Properties

Label 105.3.v.a.37.3
Level 105
Weight 3
Character 105.37
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.3
Character \(\chi\) \(=\) 105.37
Dual form 105.3.v.a.88.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.87375 + 0.770020i) q^{2} +(1.67303 + 0.448288i) q^{3} +(4.20143 - 2.42570i) q^{4} +(3.78688 + 3.26489i) q^{5} -5.15308 q^{6} +(-1.65502 - 6.80154i) q^{7} +(-1.79111 + 1.79111i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-2.87375 + 0.770020i) q^{2} +(1.67303 + 0.448288i) q^{3} +(4.20143 - 2.42570i) q^{4} +(3.78688 + 3.26489i) q^{5} -5.15308 q^{6} +(-1.65502 - 6.80154i) q^{7} +(-1.79111 + 1.79111i) q^{8} +(2.59808 + 1.50000i) q^{9} +(-13.3966 - 6.46653i) q^{10} +(6.96127 + 12.0573i) q^{11} +(8.11654 - 2.17482i) q^{12} +(7.79302 - 7.79302i) q^{13} +(9.99344 + 18.2715i) q^{14} +(4.87196 + 7.15989i) q^{15} +(-5.93477 + 10.2793i) q^{16} +(-6.92421 + 25.8415i) q^{17} +(-8.62126 - 2.31006i) q^{18} +(28.5616 + 16.4901i) q^{19} +(23.8300 + 4.53140i) q^{20} +(0.280145 - 12.1211i) q^{21} +(-29.2893 - 29.2893i) q^{22} +(-5.48688 - 20.4773i) q^{23} +(-3.79951 + 2.19365i) q^{24} +(3.68094 + 24.7275i) q^{25} +(-16.3944 + 28.3960i) q^{26} +(3.67423 + 3.67423i) q^{27} +(-23.4519 - 24.5616i) q^{28} -18.1531i q^{29} +(-19.5141 - 16.8242i) q^{30} +(-11.5772 - 20.0522i) q^{31} +(11.7622 - 43.8970i) q^{32} +(6.24130 + 23.2928i) q^{33} -79.5940i q^{34} +(15.9389 - 31.1601i) q^{35} +14.5542 q^{36} +(-20.1574 + 5.40117i) q^{37} +(-94.7768 - 25.3954i) q^{38} +(16.5315 - 9.54446i) q^{39} +(-12.6305 + 0.934937i) q^{40} -1.69819 q^{41} +(8.52844 + 35.0488i) q^{42} +(26.7992 - 26.7992i) q^{43} +(58.4946 + 33.7719i) q^{44} +(4.94127 + 14.1628i) q^{45} +(31.5359 + 54.6218i) q^{46} +(-10.2827 + 2.75524i) q^{47} +(-14.5372 + 14.5372i) q^{48} +(-43.5218 + 22.5134i) q^{49} +(-29.6188 - 68.2264i) q^{50} +(-23.1689 + 40.1297i) q^{51} +(13.8383 - 51.6453i) q^{52} +(-43.0869 - 11.5451i) q^{53} +(-13.3881 - 7.72961i) q^{54} +(-13.0042 + 68.3872i) q^{55} +(15.1466 + 9.21797i) q^{56} +(40.3922 + 40.3922i) q^{57} +(13.9783 + 52.1677i) q^{58} +(9.04603 - 5.22273i) q^{59} +(37.8369 + 18.2639i) q^{60} +(40.5827 - 70.2914i) q^{61} +(48.7105 + 48.7105i) q^{62} +(5.90244 - 20.1534i) q^{63} +87.7280i q^{64} +(54.9546 - 4.06786i) q^{65} +(-35.8719 - 62.1320i) q^{66} +(10.9599 - 40.9029i) q^{67} +(33.5921 + 125.367i) q^{68} -36.7189i q^{69} +(-21.8107 + 101.820i) q^{70} -20.1105 q^{71} +(-7.34010 + 1.96677i) q^{72} +(6.28085 + 1.68295i) q^{73} +(53.7685 - 31.0433i) q^{74} +(-4.92671 + 43.0201i) q^{75} +160.000 q^{76} +(70.4869 - 67.3023i) q^{77} +(-40.1580 + 40.1580i) q^{78} +(10.5341 + 6.08184i) q^{79} +(-56.0352 + 19.5502i) q^{80} +(4.50000 + 7.79423i) q^{81} +(4.88019 - 1.30764i) q^{82} +(20.6649 - 20.6649i) q^{83} +(-28.2252 - 51.6056i) q^{84} +(-110.591 + 75.2519i) q^{85} +(-56.3783 + 97.6501i) q^{86} +(8.13783 - 30.3708i) q^{87} +(-34.0643 - 9.12749i) q^{88} +(-145.002 - 83.7168i) q^{89} +(-25.1056 - 36.8954i) q^{90} +(-65.9021 - 40.1069i) q^{91} +(-72.7245 - 72.7245i) q^{92} +(-10.3798 - 38.7379i) q^{93} +(27.4284 - 15.8358i) q^{94} +(54.3212 + 155.697i) q^{95} +(39.3569 - 68.1682i) q^{96} +(-66.3082 - 66.3082i) q^{97} +(107.735 - 98.2105i) q^{98} +41.7676i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.87375 + 0.770020i −1.43688 + 0.385010i −0.891439 0.453141i \(-0.850303\pi\)
