{74} +(-30.1619 - 31.0687i) q^{75} +38.4467 q^{76} +(96.3799 - 58.6018i) q^{77} +(-0.681112 + 0.681112i) q^{78} +(2.87256 + 1.65847i) q^{79} +(66.4814 + 67.4732i) q^{80} +(4.50000 + 7.79423i) q^{81} +(5.81096 - 1.55704i) q^{82} +(4.48322 - 4.48322i) q^{83} +(10.3023 + 35.2291i) q^{84} +(86.6696 + 50.8980i) q^{85} +(65.8230 - 114.009i) q^{86} +(9.75426 - 36.4034i) q^{87} +(40.1329 + 10.7536i) q^{88} +(-123.113 - 71.0793i) q^{89} +(20.1363 - 34.2882i) q^{90} +(-1.06170 - 1.01455i) q^{91} +(-34.6320 - 34.6320i) q^{92} +(6.43029 + 23.9982i) q^{93} +(132.720 - 76.6262i) q^{94} +(45.2319 - 44.5670i) q^{95} +(-34.5602 + 59.8600i) q^{96} +(113.195 + 113.195i) q^{97} +(-123.813 + 39.2799i) q^{98} -48.3417i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.56059 0.686107i 1.28029 0.343053i 0.446327 0.894870i \(-0.352732\pi\)
0.833966 + 0.551816i \(0.186065\pi\)
\(3\) 1.67303 + 0.448288i 0.557678 + 0.149429i
\(4\) 2.62176 1.51367i 0.655439 0.378418i
\(5\) 1.32982 4.81992i 0.265964 0.963983i
\(6\) 4.59152 0.765253
\(7\) 0.158915 + 6.99820i 0.0227021 + 0.999742i
\(8\) −1.82323 + 1.82323i −0.227903 + 0.227903i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) 0.0981374 13.2542i 0.00981374 1.32542i
\(11\) −8.05696 13.9551i −0.732451 1.26864i −0.955833 0.293911i \(-0.905043\pi\)
0.223382 0.974731i \(-0.428290\pi\)
\(12\) 5.06484 1.35712i 0.422070 0.113093i
\(13\) −0.148341 + 0.148341i −0.0114109 + 0.0114109i −0.712789 0.701378i \(-0.752568\pi\)
0.701378 + 0.712789i \(0.252568\pi\)
\(14\) 5.20843 + 17.8104i 0.372030 + 1.27217i
\(15\) 4.38554 7.46773i 0.292369 0.497849i
\(16\) −9.47228 + 16.4065i −0.592018 + 1.02540i
\(17\) −5.20277 + 19.4170i −0.306045 + 1.14218i 0.625996 + 0.779826i \(0.284692\pi\)
−0.932042 + 0.362351i \(0.881974\pi\)
\(18\) 7.68176 + 2.05832i 0.426764 + 0.114351i
\(19\) 10.9984 + 6.34991i 0.578861 + 0.334206i 0.760681 0.649126i \(-0.224865\pi\)
−0.181819 + 0.983332i \(0.558199\pi\)
\(20\) −3.80931 14.6495i −0.190465 0.732477i
\(21\) −2.87134 + 11.7794i −0.136730 + 0.560926i
\(22\) −30.2052 30.2052i −1.37296 1.37296i
\(23\) −4.18723 15.6270i −0.182054 0.679433i −0.995242 0.0974328i \(-0.968937\pi\)
0.813189 0.582000i \(-0.197730\pi\)
\(24\) −3.86765 + 2.23299i −0.161152 + 0.0930411i
\(25\) −21.4632 12.8192i −0.858527 0.512769i
\(26\) −0.278063 + 0.481619i −0.0106947 + 0.0185238i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) 11.0096 + 18.1070i 0.393200 + 0.646679i
\(29\) 21.7589i 0.750308i −0.926962 0.375154i \(-0.877590\pi\)
0.926962 0.375154i \(-0.122410\pi\)
\(30\) 6.10588 22.1307i 0.203529 0.737691i
\(31\) 7.17206 + 12.4224i 0.231357 + 0.400721i 0.958208 0.286074i \(-0.0923503\pi\)
−0.726851 + 0.686795i \(0.759017\pi\)
\(32\) −10.3286 + 38.5469i −0.322769 + 1.20459i
\(33\) −7.22367 26.9591i −0.218899 0.816943i
\(34\) 53.2886i 1.56731i
\(35\) 33.9420 + 8.54037i 0.969773 + 0.244011i
\(36\) 9.08203 0.252279
\(37\) −62.8854 + 16.8501i −1.69960 + 0.455408i −0.972840 0.231479i \(-0.925644\pi\)
−0.726765 + 0.686886i \(0.758977\pi\)
\(38\) 32.5190 + 8.71343i 0.855763 + 0.229301i
\(39\) −0.314680 + 0.181680i −0.00806871 + 0.00465847i
\(40\) 6.36323 + 11.2124i 0.159081 + 0.280309i
\(41\) 2.26939 0.0553509 0.0276754 0.999617i \(-0.491190\pi\)
0.0276754 + 0.999617i \(0.491190\pi\)
\(42\) 0.729660 + 32.1323i 0.0173729 + 0.765056i
\(43\) 35.1154 35.1154i 0.816636 0.816636i −0.168983 0.985619i \(-0.554048\pi\)
0.985619 + 0.168983i \(0.0540482\pi\)
\(44\) −42.2467 24.3912i −0.960153 0.554345i
\(45\) 10.6848 10.5278i 0.237441 0.233951i
\(46\) −21.4435 37.1413i −0.466164 0.807419i
\(47\) 55.8413 14.9626i 1.18811 0.318354i 0.389973 0.920826i \(-0.372484\pi\)
0.798140 + 0.602472i \(0.205818\pi\)
\(48\) −23.2023 + 23.2023i −0.483380 + 0.483380i
\(49\) −48.9495 + 2.22423i −0.998969 + 0.0453925i
\(50\) −63.7536 18.0987i −1.27507 0.361974i
\(51\) −17.4088 + 30.1529i −0.341349 + 0.591234i
\(52\) −0.164375 + 0.613455i −0.00316105 + 0.0117972i
\(53\) 101.322 + 27.1491i 1.91173 + 0.512248i 0.993121 + 0.117090i \(0.0373568\pi\)
0.918613 + 0.395157i \(0.129310\pi\)
\(54\) 11.9291 + 6.88728i 0.220909 + 0.127542i
\(55\) −77.9765 + 20.2762i −1.41775 + 0.368657i
\(56\) −13.0490 12.4696i −0.233018 0.222671i
\(57\) 15.5540 + 15.5540i 0.272878 + 0.272878i
\(58\) −14.9290 55.7156i −0.257396 0.960614i
\(59\) 59.5129 34.3598i 1.00869 0.582370i 0.0978847 0.995198i \(-0.468792\pi\)
0.910809 + 0.412828i \(0.135459\pi\)
\(60\) 0.194116 26.2168i 0.00323526 0.436947i
\(61\) 17.3661 30.0790i 0.284691 0.493099i −0.687843 0.725859i \(-0.741442\pi\)
0.972534 + 0.232760i \(0.0747758\pi\)
\(62\) 26.8877 + 26.8877i 0.433673 + 0.433673i
\(63\) −10.0844 + 18.4202i −0.160070 + 0.292384i
\(64\) 30.0109i 0.468920i
\(65\) 0.517726 + 0.912260i 0.00796501 + 0.0140348i
\(66\) −36.9937 64.0749i −0.560510 0.970832i
\(67\) 8.56515 31.9656i 0.127838 0.477098i −0.872087 0.489351i \(-0.837234\pi\)
0.999925 + 0.0122529i \(0.00390030\pi\)
\(68\) 15.7506 + 58.7819i 0.231626 + 0.864440i
\(69\) 28.0215i 0.406109i
\(70\) 92.7711 1.41951i 1.32530 0.0202786i
\(71\) −59.5469 −0.838689 −0.419345 0.907827i \(-0.637740\pi\)
−0.419345 + 0.907827i \(0.637740\pi\)
\(72\) −7.47172 + 2.00204i −0.103774 + 0.0278061i
\(73\) 33.4534 + 8.96382i 0.458266 + 0.122792i 0.480565 0.876959i \(-0.340432\pi\)
−0.0222985 + 0.999751i \(0.507098\pi\)
\(74\) −149.462 + 86.2922i −2.01976 + 1.16611i
\(75\) −30.1619 31.0687i −0.402158 0.414249i
\(76\) 38.4467 0.505878
\(77\) 96.3799 58.6018i 1.25169 0.761063i
\(78\) −0.681112 + 0.681112i −0.00873221 + 0.00873221i
\(79\) 2.87256 + 1.65847i 0.0363615 + 0.0209933i 0.518071 0.855338i \(-0.326650\pi\)