−0.545438 + 0.838151i \(0.683637\pi\)
\(3\) 1.67303 + 0.448288i 0.557678 + 0.149429i
\(4\) 4.20143 2.42570i 1.05036 0.606424i
\(5\) 3.78688 + 3.26489i 0.757376 + 0.652979i
\(6\) −5.15308 −0.858846
\(7\) −1.65502 6.80154i −0.236431 0.971648i
\(8\) −1.79111 + 1.79111i −0.223889 + 0.223889i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) −13.3966 6.46653i −1.33966 0.646653i
\(11\) 6.96127 + 12.0573i 0.632842 + 1.09612i 0.986968 + 0.160917i \(0.0514452\pi\)
−0.354126 + 0.935198i \(0.615221\pi\)
\(12\) 8.11654 2.17482i 0.676378 0.181235i
\(13\) 7.79302 7.79302i 0.599463 0.599463i −0.340707 0.940170i \(-0.610666\pi\)
0.940170 + 0.340707i \(0.110666\pi\)
\(14\) 9.99344 + 18.2715i 0.713817 + 1.30511i
\(15\) 4.87196 + 7.15989i 0.324798 + 0.477326i
\(16\) −5.93477 + 10.2793i −0.370923 + 0.642458i
\(17\) −6.92421 + 25.8415i −0.407307 + 1.52009i 0.392455 + 0.919771i \(0.371626\pi\)
−0.799761 + 0.600318i \(0.795041\pi\)
\(18\) −8.62126 2.31006i −0.478959 0.128337i
\(19\) 28.5616 + 16.4901i 1.50324 + 0.867898i 0.999993 + 0.00375778i \(0.00119614\pi\)
0.503251 + 0.864140i \(0.332137\pi\)
\(20\) 23.8300 + 4.53140i 1.19150 + 0.226570i
\(21\) 0.280145 12.1211i 0.0133402 0.577196i
\(22\) −29.2893 29.2893i −1.33133 1.33133i
\(23\) −5.48688 20.4773i −0.238560 0.890318i −0.976512 0.215464i \(-0.930873\pi\)
0.737952 0.674854i \(-0.235793\pi\)
\(24\) −3.79951 + 2.19365i −0.158313 + 0.0914021i
\(25\) 3.68094 + 24.7275i 0.147238 + 0.989101i
\(26\) −16.3944 + 28.3960i −0.630555 + 1.09215i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) −23.4519 24.5616i −0.837569 0.877201i
\(29\) 18.1531i 0.625971i −0.949758 0.312985i \(-0.898671\pi\)
0.949758 0.312985i \(-0.101329\pi\)
\(30\) −19.5141 16.8242i −0.650469 0.560808i
\(31\) −11.5772 20.0522i −0.373457 0.646846i 0.616638 0.787247i \(-0.288494\pi\)
−0.990095 + 0.140401i \(0.955161\pi\)
\(32\) 11.7622 43.8970i 0.367567 1.37178i
\(33\) 6.24130 + 23.2928i 0.189130 + 0.705844i
\(34\) 79.5940i 2.34100i
\(35\) 15.9389 31.1601i 0.455398 0.890288i
\(36\) 14.5542 0.404283
\(37\) −20.1574 + 5.40117i −0.544796 + 0.145978i −0.520712 0.853732i \(-0.674333\pi\)
−0.0240837 + 0.999710i \(0.507667\pi\)
\(38\) −94.7768 25.3954i −2.49413 0.668299i
\(39\) 16.5315 9.54446i 0.423884 0.244730i
\(40\) −12.6305 + 0.934937i −0.315762 + 0.0233734i
\(41\) −1.69819 −0.0414193 −0.0207097 0.999786i \(-0.506593\pi\)
−0.0207097 + 0.999786i \(0.506593\pi\)
\(42\) 8.52844 + 35.0488i 0.203058 + 0.834496i
\(43\) 26.7992 26.7992i 0.623236 0.623236i −0.323121 0.946358i \(-0.604732\pi\)
0.946358 + 0.323121i \(0.104732\pi\)
\(44\) 58.4946 + 33.7719i 1.32942 + 0.767542i
\(45\) 4.94127 + 14.1628i 0.109806 + 0.314728i
\(46\) 31.5359 + 54.6218i 0.685563 + 1.18743i
\(47\) −10.2827 + 2.75524i −0.218781 + 0.0586222i −0.366544 0.930401i \(-0.619459\pi\)
0.147763 + 0.989023i \(0.452793\pi\)
\(48\) −14.5372 + 14.5372i −0.302858 + 0.302858i
\(49\) −43.5218 + 22.5134i −0.888200 + 0.459456i
\(50\) −29.6188 68.2264i −0.592376 1.36453i
\(51\) −23.1689 + 40.1297i −0.454292 + 0.786856i
\(52\) 13.8383 51.6453i 0.266122 0.993179i
\(53\) −43.0869 11.5451i −0.812961 0.217832i −0.171694 0.985150i \(-0.554924\pi\)
−0.641267 + 0.767318i \(0.721591\pi\)
\(54\) −13.3881 7.72961i −0.247927 0.143141i
\(55\) −13.0042 + 68.3872i −0.236440 + 1.24340i
\(56\) 15.1466 + 9.21797i 0.270475 + 0.164607i
\(57\) 40.3922 + 40.3922i 0.708636 + 0.708636i
\(58\) 13.9783 + 52.1677i 0.241005 + 0.899443i
\(59\) 9.04603 5.22273i 0.153323 0.0885208i −0.421376 0.906886i \(-0.638453\pi\)
0.574698 + 0.818365i \(0.305119\pi\)
\(60\) 37.8369 + 18.2639i 0.630616 + 0.304398i
\(61\) 40.5827 70.2914i 0.665291 1.15232i −0.313915 0.949451i \(-0.601641\pi\)
0.979206 0.202867i \(-0.0650258\pi\)
\(62\) 48.7105 + 48.7105i 0.785654 + 0.785654i
\(63\) 5.90244 20.1534i 0.0936895 0.319896i
\(64\) 87.7280i 1.37075i
\(65\) 54.9546 4.06786i 0.845455 0.0625825i
\(66\) −35.8719 62.1320i −0.543514 0.941394i
\(67\) 10.9599 40.9029i 0.163581 0.610491i −0.834636 0.550801i \(-0.814322\pi\)
0.998217 0.0596898i \(-0.0190112\pi\)
\(68\) 33.5921 + 125.367i 0.494001 + 1.84364i
\(69\) 36.7189i 0.532158i
\(70\) −21.8107 + 101.820i −0.311581 + 1.45457i
\(71\) −20.1105 −0.283247 −0.141623 0.989921i \(-0.545232\pi\)
−0.141623 + 0.989921i \(0.545232\pi\)
\(72\) −7.34010 + 1.96677i −0.101946 + 0.0273163i
\(73\) 6.28085 + 1.68295i 0.0860390 + 0.0230541i 0.301582 0.953440i \(-0.402485\pi\)
−0.215543 + 0.976494i \(0.569152\pi\)
\(74\) 53.7685 31.0433i 0.726602 0.419504i
\(75\) −4.92671 + 43.0201i −0.0656895 + 0.573601i
\(76\) 160.000 2.10526
\(77\) 70.4869 67.3023i 0.915415 0.874056i
\(78\) −40.1580 + 40.1580i −0.514846 + 0.514846i
\(79\) 10.5341 + 6.08184i 0.133342 + 0.0769853i 0.565187 0.824963i \(-0.308804\pi\)
−0.431845 + 0.901948i \(0.642137\pi\)
\(80\) −56.0352 + 19.5502i −0.700440 + 0.244377i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 4.88019 1.30764i 0.0595145 0.0159469i
\(83\) 20.6649 20.6649i 0.248975 0.248975i −0.571575 0.820550i \(-0.693667\pi\)
0.820550 + 0.571575i \(0.193667\pi\)
\(84\) −28.2252 51.6056i −0.336014 0.614352i
\(85\) −110.591 + 75.2519i −1.30107 + 0.885317i
\(86\) −56.3783 + 97.6501i −0.655562 + 1.13547i
\(87\) 8.13783 30.3708i 0.0935383 0.349090i
\(88\) −34.0643 9.12749i −0.387094 0.103721i
\(89\) −145.002 83.7168i −1.62923 0.940638i −0.984322 0.176381i \(-0.943561\pi\)
−0.644911 0.764257i \(-0.723106\pi\)
\(90\) −25.1056 36.8954i −0.278951 0.409949i
\(91\) −65.9021 40.1069i −0.724199 0.440735i
\(92\) −72.7245 72.7245i −0.790484 0.790484i
\(93\) −10.3798 38.7379i −0.111611 0.416537i
\(94\) 27.4284 15.8358i 0.291791 0.168466i
\(95\) 54.3212 + 155.697i 0.571802 + 1.63891i
\(96\) 39.3569 68.1682i 0.409968 0.710086i
\(97\) −66.3082 66.3082i −0.683589 0.683589i 0.277218 0.960807i \(-0.410588\pi\)
−0.960807 + 0.277218i \(0.910588\pi\)
\(98\) 107.735 98.2105i 1.09934 1.00215i
\(99\) 41.7676i 0.421895i
\(100\) 75.4467 + 94.9622i 0.754467 + 0.949622i
\(101\) −22.9150 39.6899i −0.226881 0.392969i 0.730001 0.683446i \(-0.239519\pi\)
−0.956882 + 0.290477i \(0.906186\pi\)