−0.481709 + 0.876331i \(0.659984\pi\)
\(80\) 66.4814 + 67.4732i 0.831018 + 0.843416i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 5.81096 1.55704i 0.0708653 0.0189883i
\(83\) 4.48322 4.48322i 0.0540147 0.0540147i −0.679583 0.733598i \(-0.737839\pi\)
0.733598 + 0.679583i \(0.237839\pi\)
\(84\) 10.3023 + 35.2291i 0.122646 + 0.419394i
\(85\) 86.6696 + 50.8980i 1.01964 + 0.598800i
\(86\) 65.8230 114.009i 0.765384 1.32568i
\(87\) 9.75426 36.4034i 0.112118 0.418430i
\(88\) 40.1329 + 10.7536i 0.456056 + 0.122200i
\(89\) −123.113 71.0793i −1.38329 0.798644i −0.390744 0.920500i \(-0.627782\pi\)
−0.992548 + 0.121856i \(0.961115\pi\)
\(90\) 20.1363 34.2882i 0.223736 0.380980i
\(91\) −1.06170 1.01455i −0.0116670 0.0111489i
\(92\) −34.6320 34.6320i −0.376435 0.376435i
\(93\) 6.43029 + 23.9982i 0.0691429 + 0.258045i
\(94\) 132.720 76.6262i 1.41192 0.815172i
\(95\) 45.2319 44.5670i 0.476125 0.469126i
\(96\) −34.5602 + 59.8600i −0.360002 + 0.623542i
\(97\) 113.195 + 113.195i 1.16696 + 1.16696i 0.982919 + 0.184038i \(0.0589168\pi\)
0.184038 + 0.982919i \(0.441083\pi\)
\(98\) −123.813 + 39.2799i −1.26340 + 0.400816i
\(99\) 48.3417i 0.488300i
\(100\) −75.6753 1.12070i −0.756753 0.0112070i
\(101\) −9.53745 16.5193i −0.0944302 0.163558i 0.814940 0.579545i \(-0.196770\pi\)
−0.909371 + 0.415987i \(0.863436\pi\)
\(102\) −23.8886 + 89.1535i −0.234202 + 0.874054i
\(103\) −15.4322 57.5936i −0.149827 0.559162i −0.999493 0.0318405i \(-0.989863\pi\)
0.849666 0.527321i \(-0.176804\pi\)
\(104\) 0.540920i 0.00520115i
\(105\) 52.9576 + 29.5041i 0.504358 + 0.280992i
\(106\) 278.071 2.62331
\(107\) 86.6807 23.2260i 0.810100 0.217066i 0.170086 0.985429i \(-0.445595\pi\)
0.640014 + 0.768363i \(0.278929\pi\)
\(108\) 15.1945 + 4.07136i 0.140690 + 0.0376978i
\(109\) −68.1153 + 39.3264i −0.624911 + 0.360792i −0.778778 0.627299i \(-0.784160\pi\)
0.153868 + 0.988091i \(0.450827\pi\)
\(110\) −185.754 + 105.419i −1.68867 + 0.958355i
\(111\) −112.763 −1.01588
\(112\) −116.321 63.6817i −1.03858 0.568586i
\(113\) −158.518 + 158.518i −1.40281 + 1.40281i −0.611801 + 0.791012i \(0.709555\pi\)
−0.791012 + 0.611801i \(0.790445\pi\)
\(114\) 50.4992 + 29.1557i 0.442975 + 0.255752i
\(115\) −80.8889 0.598921i −0.703382 0.00520801i
\(116\) −32.9359 57.0466i −0.283930 0.491781i
\(117\) −0.607914 + 0.162890i −0.00519585 + 0.00139222i
\(118\) 128.813 128.813i 1.09164 1.09164i
\(119\) −136.711 33.3244i −1.14883 0.280037i
\(120\) 5.61954 + 21.6112i 0.0468295 + 0.180093i
\(121\) −69.3291 + 120.082i −0.572968 + 0.992410i
\(122\) 23.8301 88.9350i 0.195328 0.728975i
\(123\) 3.79676 + 1.01734i 0.0308679 + 0.00827104i
\(124\) 37.6068 + 21.7123i 0.303280 + 0.175099i
\(125\) −90.3297 + 86.4034i −0.722638 + 0.691227i
\(126\) −13.1838 + 54.0855i −0.104633 + 0.429250i
\(127\) −84.0175 84.0175i −0.661555 0.661555i 0.294191 0.955747i \(-0.404950\pi\)
−0.955747 + 0.294191i \(0.904950\pi\)
\(128\) −20.7238 77.3421i −0.161904 0.604235i
\(129\) 74.4909 43.0074i 0.577449 0.333390i
\(130\) 1.95159 + 1.98071i 0.0150122 + 0.0152362i
\(131\) −93.7670 + 162.409i −0.715779 + 1.23976i 0.246880 + 0.969046i \(0.420595\pi\)
−0.962658 + 0.270719i \(0.912739\pi\)
\(132\) −59.7459 59.7459i −0.452621 0.452621i
\(133\) −42.6901 + 77.9778i −0.320978 + 0.586299i
\(134\) 87.7272i 0.654681i
\(135\) 22.5956 12.8234i 0.167375 0.0949884i
\(136\) −25.9158 44.8874i −0.190557 0.330054i
\(137\) −16.7385 + 62.4691i −0.122179 + 0.455979i −0.999723 0.0235169i \(-0.992514\pi\)
0.877544 + 0.479495i \(0.159180\pi\)
\(138\) −19.2257 71.7515i −0.139317 0.519938i
\(139\) 93.0694i 0.669564i 0.942296 + 0.334782i \(0.108663\pi\)
−0.942296 + 0.334782i \(0.891337\pi\)
\(140\) 101.915 28.9863i 0.727965 0.207045i
\(141\) 100.132 0.710155
\(142\) −152.475 + 40.8556i −1.07377 + 0.287715i
\(143\) 3.26529 + 0.874933i 0.0228342 + 0.00611841i
\(144\) −49.2194 + 28.4169i −0.341802 + 0.197339i
\(145\) −104.876 28.9354i −0.723284 0.199555i
\(146\) 91.8105 0.628839
\(147\) −82.8912 18.2222i −0.563886 0.123961i
\(148\) −139.365 + 139.365i −0.941653 + 0.941653i
\(149\) 60.2245 + 34.7706i 0.404191 + 0.233360i 0.688291 0.725435i \(-0.258361\pi\)
−0.284099 + 0.958795i \(0.591695\pi\)
\(150\) −98.5485 58.8597i −0.656990 0.392398i
\(151\) 7.35747 + 12.7435i 0.0487250 + 0.0843941i 0.889359 0.457209i \(-0.151151\pi\)
−0.840634 + 0.541603i \(0.817818\pi\)
\(152\) −31.6298 + 8.47519i −0.208091 + 0.0557578i
\(153\) −42.6427 + 42.6427i −0.278710 + 0.278710i
\(154\) 206.582 216.182i 1.34144 1.40378i
\(155\) 69.4123 18.0492i 0.447821 0.116447i
\(156\) −0.550009 + 0.952643i −0.00352570 + 0.00610669i
\(157\) −29.8891 + 111.548i −0.190376 + 0.710494i 0.803039 + 0.595926i \(0.203215\pi\)
−0.993415 + 0.114568i \(0.963452\pi\)
\(158\) 8.49333 + 2.27578i 0.0537553 + 0.0144037i
\(159\) 157.344 + 90.8428i 0.989587 + 0.571338i
\(160\) 172.058 + 101.043i 1.07536 + 0.631521i
\(161\) 108.695 31.7864i 0.675125 0.197431i
\(162\) 16.8703 + 16.8703i 0.104138 + 0.104138i
\(163\) −27.3737 102.160i −0.167937 0.626750i −0.997647 0.0685554i \(-0.978161\pi\)
0.829710 0.558194i \(-0.188506\pi\)
\(164\) 5.94978 3.43510i 0.0362791 0.0209458i
\(165\) −139.547 1.03324i −0.845738 0.00626205i
\(166\) 8.40370 14.5556i 0.0506247 0.0876846i
\(167\) −15.1287 15.1287i −0.0905911 0.0905911i 0.660359 0.750950i \(-0.270404\pi\)
−0.750950 + 0.660359i \(0.770404\pi\)
\(168\) −16.2415 26.7117i −0.0966756 0.158998i
\(169\) 168.956i 0.999740i
\(170\) 256.846 + 70.8641i 1.51086 + 0.416848i
\(171\) 19.0497 + 32.9951i 0.111402 + 0.192954i
\(172\) 38.9108 145.217i 0.226225 0.844285i
\(173\) −42.1625 157.352i −0.243714 0.909552i −0.974026 0.226438i \(-0.927292\pi\)
0.730312 0.683114i \(-0.239375\pi\)