\(102\) 35.6810 133.163i 0.349814 1.30552i
\(103\) 5.67468 + 21.1782i 0.0550940 + 0.205614i 0.987986 0.154542i \(-0.0493902\pi\)
−0.932892 + 0.360156i \(0.882724\pi\)
\(104\) 27.9163i 0.268426i
\(105\) 40.6350 44.9866i 0.387000 0.428444i
\(106\) 132.711 1.25199
\(107\) −97.5490 + 26.1382i −0.911673 + 0.244282i −0.684022 0.729461i \(-0.739771\pi\)
−0.227650 + 0.973743i \(0.573104\pi\)
\(108\) 24.3496 + 6.52446i 0.225459 + 0.0604117i
\(109\) −109.890 + 63.4449i −1.00816 + 0.582064i −0.910654 0.413171i \(-0.864421\pi\)
−0.0975104 + 0.995235i \(0.531088\pi\)
\(110\) −15.2887 206.542i −0.138988 1.87765i
\(111\) −36.1453 −0.325634
\(112\) 79.7374 + 23.3531i 0.711941 + 0.208510i
\(113\) −10.2422 + 10.2422i −0.0906391 + 0.0906391i −0.750973 0.660333i \(-0.770415\pi\)
0.660333 + 0.750973i \(0.270415\pi\)
\(114\) −147.180 84.9745i −1.29105 0.745391i
\(115\) 46.0781 95.4592i 0.400679 0.830080i
\(116\) −44.0340 76.2692i −0.379604 0.657493i
\(117\) 31.9364 8.55733i 0.272961 0.0731396i
\(118\) −21.9745 + 21.9745i −0.186224 + 0.186224i
\(119\) 187.222 + 4.32709i 1.57329 + 0.0363621i
\(120\) −21.5503 4.09792i −0.179586 0.0341493i
\(121\) −36.4184 + 63.0786i −0.300979 + 0.521311i
\(122\) −62.4991 + 233.250i −0.512287 + 1.91188i
\(123\) −2.84113 0.761279i −0.0230986 0.00618926i
\(124\) −97.2812 56.1654i −0.784526 0.452946i
\(125\) −66.7935 + 105.658i −0.534348 + 0.845265i
\(126\) −1.44361 + 62.4610i −0.0114572 + 0.495723i
\(127\) 138.223 + 138.223i 1.08837 + 1.08837i 0.995697 + 0.0926732i \(0.0295412\pi\)
0.0926732 + 0.995697i \(0.470459\pi\)
\(128\) −20.5037 76.5208i −0.160185 0.597819i
\(129\) 56.8496 32.8221i 0.440695 0.254435i
\(130\) −154.794 + 54.0062i −1.19072 + 0.415432i
\(131\) 11.0263 19.0981i 0.0841704 0.145787i −0.820867 0.571119i \(-0.806509\pi\)
0.905037 + 0.425332i \(0.139843\pi\)
\(132\) 82.7238 + 82.7238i 0.626695 + 0.626695i
\(133\) 64.8877 221.554i 0.487878 1.66582i
\(134\) 125.984i 0.940181i
\(135\) 1.91791 + 25.9099i 0.0142067 + 0.191925i
\(136\) −33.8829 58.6870i −0.249139 0.431522i
\(137\) −55.4894 + 207.089i −0.405032 + 1.51160i 0.398965 + 0.916966i \(0.369370\pi\)
−0.803997 + 0.594634i \(0.797297\pi\)
\(138\) 28.2743 + 105.521i 0.204886 + 0.764646i
\(139\) 203.695i 1.46543i −0.680534 0.732716i \(-0.738252\pi\)
0.680534 0.732716i \(-0.261748\pi\)
\(140\) −8.61859 169.580i −0.0615613 1.21129i
\(141\) −18.4384 −0.130769
\(142\) 57.7926 15.4855i 0.406990 0.109053i
\(143\) 148.212 + 39.7132i 1.03645 + 0.277715i
\(144\) −30.8380 + 17.8043i −0.214153 + 0.123641i
\(145\) 59.2681 68.7438i 0.408745 0.474095i
\(146\) −19.3455 −0.132504
\(147\) −82.9059 + 18.1553i −0.563986 + 0.123505i
\(148\) −71.5885 + 71.5885i −0.483706 + 0.483706i
\(149\) 106.635 + 61.5658i 0.715672 + 0.413193i 0.813157 0.582044i \(-0.197747\pi\)
−0.0974859 + 0.995237i \(0.531080\pi\)
\(150\) −18.9682 127.423i −0.126454 0.849485i
\(151\) −50.6434 87.7170i −0.335387 0.580907i 0.648172 0.761494i \(-0.275534\pi\)
−0.983559 + 0.180587i \(0.942200\pi\)
\(152\) −80.6925 + 21.6215i −0.530872 + 0.142247i
\(153\) −56.7519 + 56.7519i −0.370928 + 0.370928i
\(154\) −150.738 + 247.687i −0.978818 + 1.60836i
\(155\) 21.6271 113.734i 0.139529 0.733765i
\(156\) 46.3039 80.2008i 0.296820 0.514108i
\(157\) −18.7602 + 70.0141i −0.119492 + 0.445950i −0.999584 0.0288540i \(-0.990814\pi\)
0.880092 + 0.474804i \(0.157481\pi\)
\(158\) −34.9554 9.36628i −0.221237 0.0592802i
\(159\) −66.9103 38.6307i −0.420820 0.242960i
\(160\) 187.861 127.830i 1.17413 0.798940i
\(161\) −130.196 + 71.2096i −0.808673 + 0.442295i
\(162\) −18.9336 18.9336i −0.116874 0.116874i
\(163\) 47.1369 + 175.917i 0.289183 + 1.07925i 0.945728 + 0.324960i \(0.105351\pi\)
−0.656545 + 0.754287i \(0.727983\pi\)
\(164\) −7.13484 + 4.11930i −0.0435051 + 0.0251177i
\(165\) −52.4136 + 108.584i −0.317658 + 0.658088i
\(166\) −43.4735 + 75.2984i −0.261889 + 0.453605i
\(167\) −188.951 188.951i −1.13144 1.13144i −0.989938 0.141505i \(-0.954806\pi\)
−0.141505 0.989938i \(-0.545194\pi\)
\(168\) 21.2085 + 22.2120i 0.126241 + 0.132214i
\(169\) 47.5377i 0.281288i
\(170\) 259.866 301.413i 1.52862 1.77302i
\(171\) 49.4702 + 85.6849i 0.289299 + 0.501081i
\(172\) 47.5882 177.601i 0.276675 1.03257i
\(173\) −2.36194 8.81487i −0.0136528 0.0509530i 0.958763 0.284206i \(-0.0917298\pi\)
−0.972416 + 0.233253i \(0.925063\pi\)
\(174\) 93.5445i 0.537612i
\(175\) 162.093 65.9606i 0.926247 0.376918i
\(176\) −165.254 −0.938944
\(177\) 17.4756 4.68257i 0.0987321 0.0264552i
\(178\) 481.163 + 128.927i 2.70316 + 0.724310i
\(179\) 232.008 133.950i 1.29613 0.748322i 0.316398 0.948626i \(-0.397526\pi\)
0.979734 + 0.200304i \(0.0641931\pi\)
\(180\) 55.1150 + 47.5179i 0.306194 + 0.263988i
\(181\) −226.975 −1.25401 −0.627004 0.779016i \(-0.715719\pi\)
−0.627004 + 0.779016i \(0.715719\pi\)
\(182\) 220.270 + 64.5115i 1.21027 + 0.354459i
\(183\) 99.4070 99.4070i 0.543208 0.543208i
\(184\) 46.5047 + 26.8495i 0.252743 + 0.145921i
\(185\) −93.9681 45.3583i −0.507936 0.245180i
\(186\) 59.6580 + 103.331i 0.320742 + 0.555541i
\(187\) −359.779 + 96.4026i −1.92395 + 0.515522i
\(188\) −36.5187 + 36.5187i −0.194248 + 0.194248i
\(189\) 18.9095 31.0714i 0.100050 0.164399i
\(190\) −275.995 405.605i −1.45261 2.13477i
\(191\) 77.8090 134.769i 0.407377 0.705597i −0.587218 0.809429i \(-0.699777\pi\)
0.994595 + 0.103831i \(0.0331102\pi\)
\(192\) −39.3274 + 146.772i −0.204830 + 0.764436i
\(193\) −203.169 54.4390i −1.05269 0.282067i −0.309327 0.950956i \(-0.600104\pi\)
−0.743363 + 0.668889i \(0.766770\pi\)
\(194\) 241.612 + 139.495i 1.24542 + 0.719045i
\(195\) 93.7644 + 17.8298i 0.480843 + 0.0914349i
\(196\) −128.243 + 200.159i −0.654303 + 1.02122i
\(197\) −98.6199 98.6199i −0.500609 0.500609i 0.411018 0.911627i \(-0.365173\pi\)
−0.911627 + 0.411018i \(0.865173\pi\)
\(198\) −32.1619 120.030i −0.162434 0.606211i
\(199\) −35.8210 + 20.6813i −0.180005 + 0.103926i −0.587295 0.809373i \(-0.699807\pi\)
0.407290 + 0.913299i \(0.366474\pi\)
\(200\) −50.8826 37.6967i −0.254413 0.188484i
\(201\) 36.6725 63.5187i 0.182450 0.316014i
\(202\) 96.4140 + 96.4140i 0.477297 + 0.477297i
\(203\) −123.469 + 30.0438i −0.608223 + 0.147999i
\(204\) 224.803i 1.10197i
\(205\) −6.43085 5.54442i −0.0313700 0.0270459i
\(206\) −32.6153 56.4913i −0.158327 0.274230i
\(207\) 16.4606 61.4319i 0.0795200 0.296773i