\(174\) 99.9065i 0.574175i
\(175\) 86.3006 152.241i 0.493146 0.869946i
\(176\) 305.271 1.73450
\(177\) 114.970 30.8062i 0.649549 0.174046i
\(178\) −364.009 97.5360i −2.04500 0.547955i
\(179\) 117.423 67.7943i 0.655996 0.378739i −0.134754 0.990879i \(-0.543024\pi\)
0.790750 + 0.612140i \(0.209691\pi\)
\(180\) 12.0774 43.7746i 0.0670969 0.243192i
\(181\) −232.181 −1.28277 −0.641383 0.767221i \(-0.721639\pi\)
−0.641383 + 0.767221i \(0.721639\pi\)
\(182\) −3.41465 1.86940i −0.0187618 0.0102714i
\(183\) 42.5382 42.5382i 0.232449 0.232449i
\(184\) 36.1258 + 20.8572i 0.196336 + 0.113354i
\(185\) −2.41015 + 325.510i −0.0130279 + 1.75951i
\(186\) 32.9306 + 57.0375i 0.177046 + 0.306653i
\(187\) 312.884 83.8370i 1.67318 0.448326i
\(188\) 123.754 123.754i 0.658265 0.658265i
\(189\) −25.1291 + 26.2969i −0.132958 + 0.139137i
\(190\) 85.2424 145.151i 0.448644 0.763955i
\(191\) −50.1041 + 86.7828i −0.262325 + 0.454360i −0.966859 0.255310i \(-0.917823\pi\)
0.704534 + 0.709670i \(0.251156\pi\)
\(192\) −13.4535 + 50.2092i −0.0700704 + 0.261506i
\(193\) 209.884 + 56.2382i 1.08748 + 0.291390i 0.757657 0.652653i \(-0.226344\pi\)
0.329824 + 0.944042i \(0.393011\pi\)
\(194\) 367.509 + 212.181i 1.89438 + 1.09372i
\(195\) 0.457217 + 1.75833i 0.00234470 + 0.00901708i
\(196\) −124.967 + 79.9248i −0.637586 + 0.407780i
\(197\) −173.120 173.120i −0.878782 0.878782i 0.114626 0.993409i \(-0.463433\pi\)
−0.993409 + 0.114626i \(0.963433\pi\)
\(198\) −33.1676 123.783i −0.167513 0.625168i
\(199\) −9.01589 + 5.20533i −0.0453060 + 0.0261574i −0.522482 0.852650i \(-0.674994\pi\)
0.477176 + 0.878808i \(0.341660\pi\)
\(200\) 62.5045 15.7599i 0.312523 0.0787993i
\(201\) 28.6596 49.6398i 0.142585 0.246964i
\(202\) −35.7555 35.7555i −0.177007 0.177007i
\(203\) 152.273 3.45782i 0.750115 0.0170336i
\(204\) 105.405i 0.516690i
\(205\) 3.01787 10.9382i 0.0147213 0.0533573i
\(206\) −79.0308 136.885i −0.383645 0.664492i
\(207\) 12.5617 46.8809i 0.0606845 0.226478i
\(208\) −1.02863 3.83889i −0.00494533 0.0184562i
\(209\) 204.644i 0.979157i
\(210\) 155.845 + 39.2133i 0.742121 + 0.186730i
\(211\) −215.645 −1.02202 −0.511008 0.859576i \(-0.670728\pi\)
−0.511008 + 0.859576i \(0.670728\pi\)
\(212\) 306.736 82.1897i 1.44687 0.387687i
\(213\) −99.6240 26.6942i −0.467718 0.125325i
\(214\) 206.018 118.944i 0.962700 0.555815i
\(215\) −122.556 215.950i −0.570028 1.00442i
\(216\) −13.3979 −0.0620274
\(217\) −85.7944 + 52.1655i −0.395366 + 0.240394i
\(218\) −147.433 + 147.433i −0.676298 + 0.676298i
\(219\) 51.9503 + 29.9935i 0.237216 + 0.136957i
\(220\) −173.744 + 171.190i −0.789745 + 0.778136i
\(221\) −2.10856 3.65213i −0.00954099 0.0165255i
\(222\) −288.739 + 77.3675i −1.30063 + 0.348502i
\(223\) −134.520 + 134.520i −0.603230 + 0.603230i −0.941168 0.337938i \(-0.890270\pi\)
0.337938 + 0.941168i \(0.390270\pi\)
\(224\) −271.400 66.1560i −1.21161 0.295339i
\(225\) −36.5341 65.5001i −0.162374 0.291111i
\(226\) −297.138 + 514.659i −1.31477 + 2.27725i
\(227\) 12.6829 47.3332i 0.0558718 0.208516i −0.932347 0.361565i \(-0.882242\pi\)
0.988219 + 0.153049i \(0.0489092\pi\)
\(228\) 64.3226 + 17.2352i 0.282117 + 0.0755929i
\(229\) 23.3799 + 13.4984i 0.102095 + 0.0589448i 0.550178 0.835047i \(-0.314560\pi\)
−0.448083 + 0.893992i \(0.647893\pi\)
\(230\) −207.534 + 53.9648i −0.902321 + 0.234630i
\(231\) 187.517 54.8369i 0.811763 0.237389i
\(232\) 39.6715 + 39.6715i 0.170998 + 0.170998i
\(233\) 21.5483 + 80.4192i 0.0924818 + 0.345147i 0.996626 0.0820815i \(-0.0261568\pi\)
−0.904144 + 0.427228i \(0.859490\pi\)
\(234\) −1.44486 + 0.834188i −0.00617460 + 0.00356491i
\(235\) 2.14018 289.048i 0.00910715 1.22999i
\(236\) 104.019 180.166i 0.440758 0.763415i
\(237\) 4.06242 + 4.06242i 0.0171410 + 0.0171410i
\(238\) −372.924 + 8.46834i −1.56691 + 0.0355813i
\(239\) 47.8746i 0.200312i −0.994972 0.100156i \(-0.968066\pi\)
0.994972 0.100156i \(-0.0319342\pi\)
\(240\) 80.9781 + 142.688i 0.337409 + 0.594532i
\(241\) 119.934 + 207.732i 0.497652 + 0.861958i 0.999996 0.00270956i \(-0.000862479\pi\)
−0.502345 + 0.864667i \(0.667529\pi\)
\(242\) −95.1344 + 355.046i −0.393117 + 1.46713i
\(243\) 4.03459 + 15.0573i 0.0166032 + 0.0619642i
\(244\) 105.146i 0.430928i
\(245\) −54.3733 + 238.890i −0.221932 + 0.975062i
\(246\) 10.4199 0.0423574
\(247\) −2.57347 + 0.689559i −0.0104189 + 0.00279174i
\(248\) −35.7251 9.57250i −0.144053 0.0385988i
\(249\) 9.51035 5.49080i 0.0381942 0.0220514i
\(250\) −172.015 + 283.219i −0.688060 + 1.13288i
\(251\) −173.528 −0.691346 −0.345673 0.938355i \(-0.612349\pi\)
−0.345673 + 0.938355i \(0.612349\pi\)
\(252\) 1.44327 + 63.5578i 0.00572726 + 0.252214i
\(253\) −184.339 + 184.339i −0.728612 + 0.728612i
\(254\) −272.779 157.489i −1.07393 0.620036i
\(255\) 122.184 + 124.007i 0.479153 + 0.486302i
\(256\) −166.152 287.783i −0.649030 1.12415i
\(257\) 308.618 82.6939i 1.20085 0.321766i 0.397683 0.917523i \(-0.369814\pi\)
0.803165 + 0.595757i \(0.203148\pi\)
\(258\) 161.233 161.233i 0.624933 0.624933i
\(259\) −127.914 437.406i −0.493875 1.68883i
\(260\) 2.73821 + 1.60806i 0.0105316 + 0.00618483i
\(261\) 32.6384 56.5314i 0.125051 0.216595i
\(262\) −128.668 + 480.197i −0.491101 + 1.83281i
\(263\) 1.46726 + 0.393152i 0.00557894 + 0.00149487i 0.261607 0.965174i \(-0.415747\pi\)
−0.256028 + 0.966669i \(0.582414\pi\)
\(264\) 62.3229 + 35.9822i 0.236072 + 0.136296i
\(265\) 265.596 452.260i 1.00225 1.70664i
\(266\) −55.8106 + 228.959i −0.209814 + 0.860748i
\(267\) −174.108 174.108i −0.652090 0.652090i
\(268\) −25.9297 96.7708i −0.0967524 0.361085i
\(269\) −244.004 + 140.876i −0.907077 + 0.523701i −0.879490 0.475918i \(-0.842116\pi\)
−0.0275875 + 0.999619i \(0.508782\pi\)