\(208\) 33.8572 + 126.357i 0.162775 + 0.607485i
\(209\) 459.167i 2.19697i
\(210\) −82.1345 + 160.570i −0.391117 + 0.764620i
\(211\) 326.483 1.54731 0.773655 0.633607i \(-0.218426\pi\)
0.773655 + 0.633607i \(0.218426\pi\)
\(212\) −209.032 + 56.0099i −0.985999 + 0.264198i
\(213\) −33.6455 9.01529i −0.157960 0.0423253i
\(214\) 260.205 150.229i 1.21591 0.702006i
\(215\) 188.982 13.9888i 0.878984 0.0650644i
\(216\) −13.1619 −0.0609347
\(217\) −117.226 + 111.929i −0.540210 + 0.515803i
\(218\) 266.943 266.943i 1.22451 1.22451i
\(219\) 9.75362 + 5.63125i 0.0445371 + 0.0257135i
\(220\) 111.250 + 318.868i 0.505684 + 1.44940i
\(221\) 147.423 + 255.344i 0.667072 + 1.15540i
\(222\) 103.873 27.8326i 0.467896 0.125372i
\(223\) −39.2007 + 39.2007i −0.175788 + 0.175788i −0.789517 0.613729i \(-0.789669\pi\)
0.613729 + 0.789517i \(0.289669\pi\)
\(224\) −318.033 7.35042i −1.41979 0.0328144i
\(225\) −27.5279 + 69.7654i −0.122346 + 0.310069i
\(226\) 21.5469 37.3203i 0.0953403 0.165134i
\(227\) 0.933082 3.48231i 0.00411049 0.0153406i −0.963840 0.266481i \(-0.914139\pi\)
0.967951 + 0.251141i \(0.0808057\pi\)
\(228\) 267.685 + 71.7259i 1.17406 + 0.314587i
\(229\) −46.0053 26.5612i −0.200896 0.115988i 0.396177 0.918174i \(-0.370337\pi\)
−0.597074 + 0.802186i \(0.703670\pi\)
\(230\) −58.9116 + 309.807i −0.256137 + 1.34699i
\(231\) 148.098 81.0006i 0.641116 0.350652i
\(232\) 32.5143 + 32.5143i 0.140148 + 0.140148i
\(233\) −33.4506 124.839i −0.143565 0.535791i −0.999815 0.0192298i \(-0.993879\pi\)
0.856250 0.516561i \(-0.172788\pi\)
\(234\) −85.1880 + 49.1833i −0.364051 + 0.210185i
\(235\) −47.9350 23.1382i −0.203979 0.0984603i
\(236\) 25.3375 43.8859i 0.107362 0.185957i
\(237\) 14.8974 + 14.8974i 0.0628582 + 0.0628582i
\(238\) −541.361 + 131.730i −2.27463 + 0.553485i
\(239\) 365.148i 1.52782i 0.645325 + 0.763908i \(0.276722\pi\)
−0.645325 + 0.763908i \(0.723278\pi\)
\(240\) −102.513 + 7.58822i −0.427137 + 0.0316176i
\(241\) −196.782 340.837i −0.816525 1.41426i −0.908228 0.418476i \(-0.862564\pi\)
0.0917031 0.995786i \(-0.470769\pi\)
\(242\) 56.0859 209.315i 0.231760 0.864939i
\(243\) 4.03459 + 15.0573i 0.0166032 + 0.0619642i
\(244\) 393.766i 1.61379i
\(245\) −238.316 56.8387i −0.972717 0.231995i
\(246\) 8.75091 0.0355728
\(247\) 351.089 94.0739i 1.42141 0.380866i
\(248\) 56.6516 + 15.1798i 0.228434 + 0.0612087i
\(249\) 43.8370 25.3093i 0.176052 0.101644i
\(250\) 110.589 355.068i 0.442357 1.42027i
\(251\) 353.349 1.40777 0.703883 0.710316i \(-0.251448\pi\)
0.703883 + 0.710316i \(0.251448\pi\)
\(252\) −24.0875 98.9908i −0.0955851 0.392821i
\(253\) 208.705 208.705i 0.824920 0.824920i
\(254\) −503.653 290.784i −1.98289 1.14482i
\(255\) −218.757 + 76.3224i −0.857870 + 0.299303i
\(256\) −57.6108 99.7848i −0.225042 0.389784i
\(257\) 54.4792 14.5977i 0.211981 0.0568002i −0.151266 0.988493i \(-0.548335\pi\)
0.363247 + 0.931693i \(0.381668\pi\)
\(258\) −138.098 + 138.098i −0.535264 + 0.535264i
\(259\) 70.0972 + 128.163i 0.270646 + 0.494836i
\(260\) 221.021 150.394i 0.850079 0.578439i
\(261\) 27.2297 47.1633i 0.104328 0.180702i
\(262\) −16.9810 + 63.3739i −0.0648129 + 0.241885i
\(263\) −274.512 73.5553i −1.04377 0.279678i −0.304097 0.952641i \(-0.598355\pi\)
−0.739676 + 0.672963i \(0.765021\pi\)
\(264\) −52.8989 30.5412i −0.200374 0.115686i
\(265\) −125.472 184.394i −0.473477 0.695827i
\(266\) −15.8701 + 686.658i −0.0596620 + 2.58142i
\(267\) −205.063 205.063i −0.768028 0.768028i
\(268\) −53.1708 198.436i −0.198399 0.740433i
\(269\) 228.544 131.950i 0.849607 0.490521i −0.0109111 0.999940i \(-0.503473\pi\)
0.860518 + 0.509419i \(0.170140\pi\)
\(270\) −25.4627 72.9818i −0.0943064 0.270303i
\(271\) 50.4495 87.3810i 0.186160 0.322439i −0.757807 0.652479i \(-0.773729\pi\)
0.943967 + 0.330040i \(0.107062\pi\)
\(272\) −224.540 224.540i −0.825514 0.825514i
\(273\) −92.2769 96.6433i −0.338011 0.354005i
\(274\) 637.851i 2.32792i
\(275\) −272.522 + 216.517i −0.990991 + 0.787334i
\(276\) −89.0690 154.272i −0.322714 0.558956i
\(277\) −67.8808 + 253.335i −0.245057 + 0.914566i 0.728297 + 0.685261i \(0.240312\pi\)
−0.973355 + 0.229305i \(0.926355\pi\)
\(278\) 156.849 + 585.370i 0.564206 + 2.10565i
\(279\) 69.4629i 0.248971i
\(280\) 27.2627 + 84.3594i 0.0973669 + 0.301284i
\(281\) 394.591 1.40424 0.702119 0.712060i \(-0.252238\pi\)
0.702119 + 0.712060i \(0.252238\pi\)
\(282\) 52.9876 14.1980i 0.187899 0.0503474i
\(283\) 295.210 + 79.1013i 1.04315 + 0.279510i 0.739416 0.673249i \(-0.235102\pi\)
0.303729 + 0.952758i \(0.401768\pi\)
\(284\) −84.4929 + 48.7820i −0.297510 + 0.171768i
\(285\) 21.0843 + 284.837i 0.0739799 + 0.999428i
\(286\) −456.504 −1.59617
\(287\) 2.81054 + 11.5503i 0.00979282 + 0.0402450i
\(288\) 96.4044 96.4044i 0.334738 0.334738i
\(289\) −369.558 213.364i −1.27875 0.738285i
\(290\) −117.388 + 243.190i −0.404786 + 0.838588i
\(291\) −81.2106 140.661i −0.279074 0.483371i
\(292\) 30.4709 8.16464i 0.104352 0.0279611i
\(293\) 232.731 232.731i 0.794304 0.794304i −0.187887 0.982191i \(-0.560164\pi\)
0.982191 + 0.187887i \(0.0601639\pi\)
\(294\) 224.271 116.013i 0.762827 0.394602i
\(295\) 51.3079 + 9.75647i 0.173925 + 0.0330728i
\(296\) 26.4301 45.7782i 0.0892908 0.154656i
\(297\) −18.7239 + 69.8785i −0.0630434 + 0.235281i
\(298\) −353.850 94.8138i −1.18742 0.318167i
\(299\) −202.339 116.821i −0.676720 0.390705i
\(300\) 83.6545 + 192.697i 0.278848 + 0.642322i
\(301\) −226.629 137.922i −0.752919 0.458214i
\(302\) 213.081 + 213.081i 0.705565 + 0.705565i
\(303\) −20.5450 76.6750i −0.0678053 0.253053i
\(304\) −339.014 + 195.730i −1.11518 + 0.643847i
\(305\) 383.176 133.687i 1.25631 0.438317i
\(306\) 119.391 206.791i 0.390166 0.675788i
\(307\) 192.175 + 192.175i 0.625976 + 0.625976i 0.947053 0.321077i \(-0.104045\pi\)
−0.321077 + 0.947053i \(0.604045\pi\)
\(308\) 132.891 453.746i 0.431464 1.47320i
\(309\) 37.9757i 0.122899i
\(310\) 25.4263 + 343.496i 0.0820203 + 1.10805i
\(311\) 69.8332 + 120.955i 0.224544 + 0.388922i 0.956183 0.292771i \(-0.0945773\pi\)
−0.731638 + 0.681693i \(0.761244\pi\)
\(312\) −12.5145 + 46.7048i −0.0401107 + 0.149695i
\(313\) 12.6561 + 47.2333i 0.0404349 + 0.150905i 0.983192 0.182576i \(-0.0584434\pi\)
−0.942757 + 0.333481i \(0.891777\pi\)
\(314\) 215.649i 0.686780i
\(315\) 88.1507 57.0479i 0.279843 0.181104i
\(316\) 59.0108 0.186743