\(270\) 49.0596 48.3385i 0.181702 0.179031i
\(271\) 246.806 427.480i 0.910723 1.57742i 0.0976771 0.995218i \(-0.468859\pi\)
0.813046 0.582200i \(-0.197808\pi\)
\(272\) −269.282 269.282i −0.990009 0.990009i
\(273\) −1.32144 2.17332i −0.00484045 0.00796087i
\(274\) 171.442i 0.625700i
\(275\) −5.96524 + 402.804i −0.0216918 + 1.46474i
\(276\) −42.4153 73.4655i −0.153679 0.266179i
\(277\) 7.85929 29.3313i 0.0283729 0.105889i −0.950287 0.311375i \(-0.899211\pi\)
0.978660 + 0.205485i \(0.0658773\pi\)
\(278\) 63.8556 + 238.312i 0.229696 + 0.857238i
\(279\) 43.0323i 0.154238i
\(280\) −77.4550 + 46.3130i −0.276625 + 0.165403i
\(281\) 292.290 1.04018 0.520089 0.854112i \(-0.325899\pi\)
0.520089 + 0.854112i \(0.325899\pi\)
\(282\) 256.396 68.7012i 0.909207 0.243621i
\(283\) 495.563 + 132.786i 1.75111 + 0.469207i 0.984862 0.173343i \(-0.0554569\pi\)
0.766244 + 0.642550i \(0.222124\pi\)
\(284\) −156.118 + 90.1345i −0.549710 + 0.317375i
\(285\) 95.6532 54.2851i 0.335625 0.190474i
\(286\) 8.96136 0.0313334
\(287\) 0.360639 + 15.8816i 0.00125658 + 0.0553366i
\(288\) −84.6549 + 84.6549i −0.293941 + 0.293941i
\(289\) −99.6699 57.5444i −0.344878 0.199116i
\(290\) −288.397 2.13536i −0.994474 0.00736333i
\(291\) 138.635 + 240.122i 0.476408 + 0.825163i
\(292\) 101.275 27.1365i 0.346832 0.0929334i
\(293\) 395.050 395.050i 1.34829 1.34829i 0.460780 0.887515i \(-0.347570\pi\)
0.887515 0.460780i \(-0.152430\pi\)
\(294\) −224.752 + 10.2126i −0.764464 + 0.0347368i
\(295\) −86.4699 332.540i −0.293118 1.12725i
\(296\) 83.9327 145.376i 0.283557 0.491134i
\(297\) 21.6710 80.8773i 0.0729664 0.272314i
\(298\) 178.066 + 47.7128i 0.597538 + 0.160110i
\(299\) 2.93927 + 1.69699i 0.00983032 + 0.00567554i
\(300\) −126.105 35.7993i −0.420349 0.119331i
\(301\) 251.324 + 240.164i 0.834965 + 0.797886i
\(302\) 27.5828 + 27.5828i 0.0913339 + 0.0913339i
\(303\) −8.55104 31.9129i −0.0282213 0.105323i
\(304\) −208.359 + 120.296i −0.685392 + 0.395711i
\(305\) −121.885 123.703i −0.399622 0.405583i
\(306\) −79.9328 + 138.448i −0.261218 + 0.452444i
\(307\) 359.887 + 359.887i 1.17227 + 1.17227i 0.981667 + 0.190605i \(0.0610448\pi\)
0.190605 + 0.981667i \(0.438955\pi\)
\(308\) 163.981 299.527i 0.532404 0.972491i
\(309\) 103.274i 0.334220i
\(310\) 165.352 93.8408i 0.533395 0.302712i
\(311\) −201.048 348.225i −0.646457 1.11970i −0.983963 0.178372i \(-0.942917\pi\)
0.337507 0.941323i \(-0.390417\pi\)
\(312\) 0.242488 0.904976i 0.000777204 0.00290057i
\(313\) 115.468 + 430.931i 0.368906 + 1.37678i 0.862048 + 0.506827i \(0.169182\pi\)
−0.493142 + 0.869949i \(0.664152\pi\)
\(314\) 306.134i 0.974950i
\(315\) 75.3734 + 73.1016i 0.239281 + 0.232069i
\(316\) 10.0415 0.0317770
\(317\) −202.268 + 54.1975i −0.638069 + 0.170970i −0.563329 0.826233i \(-0.690479\pi\)
−0.0747404 + 0.997203i \(0.523813\pi\)
\(318\) 465.221 + 124.656i 1.46296 + 0.391999i
\(319\) −303.647 + 175.311i −0.951872 + 0.549564i
\(320\) 144.650 + 39.9091i 0.452031 + 0.124716i
\(321\) 155.432 0.484211
\(322\) 256.514 155.968i 0.796628 0.484374i
\(323\) −180.518 + 180.518i −0.558880 + 0.558880i
\(324\) 23.5958 + 13.6230i 0.0728265 + 0.0420464i
\(325\) 5.08550 1.28225i 0.0156477 0.00394540i
\(326\) −140.186 242.809i −0.430017 0.744812i
\(327\) −131.589 + 35.2591i −0.402412 + 0.107826i
\(328\) −4.13760 + 4.13760i −0.0126146 + 0.0126146i
\(329\) 113.585 + 388.411i 0.345244 + 1.18058i
\(330\) −358.030 + 93.0983i −1.08494 + 0.282116i
\(331\) 150.975 261.497i 0.456119 0.790020i −0.542633 0.839970i \(-0.682573\pi\)
0.998752 + 0.0499493i \(0.0159060\pi\)
\(332\) 4.96779 18.5400i 0.0149632 0.0558435i
\(333\) −188.656 50.5503i −0.566535 0.151803i
\(334\) −49.1183 28.3584i −0.147061 0.0849055i
\(335\) −142.681 83.7917i −0.425914 0.250125i
\(336\) −166.061 158.687i −0.494230 0.472282i
\(337\) −232.153 232.153i −0.688883 0.688883i 0.273102 0.961985i \(-0.411950\pi\)
−0.961985 + 0.273102i \(0.911950\pi\)
\(338\) 115.922 + 432.626i 0.342964 + 1.27996i
\(339\) −336.267 + 194.144i −0.991938 + 0.572696i
\(340\) 304.269 + 2.25288i 0.894910 + 0.00662613i
\(341\) 115.570 200.173i 0.338915 0.587017i
\(342\) 71.4166 + 71.4166i 0.208821 + 0.208821i
\(343\) −23.3444 342.205i −0.0680596 0.997681i
\(344\) 128.046i 0.372228i
\(345\) −135.061 37.2635i −0.391482 0.108010i
\(346\) −215.921 373.986i −0.624050 1.08089i
\(347\) 49.3981 184.356i 0.142358 0.531286i −0.857501 0.514482i \(-0.827984\pi\)
0.999859 0.0168038i \(-0.00534907\pi\)
\(348\) −29.5295 110.206i −0.0848549 0.316683i
\(349\) 10.4041i 0.0298112i −0.999889 0.0149056i \(-0.995255\pi\)
0.999889 0.0149056i \(-0.00474477\pi\)
\(350\) 116.527 449.037i 0.332934 1.28296i
\(351\) −1.09008 −0.00310565
\(352\) 621.141 166.434i 1.76461 0.472825i
\(353\) −314.544 84.2818i −0.891059 0.238759i −0.215886 0.976418i \(-0.569264\pi\)
−0.675172 + 0.737660i \(0.735931\pi\)
\(354\) 273.255 157.764i 0.771906 0.445660i
\(355\) −79.1866 + 287.011i −0.223061 + 0.808482i
\(356\) −430.363 −1.20888
\(357\) −213.783 117.039i −0.598831 0.327839i
\(358\) 254.158 254.158i 0.709939 0.709939i
\(359\) −196.189 113.270i −0.546487 0.315514i 0.201217 0.979547i \(-0.435510\pi\)
−0.747704 + 0.664032i \(0.768844\pi\)
\(360\) −0.286362 + 38.6754i −0.000795450 + 0.107432i
\(361\) −99.8573 172.958i −0.276613 0.479108i
\(362\) −594.518 + 159.301i −1.64232 + 0.440057i
\(363\) −169.821 + 169.821i −0.467827 + 0.467827i
\(364\) −4.31920 1.05284i −0.0118659 0.00289242i
\(365\) 87.6918 149.322i 0.240252 0.409103i
\(366\) 79.7369 138.108i 0.217860 0.377345i
\(367\) −8.15380 + 30.4304i −0.0222174 + 0.0829166i −0.976144 0.217122i \(-0.930333\pi\)
0.953927 + 0.300039i \(0.0969996\pi\)
\(368\) 296.046 + 79.3253i 0.804473 + 0.215558i
\(369\) 5.89604 + 3.40408i 0.0159784 + 0.00922515i
\(370\) 217.163 + 835.149i 0.586927 + 2.25716i
\(371\) −173.893 + 713.385i −0.468715 + 1.92287i
\(372\) 53.1840 + 53.1840i 0.142968 + 0.142968i
\(373\) 36.9449 + 137.880i 0.0990479 + 0.369652i 0.997602 0.0692108i \(-0.0220481\pi\)
−0.898554 + 0.438863i \(0.855381\pi\)
\(374\) 743.645 429.344i 1.98836 1.14798i
\(375\) −189.858 + 104.062i −0.506288 + 0.277499i
\(376\) −74.5310 + 129.092i −0.198221 + 0.343329i
\(377\) 3.22775 + 3.22775i 0.00856167 + 0.00856167i
\(378\) −46.3028 + 84.5767i −0.122494 + 0.223748i
\(379\) 678.102i 1.78919i 0.446882 + 0.894593i \(0.352534\pi\)
−0.446882 + 0.894593i \(0.647466\pi\)
\(380\) 51.1271 185.310i 0.134545 0.487658i
\(381\) −102.900 178.228i −0.270079 0.467790i
\(382\) −68.7535 + 256.592i −0.179983 + 0.671706i
\(383\) −84.0064 313.516i −0.219338 0.818580i −0.984594 0.174854i \(-0.944055\pi\)
0.765257 0.643725i \(-0.222612\pi\)
\(384\) 138.686i 0.361162i
\(385\) −154.288 542.473i −0.400748 1.40902i
\(386\) 576.011 1.49226
\(387\) 143.905 38.5593i 0.371849 0.0996365i
\(388\) 468.109 + 125.429i 1.20647 + 0.323272i
\(389\) 442.039 255.211i 1.13635 0.656070i 0.190823 0.981624i \(-0.438884\pi\)
0.945523 + 0.325555i \(0.105551\pi\)
\(390\) 2.37715 + 4.18866i 0.00609525 + 0.0107401i
\(391\) 325.214 0.831749
\(392\) 85.1907 93.3013i 0.217323 0.238013i
\(393\) −229.681 + 229.681i −0.584431 + 0.584431i
\(394\) −562.068 324.510i −1.42657 0.823629i
\(395\) 11.8137 11.6400i 0.0299081 0.0294684i
\(396\) −73.1735 126.740i −0.184782 0.320051i
\(397\) −17.2618 + 4.62529i −0.0434806 + 0.0116506i −0.280494 0.959856i \(-0.590498\pi\)
0.237013 + 0.971506i \(0.423832\pi\)
\(398\) −19.5146 + 19.5146i −0.0490315 + 0.0490315i
\(399\) −106.378 + 111.322i −0.266613 + 0.279002i
\(400\) 413.624 230.708i 1.03406 0.576769i
\(401\) −66.9804 + 116.014i −0.167034 + 0.289311i −0.937376 0.348320i \(-0.886752\pi\)
0.770342 + 0.637631i \(0.220085\pi\)
\(402\) 39.3270 146.771i 0.0978285 0.365101i
\(403\) −2.90666 0.778838i −0.00721256 0.00193260i
\(404\) −50.0097 28.8731i −0.123786 0.0714681i
\(405\) 43.5517 11.3247i 0.107535 0.0279622i
\(406\) 387.536 113.330i 0.954523 0.279137i
\(407\) 741.809 + 741.809i 1.82263 + 1.82263i
\(408\) −23.2354 86.7158i −0.0569496 0.212539i
\(409\) 426.695 246.353i 1.04326 0.602329i 0.122509 0.992467i \(-0.460906\pi\)
0.920756 + 0.390138i \(0.127573\pi\)
\(410\) 0.222712 30.0789i 0.000543199 0.0733632i
\(411\) −56.0082 + 97.0091i −0.136273 + 0.236032i
\(412\) −127.637 127.637i −0.309799 0.309799i
\(413\) 249.914 + 411.023i 0.605119 + 0.995213i
\(414\) 128.661i 0.310776i
\(415\) −15.6469 27.5706i −0.0377033 0.0664352i
\(416\) −4.18594 7.25026i −0.0100624 0.0174285i
\(417\) −41.7219 + 155.708i −0.100052 + 0.373401i
\(418\) −140.408 524.008i −0.335903 1.25361i
\(419\) 274.467i 0.655053i 0.944842 + 0.327526i \(0.106215\pi\)
−0.944842 + 0.327526i \(0.893785\pi\)
\(420\) 183.501 2.80778i 0.436908 0.00668520i
\(421\) −175.509 −0.416887 −0.208444 0.978034i \(-0.566840\pi\)
−0.208444 + 0.978034i \(0.566840\pi\)
\(422\) −552.179 + 147.956i −1.30848 + 0.350606i
\(423\) 167.524 + 44.8879i 0.396038 + 0.106118i
\(424\) −234.232 + 135.234i −0.552433 + 0.318948i
\(425\) 360.579 350.055i 0.848421 0.823659i
\(426\) −273.411 −0.641809
\(427\) 213.259 + 116.752i 0.499435 + 0.273423i
\(428\) 192.099 192.099i 0.448830 0.448830i
\(429\) 5.07072 + 2.92758i 0.0118199 + 0.00682420i
\(430\) −461.980 468.872i −1.07437 1.09040i
\(431\) 183.897 + 318.520i 0.426676 + 0.739025i 0.996575 0.0826899i \(-0.0263511\pi\)
−0.569899 + 0.821715i \(0.693018\pi\)
\(432\) −95.0846 + 25.4779i −0.220103 + 0.0589765i
\(433\) −22.6024 + 22.6024i −0.0521995 + 0.0521995i −0.732725 0.680525i \(-0.761752\pi\)
0.680525 + 0.732725i \(0.261752\pi\)
\(434\) −183.893 + 192.438i −0.423716 + 0.443407i
\(435\) −162.490 95.4246i −0.373540 0.219367i
\(436\) −119.054 + 206.208i −0.273061 + 0.472955i
\(437\) 53.1771 198.460i 0.121687 0.454141i
\(438\) 153.602 + 41.1575i 0.350689 + 0.0939670i
\(439\) −348.602 201.265i −0.794082 0.458464i 0.0473155 0.998880i \(-0.484933\pi\)
−0.841398 + 0.540416i \(0.818267\pi\)
\(440\) 105.201 179.137i 0.239093 0.407129i
\(441\) −130.511 67.6455i −0.295943 0.153391i
\(442\) −7.90490 7.90490i −0.0178844 0.0178844i
\(443\) −89.7786 335.058i −0.202661 0.756340i −0.990150 0.140011i \(-0.955286\pi\)
0.787489 0.616328i \(-0.211381\pi\)
\(444\) −295.637 + 170.686i −0.665849 + 0.384428i
\(445\) −506.314 + 498.871i −1.13778 + 1.12106i
\(446\) −252.155 + 436.746i −0.565371 + 0.979251i
\(447\) 85.1704 + 85.1704i 0.190538 + 0.190538i
\(448\) −210.022 + 4.76918i −0.468800 + 0.0106455i
\(449\) 144.105i 0.320946i −0.987040 0.160473i \(-0.948698\pi\)
0.987040 0.160473i \(-0.0513020\pi\)
\(450\) −138.489 142.652i −0.307753 0.317005i
\(451\) −18.2843 31.6694i −0.0405418 0.0702204i
\(452\) −175.651 + 655.539i −0.388609 + 1.45031i
\(453\) 6.59653 + 24.6186i 0.0145619 + 0.0543456i
\(454\) 129.903i 0.286129i
\(455\) −6.30190 + 3.76812i −0.0138503 + 0.00828158i
\(456\) −56.7171 −0.124380
\(457\) −730.982 + 195.866i −1.59952 + 0.428591i −0.944898 0.327364i \(-0.893840\pi\)
−0.654624 + 0.755955i \(0.727173\pi\)
\(458\) 69.1275 + 18.5226i 0.150933 + 0.0404425i
\(459\) −90.4588 + 52.2264i −0.197078 + 0.113783i
\(460\) −212.977 + 120.869i −0.462995 + 0.262759i
\(461\) −371.997 −0.806935 −0.403468 0.914994i \(-0.632195\pi\)
−0.403468 + 0.914994i \(0.632195\pi\)
\(462\) 442.530 269.071i 0.957857 0.582405i
\(463\) 316.624 316.624i 0.683853 0.683853i −0.277013 0.960866i \(-0.589345\pi\)
0.960866 + 0.277013i \(0.0893446\pi\)
\(464\) 356.987 + 206.107i 0.769370 + 0.444196i
\(465\) 124.220 + 0.919757i 0.267140 + 0.00197797i
\(466\) 110.352 + 191.136i 0.236808 + 0.410163i
\(467\) −811.979 + 217.569i −1.73871 + 0.465887i −0.982160 0.188046i \(-0.939784\pi\)
−0.756552 + 0.653933i \(0.773118\pi\)
\(468\) −1.34724 + 1.34724i −0.00287872 + 0.00287872i
\(469\) 225.063 + 54.8608i 0.479878 + 0.116974i
\(470\) −192.838 741.600i −0.410293 1.57787i
\(471\) −100.011 + 173.224i −0.212337 + 0.367779i
\(472\) −45.8598 + 171.151i −0.0971606 + 0.362608i
\(473\) −772.960 207.114i −1.63416 0.437873i
\(474\) 13.1894 + 7.61491i 0.0278258 + 0.0160652i
\(475\) −154.659 277.280i −0.325598 0.583747i
\(476\) −408.864 + 119.567i −0.858959 + 0.251191i
\(477\) 222.518 + 222.518i 0.466496 + 0.466496i
\(478\) −32.8471 122.587i −0.0687177 0.256458i
\(479\) 206.858 119.430i 0.431854 0.249331i −0.268282 0.963340i \(-0.586456\pi\)
0.700136 + 0.714009i \(0.253123\pi\)
\(480\) 242.561 + 246.180i 0.505336 + 0.512875i
\(481\) 6.82894 11.8281i 0.0141974 0.0245906i
\(482\) 449.628 + 449.628i 0.932837 + 0.932837i
\(483\) 196.100 4.45303i 0.406004 0.00921953i
\(484\) 419.766i 0.867285i
\(485\) 696.118 395.061i 1.43529 0.814558i
\(486\) 20.6618 + 35.7873i 0.0425140 + 0.0736365i
\(487\) 58.9679 220.071i 0.121084 0.451891i −0.878586 0.477584i \(-0.841513\pi\)
0.999670 + 0.0256929i \(0.00817921\pi\)
\(488\) 23.1785 + 86.5033i 0.0474969 + 0.177261i
\(489\) 183.189i 0.374619i
\(490\) 24.6767 + 649.005i 0.0503606 + 1.32450i
\(491\) −162.810 −0.331589 −0.165795 0.986160i \(-0.553019\pi\)
−0.165795 + 0.986160i \(0.553019\pi\)
\(492\) 11.4941 3.07983i 0.0233620 0.00625982i
\(493\) 422.493 + 113.207i 0.856984 + 0.229628i
\(494\) −6.11647 + 3.53135i −0.0123815 + 0.00714848i
\(495\) −233.003 64.2858i −0.470713 0.129870i
\(496\) −271.743 −0.547869
\(497\) −9.46289 416.721i −0.0190400 0.838473i
\(498\) 20.5848 20.5848i 0.0413349 0.0413349i
\(499\) 828.405 + 478.280i 1.66013 + 0.958477i 0.972650 + 0.232275i \(0.0746169\pi\)
0.687481 + 0.726202i \(0.258716\pi\)
\(500\) −106.036 + 363.258i −0.212072 + 0.726516i
\(501\) −18.5288 32.0928i −0.0369836 0.0640576i
\(502\) −444.333 + 119.059i −0.885126 + 0.237169i
\(503\) −210.562 + 210.562i −0.418612 + 0.418612i −0.884725 0.466113i \(-0.845654\pi\)
0.466113 + 0.884725i \(0.345654\pi\)
\(504\) −15.1980 51.9704i −0.0301548 0.103116i
\(505\) −92.3049 + 24.0020i −0.182782 + 0.0475286i
\(506\) −345.539 + 598.492i −0.682884 + 1.18279i
\(507\) −75.7409 + 282.669i −0.149390 + 0.557532i
\(508\) −347.448 93.0985i −0.683953 0.183265i
\(509\) −27.4957 15.8746i −0.0540190 0.0311879i 0.472747 0.881198i \(-0.343262\pi\)
−0.526766 + 0.850010i \(0.676596\pi\)
\(510\) 397.945 + 233.699i 0.780284 + 0.458233i
\(511\) −57.4143 + 235.538i −0.112357 + 0.460936i
\(512\) −396.422 396.422i −0.774262 0.774262i
\(513\) 17.0795 + 63.7416i 0.0332934 + 0.124253i
\(514\) 733.506 423.490i 1.42705 0.823910i
\(515\) −298.118 2.20734i −0.578871 0.00428610i
\(516\) 130.198 225.510i 0.252322 0.437034i
\(517\) −658.715 658.715i −1.27411 1.27411i
\(518\) −627.641 1032.25i −1.21166 1.99277i
\(519\) 282.157i 0.543654i
\(520\) −2.60719 0.719325i −0.00501382 0.00138332i
\(521\) −150.818 261.225i −0.289478 0.501391i 0.684207 0.729288i \(-0.260148\pi\)
−0.973685 + 0.227897i \(0.926815\pi\)
\(522\) 44.7869 167.147i 0.0857986 0.320205i
\(523\) 243.569 + 909.011i 0.465715 + 1.73807i 0.654509 + 0.756055i \(0.272876\pi\)
−0.188794 + 0.982017i \(0.560458\pi\)
\(524\) 567.730i 1.08345i
\(525\) 212.631 216.016i 0.405012 0.411459i
\(526\) 4.02679 0.00765550
\(527\) −278.520 + 74.6291i −0.528500 + 0.141611i
\(528\) 510.729 + 136.849i 0.967289 + 0.259184i
\(529\) 231.458 133.633i 0.437539 0.252614i
\(530\) 369.784 1340.28i 0.697705 2.52883i
\(531\) 206.159 0.388246
\(532\) 6.10975 + 269.058i 0.0114845 + 0.505747i
\(533\) −0.336644 + 0.336644i −0.000631602 + 0.000631602i
\(534\) −565.275 326.362i −1.05857 0.611164i
\(535\) 3.32214 448.680i 0.00620960 0.838654i
\(536\) 42.6643 + 73.8967i 0.0795975 + 0.137867i
\(537\) 226.844 60.7827i 0.422429 0.113189i
\(538\) −528.137 + 528.137i −0.981667 + 0.981667i
\(539\) 425.423 + 665.173i 0.789283 + 1.23409i
\(540\) 39.8296 67.8222i 0.0737585 0.125597i
\(541\) 224.676 389.150i 0.415297 0.719316i −0.580162 0.814501i \(-0.697011\pi\)
0.995460 + 0.0951848i \(0.0303442\pi\)
\(542\) 338.670 1263.94i 0.624853 2.33198i
\(543\) −388.446 104.084i −0.715369 0.191683i
\(544\) −694.728 401.101i −1.27707 0.737319i
\(545\) 98.9688 + 380.607i 0.181594 + 0.698361i
\(546\) −4.87479 4.65832i −0.00892819 0.00853172i
\(547\) −510.619 510.619i −0.933489 0.933489i 0.0644326 0.997922i \(-0.479476\pi\)
−0.997922 + 0.0644326i \(0.979476\pi\)
\(548\) 50.6733 + 189.115i 0.0924695 + 0.345101i
\(549\) 90.2371 52.0984i 0.164366 0.0948969i
\(550\) 261.092 + 1035.51i 0.474713 + 1.88274i
\(551\) 138.167 239.313i 0.250757 0.434324i
\(552\) 51.0895 + 51.0895i 0.0925535 + 0.0925535i
\(553\) −11.1498 + 20.3663i −0.0201625 + 0.0368288i
\(554\) 80.4976i 0.145303i
\(555\) −149.954 + 543.508i −0.270188 + 0.979294i
\(556\) 140.877 + 244.005i 0.253375 + 0.438858i
\(557\) 66.1299 246.800i 0.118725 0.443088i −0.880813 0.473463i \(-0.843004\pi\)
0.999539 + 0.0303753i \(0.00967025\pi\)
\(558\) 29.5248 + 110.188i 0.0529118 + 0.197469i
\(559\) 10.4181i 0.0186371i
\(560\) −461.626 + 475.972i −0.824332 + 0.849951i
\(561\) 561.048 1.00009
\(562\) 748.434 200.542i 1.33173 0.356837i
\(563\) −51.6736 13.8459i −0.0917827 0.0245931i 0.212635 0.977132i \(-0.431795\pi\)
−0.304418 + 0.952539i \(0.598462\pi\)
\(564\) 262.521 151.567i 0.465463 0.268735i
\(565\) 553.243 + 974.842i 0.979190 + 1.72538i
\(566\) 1360.04 2.40289
\(567\) −53.8304 + 32.7305i −0.0949390 + 0.0577257i
\(568\) 108.568 108.568i 0.191140 0.191140i
\(569\) −444.007 256.348i −0.780329 0.450523i 0.0562176 0.998419i \(-0.482096\pi\)
−0.836547 + 0.547895i \(0.815429\pi\)
\(570\) 207.683 204.630i 0.364356 0.359000i
\(571\) 50.9402 + 88.2310i 0.0892122 + 0.154520i 0.907178 0.420746i \(-0.138232\pi\)
−0.817966 + 0.575266i \(0.804898\pi\)
\(572\) 9.88516 2.64872i 0.0172818 0.00463063i
\(573\) −122.729 + 122.729i −0.214188 + 0.214188i
\(574\) 11.8199 + 40.4188i 0.0205922 + 0.0704160i
\(575\) −110.454 + 389.081i −0.192094 + 0.676663i
\(576\) −45.0164 + 77.9706i −0.0781534 + 0.135366i
\(577\) −79.8311 + 297.934i −0.138355 + 0.516350i 0.861606 + 0.507578i \(0.169459\pi\)
−0.999962 + 0.00877199i \(0.997208\pi\)
\(578\) −294.695 78.9633i −0.509853 0.136615i
\(579\) 325.932 + 188.177i 0.562922 + 0.325003i
\(580\) −318.759 + 82.8865i −0.549584 + 0.142908i
\(581\) 32.0869 + 30.6620i 0.0552270 + 0.0527745i
\(582\) 519.736 + 519.736i 0.893017 + 0.893017i
\(583\) −437.479 1632.69i −0.750393 2.80050i
\(584\) −77.3362 + 44.6501i −0.132425 + 0.0764556i
\(585\) −0.0232990 + 3.14671i −3.98274e−5 + 0.00537899i
\(586\) 740.513 1282.61i 1.26367 2.18875i
\(587\) 686.341 + 686.341i 1.16923 + 1.16923i 0.982389 + 0.186845i \(0.0598263\pi\)
0.186845 + 0.982389i \(0.440174\pi\)
\(588\) −244.903 + 77.6958i −0.416502 + 0.132136i
\(589\) 182.168i 0.309283i
\(590\) −449.571 792.168i −0.761985 1.34266i
\(591\) −212.028 367.243i −0.358761 0.621393i
\(592\) 319.218 1191.34i 0.539219 2.01239i
\(593\) 232.862 + 869.051i 0.392684 + 1.46552i 0.825689 + 0.564125i \(0.190787\pi\)
−0.433005 + 0.901391i \(0.642547\pi\)
\(594\) 221.962i 0.373673i
\(595\) −342.421 + 614.619i −0.575498 + 1.03297i
\(596\) 210.525 0.353230
\(597\) −17.4174 + 4.66697i −0.0291748 + 0.00781737i
\(598\) 8.69056 + 2.32863i 0.0145327 + 0.00389403i
\(599\) 598.597 345.600i 0.999328 0.576962i 0.0912783 0.995825i \(-0.470905\pi\)
0.908049 + 0.418863i \(0.137571\pi\)
\(600\) 111.637 + 1.65327i 0.186062 + 0.00275545i
\(601\) 498.794 0.829940 0.414970 0.909835i \(-0.363792\pi\)
0.414970 + 0.909835i \(0.363792\pi\)
\(602\) 808.316 + 442.525i 1.34272 + 0.735091i
\(603\) 70.2013 70.2013i 0.116420 0.116420i
\(604\) 38.5790 + 22.2736i 0.0638725 + 0.0368768i
\(605\) 486.588 + 493.847i 0.804278 + 0.816277i
\(606\) −43.7914 75.8489i −0.0722630 0.125163i
\(607\) 547.550 146.716i 0.902060 0.241706i 0.222159 0.975010i \(-0.428690\pi\)
0.679901 + 0.733304i \(0.262023\pi\)
\(608\) −358.367 + 358.367i −0.589420 + 0.589420i
\(609\) 256.308 + 62.4772i 0.420867 + 0.102590i
\(610\) −396.969 233.126i −0.650769 0.382174i
\(611\) −6.06400 + 10.5032i −0.00992471 + 0.0171901i
\(612\) −47.2517 + 176.346i −0.0772087 + 0.288147i
\(613\) −630.791 169.020i −1.02902 0.275726i −0.295466 0.955353i \(-0.595475\pi\)
−0.733558 + 0.679627i \(0.762142\pi\)
\(614\) 1168.44 + 674.601i 1.90300 + 1.09870i
\(615\) 9.95248 16.9472i 0.0161829 0.0275564i
\(616\) −68.8779 + 282.567i −0.111815 + 0.458712i
\(617\) −171.584 171.584i −0.278095 0.278095i 0.554253 0.832348i \(-0.313004\pi\)
−0.832348 + 0.554253i \(0.813004\pi\)
\(618\) −70.8571 264.442i −0.114655 0.427900i
\(619\) −51.9976 + 30.0209i −0.0840027 + 0.0484990i −0.541413 0.840757i \(-0.682110\pi\)
0.457410 + 0.889256i \(0.348777\pi\)
\(620\) 154.661 152.388i 0.249454 0.245787i
\(621\) 42.0323 72.8020i 0.0676848 0.117234i
\(622\) −753.720 753.720i −1.21177 1.21177i
\(623\) 477.862 872.864i 0.767034 1.40107i
\(624\) 6.88371i 0.0110316i
\(625\) 296.335 + 550.282i 0.474136 + 0.880452i
\(626\) 591.329 + 1024.21i 0.944615 + 1.63612i
\(627\) 91.7393 342.376i 0.146315 0.546054i
\(628\) 90.4845 + 337.693i 0.144084 + 0.537727i
\(629\) 1308.71i 2.08062i
\(630\) 243.156 + 135.469i 0.385961 + 0.215030i
\(631\) −472.374 −0.748612 −0.374306 0.927305i \(-0.622119\pi\)
−0.374306 + 0.927305i \(0.622119\pi\)
\(632\) −8.26110 + 2.21356i −0.0130714 + 0.00350246i
\(633\) −360.782 96.6712i −0.569956 0.152719i
\(634\) −480.739 + 277.555i −0.758263 + 0.437784i
\(635\) −516.685 + 293.229i −0.813678 + 0.461778i
\(636\) 550.024 0.864818
\(637\) 6.93129 7.59118i 0.0108811 0.0119171i
\(638\) −657.233 + 657.233i −1.03015 + 1.03015i
\(639\) −154.708 89.3204i −0.242109 0.139782i
\(640\) −400.341 2.96422i −0.625533 0.00463160i
\(641\) −251.987 436.454i −0.393115 0.680895i 0.599743 0.800192i \(-0.295269\pi\)
−0.992859 + 0.119297i \(0.961936\pi\)
\(642\) 397.996 106.643i 0.619931 0.166110i
\(643\) 269.091 269.091i 0.418493 0.418493i −0.466191 0.884684i \(-0.654374\pi\)
0.884684 + 0.466191i \(0.154374\pi\)
\(644\) 236.858 247.865i 0.367792 0.384883i
\(645\) −108.232 416.232i −0.167802 0.645321i
\(646\) −338.378 + 586.087i −0.523804 + 0.907256i
\(647\) −277.041 + 1033.93i −0.428193 + 1.59804i 0.328658 + 0.944449i \(0.393404\pi\)
−0.756851 + 0.653588i \(0.773263\pi\)
\(648\) −22.4152 6.00612i −0.0345913 0.00926871i
\(649\) −958.986 553.671i −1.47764 0.853114i
\(650\) 12.1421 6.77252i 0.0186801 0.0104193i
\(651\) −166.922 + 48.8141i −0.256409 + 0.0749832i
\(652\) −226.404 226.404i −0.347246 0.347246i
\(653\) −122.241 456.208i −0.187198 0.698634i −0.994149 0.108015i \(-0.965550\pi\)
0.806951 0.590619i \(-0.201116\pi\)
\(654\) −312.752 + 180.568i −0.478215 + 0.276097i
\(655\) 658.105 + 667.924i 1.00474 + 1.01973i
\(656\) −21.4963 + 37.2326i −0.0327687 + 0.0567571i
\(657\) 73.4688 + 73.4688i 0.111825 + 0.111825i
\(658\) 557.336 + 916.627i 0.847016 + 1.39305i
\(659\) 299.482i 0.454449i −0.973842 0.227225i \(-0.927035\pi\)
0.973842 0.227225i \(-0.0729652\pi\)
\(660\) −367.422 + 208.519i −0.556699 + 0.315938i
\(661\) −94.8665 164.314i −0.143520 0.248583i 0.785300 0.619115i \(-0.212509\pi\)
−0.928820 + 0.370532i \(0.879175\pi\)
\(662\) 207.170 773.170i 0.312946 1.16793i
\(663\) −1.89048 7.05538i −0.00285141 0.0106416i
\(664\) 16.3478i 0.0246203i
\(665\) 319.076 + 309.459i 0.479814 + 0.465352i
\(666\) −517.753 −0.777407
\(667\) −340.026 + 91.1097i −0.509784 + 0.136596i
\(668\) −62.5637 16.7639i −0.0936582 0.0250956i
\(669\) −285.361 + 164.753i −0.426548 + 0.246268i
\(670\) −422.838 116.661i −0.631101 0.174121i
\(671\) −559.673 −0.834088
\(672\) −424.404 232.346i −0.631554 0.345754i
\(673\) −501.108 + 501.108i −0.744589 + 0.744589i −0.973457 0.228868i \(-0.926497\pi\)
0.228868 + 0.973457i \(0.426497\pi\)
\(674\) −753.731 435.167i −1.11830 0.645648i
\(675\) −31.7599 125.962i −0.0470517 0.186610i
\(676\) 255.744 + 442.961i 0.378319 + 0.655268i
\(677\) −218.875 + 58.6475i −0.323302 + 0.0866285i −0.416820 0.908989i \(-0.636855\pi\)
0.0935180 + 0.995618i \(0.470189\pi\)
\(678\) −727.837 + 727.837i −1.07351 + 1.07351i
\(679\) −774.171 + 810.148i −1.14016 + 1.19315i
\(680\) −250.817 + 65.2196i −0.368848 + 0.0959112i
\(681\) 42.4378 73.5044i 0.0623169 0.107936i
\(682\) 158.587 591.853i 0.232532 0.867820i
\(683\) 753.610 + 201.929i 1.10338 + 0.295650i 0.764141 0.645049i \(-0.223163\pi\)
0.339241 + 0.940699i \(0.389830\pi\)
\(684\) 99.8875 + 57.6701i 0.146034 + 0.0843129i
\(685\) 278.836 + 163.751i 0.407060 + 0.239052i
\(686\) −294.564 860.228i −0.429394 1.25398i
\(687\) 33.0641 + 33.0641i 0.0481283 + 0.0481283i
\(688\) 243.497 + 908.742i 0.353920 + 1.32085i
\(689\) −19.0576 + 11.0029i −0.0276598 + 0.0159694i
\(690\) −371.403 2.74996i −0.538265 0.00398544i
\(691\) 147.342 255.204i 0.213230 0.369325i −0.739494 0.673163i \(-0.764935\pi\)
0.952724 + 0.303839i \(0.0982684\pi\)
\(692\) −348.720 348.720i −0.503930 0.503930i
\(693\) 338.305 7.68222i 0.488175 0.0110855i
\(694\) 505.952i 0.729038i
\(695\) 448.587 + 123.765i 0.645449 + 0.178080i
\(696\) 48.5874 + 84.1559i 0.0698095 + 0.120914i
\(697\) −11.8071 + 44.0647i −0.0169399 + 0.0632205i
\(698\) −7.13832 26.6406i −0.0102268 0.0381670i
\(699\) 144.204i 0.206300i
\(700\) −4.18306 529.768i −0.00597580 0.756812i
\(701\) −1042.91 −1.48775 −0.743874 0.668320i \(-0.767014\pi\)
−0.743874 + 0.668320i \(0.767014\pi\)
\(702\) −2.79125 + 0.747913i −0.00397614 + 0.00106540i
\(703\) −798.633 213.993i −1.13604 0.304400i
\(704\) 418.804 241.797i 0.594892 0.343461i
\(705\) 133.157 482.627i 0.188875 0.684578i
\(706\) −863.243 −1.22272
\(707\) 114.090 69.3701i 0.161372 0.0981190i
\(708\) 254.793 254.793i 0.359877 0.359877i
\(709\) −56.4816 32.6096i −0.0796637 0.0459938i 0.459639 0.888106i \(-0.347979\pi\)
−0.539303 + 0.842112i \(0.681312\pi\)
\(710\) −5.84378 + 789.247i −0.00823068 + 1.11162i
\(711\) 4.97542 + 8.61769i 0.00699778 + 0.0121205i
\(712\) 354.056 94.8691i 0.497270 0.133243i
\(713\) 164.093 164.093i 0.230144 0.230144i
\(714\) −627.710 153.009i −0.879146 0.214299i
\(715\) 8.55935 14.5749i 0.0119711 0.0203845i
\(716\) 205.237 355.480i 0.286643 0.496481i
\(717\) 21.4616 80.0957i 0.0299325 0.111710i
\(718\) −580.073 155.430i −0.807901 0.216477i
\(719\) −647.135 373.624i −0.900049 0.519643i −0.0228327 0.999739i \(-0.507268\pi\)
−0.877216 + 0.480096i \(0.840602\pi\)
\(720\) 71.5139 + 275.023i 0.0993249 + 0.381976i
\(721\) 400.599 117.150i 0.555616 0.162482i
\(722\) −374.361 374.361i −0.518505 0.518505i
\(723\) 107.530 + 401.307i 0.148727 + 0.555058i
\(724\) −608.721 + 351.445i −0.840774 + 0.485421i
\(725\) −278.933 + 467.016i −0.384735 + 0.644159i
\(726\) −318.326 + 551.357i −0.438466 + 0.759445i
\(727\) 532.464 + 532.464i 0.732412 + 0.732412i 0.971097 0.238685i \(-0.0767163\pi\)
−0.238685 + 0.971097i \(0.576716\pi\)
\(728\) 3.78546 0.0859602i 0.00519981 0.000118077i
\(729\) 27.0000i 0.0370370i
\(730\) 122.091 442.519i 0.167248 0.606190i
\(731\) 499.138 + 864.532i 0.682815 + 1.18267i
\(732\) 47.1359 175.913i 0.0643933 0.240319i
\(733\) 25.1875 + 94.0010i 0.0343622 + 0.128241i 0.980976 0.194127i \(-0.0621875\pi\)
−0.946614 + 0.322369i \(0.895521\pi\)
\(734\) 83.5140i 0.113779i
\(735\) −198.060 + 375.296i −0.269469 + 0.510607i
\(736\) 645.619 0.877200
\(737\) −515.091 + 138.018i −0.698902 + 0.187270i
\(738\) 17.4329 + 4.67112i 0.0236218 + 0.00632944i
\(739\) 913.914 527.648i 1.23669 0.714003i 0.268273 0.963343i \(-0.413547\pi\)
0.968416 + 0.249340i \(0.0802136\pi\)
\(740\) 486.396 + 857.055i 0.657292 + 1.15818i
\(741\) −4.61462 −0.00622755
\(742\) 44.1896 + 1945.99i 0.0595547 + 2.62263i
\(743\) 750.889 750.889i 1.01062 1.01062i 0.0106743 0.999943i \(-0.496602\pi\)
0.999943 0.0106743i \(-0.00339779\pi\)
\(744\) −55.4779 32.0302i −0.0745671 0.0430514i
\(745\) 247.679 244.038i 0.332455 0.327568i
\(746\) 189.201 + 327.706i 0.253621 + 0.439284i
\(747\) 18.3726 4.92292i 0.0245952 0.00659025i
\(748\) 693.404 693.404i 0.927010 0.927010i
\(749\) 176.315 + 602.918i 0.235401 + 0.804964i
\(750\) −414.750 + 396.723i −0.553000 + 0.528964i
\(751\) 286.483 496.203i 0.381469 0.660723i −0.609804 0.792552i \(-0.708752\pi\)
0.991272 + 0.131829i \(0.0420851\pi\)
\(752\) −283.461 + 1057.89i −0.376942 + 1.40677i
\(753\) −290.318 77.7904i −0.385548 0.103307i
\(754\) 10.4795 + 6.05035i 0.0138986 + 0.00802434i
\(755\) 71.2068 18.5158i 0.0943136 0.0245243i
\(756\) −26.0775 + 106.981i −0.0344941 + 0.141510i
\(757\) 498.849 + 498.849i 0.658982 + 0.658982i 0.955139 0.296157i \(-0.0957053\pi\)
−0.296157 + 0.955139i \(0.595705\pi\)
\(758\) 465.250 + 1736.34i 0.613786 + 2.29068i
\(759\) −391.042 + 225.768i −0.515207 + 0.297455i
\(760\) −1.21225 + 163.724i −0.00159506 + 0.215426i
\(761\) −67.0095 + 116.064i &minu