\(317\) 288.036 77.1789i 0.908630 0.243467i 0.225911 0.974148i \(-0.427464\pi\)
0.682719 + 0.730681i \(0.260797\pi\)
\(318\) 222.030 + 59.4928i 0.698208 + 0.187084i
\(319\) 218.877 126.369i 0.686136 0.396141i
\(320\) −286.423 + 332.215i −0.895070 + 1.03817i
\(321\) −174.920 −0.544922
\(322\) 319.319 304.893i 0.991675 0.946871i
\(323\) −623.895 + 623.895i −1.93156 + 1.93156i
\(324\) 37.8129 + 21.8313i 0.116706 + 0.0673805i
\(325\) 221.388 + 164.016i 0.681193 + 0.504666i
\(326\) −270.920 469.247i −0.831042 1.43941i
\(327\) −212.291 + 56.8832i −0.649208 + 0.173955i
\(328\) 3.04165 3.04165i 0.00927331 0.00927331i
\(329\) 35.7580 + 65.3782i 0.108687 + 0.198718i
\(330\) 67.0116 352.405i 0.203066 1.06789i
\(331\) −43.7659 + 75.8048i −0.132223 + 0.229018i −0.924533 0.381101i \(-0.875545\pi\)
0.792310 + 0.610119i \(0.208878\pi\)
\(332\) 36.6954 136.949i 0.110528 0.412498i
\(333\) −60.4723 16.2035i −0.181599 0.0486592i
\(334\) 688.494 + 397.502i 2.06136 + 1.19013i
\(335\) 175.047 119.112i 0.522530 0.355557i
\(336\) 122.934 + 74.8158i 0.365876 + 0.222666i
\(337\) 170.978 + 170.978i 0.507354 + 0.507354i 0.913713 0.406359i \(-0.133202\pi\)
−0.406359 + 0.913713i \(0.633202\pi\)
\(338\) −36.6050 136.612i −0.108299 0.404177i
\(339\) −21.7270 + 12.5441i −0.0640915 + 0.0370033i
\(340\) −282.102 + 584.426i −0.829712 + 1.71890i
\(341\) 161.183 279.178i 0.472678 0.818703i
\(342\) −208.144 208.144i −0.608609 0.608609i
\(343\) 225.155 + 258.755i 0.656428 + 0.754389i
\(344\) 96.0004i 0.279071i
\(345\) 119.883 139.050i 0.347488 0.403044i
\(346\) 13.5753 + 23.5130i 0.0392348 + 0.0679567i
\(347\) −17.2634 + 64.4278i −0.0497504 + 0.185671i −0.986329 0.164785i \(-0.947307\pi\)
0.936579 + 0.350456i \(0.113974\pi\)
\(348\) −39.4798 147.341i −0.113448 0.423393i
\(349\) 445.265i 1.27583i 0.770106 + 0.637915i \(0.220203\pi\)
−0.770106 + 0.637915i \(0.779797\pi\)
\(350\) −415.025 + 314.370i −1.18579 + 0.898199i
\(351\) 57.2668 0.163153
\(352\) 611.157 163.759i 1.73624 0.465224i
\(353\) −357.784 95.8678i −1.01355 0.271580i −0.286439 0.958099i \(-0.592471\pi\)
−0.727112 + 0.686518i \(0.759138\pi\)
\(354\) −46.6149 + 26.9131i −0.131680 + 0.0760257i
\(355\) −76.1561 65.6587i −0.214524 0.184954i
\(356\) −812.287 −2.28170
\(357\) 311.288 + 91.1686i 0.871956 + 0.255374i
\(358\) −563.589 + 563.589i −1.57427 + 1.57427i
\(359\) −507.313 292.897i −1.41313 0.815870i −0.417446 0.908702i \(-0.637075\pi\)
−0.995682 + 0.0928320i \(0.970408\pi\)
\(360\) −34.2174 16.5167i −0.0950483 0.0458797i
\(361\) 363.345 + 629.331i 1.00649 + 1.74330i
\(362\) 652.272 174.776i 1.80186 0.482806i
\(363\) −89.2066 + 89.2066i −0.245748 + 0.245748i
\(364\) −374.170 8.64786i −1.02794 0.0237579i
\(365\) 18.2902 + 26.8794i 0.0501101 + 0.0736422i
\(366\) −209.126 + 362.217i −0.571382 + 0.989663i
\(367\) 78.0318 291.219i 0.212621 0.793511i −0.774370 0.632733i \(-0.781933\pi\)
0.986991 0.160778i \(-0.0514003\pi\)
\(368\) 243.056 + 65.1268i 0.660479 + 0.176975i
\(369\) −4.41203 2.54729i −0.0119567 0.00690322i
\(370\) 304.968 + 57.9913i 0.824238 + 0.156733i
\(371\) −7.21478 + 312.165i −0.0194469 + 0.841414i
\(372\) −137.576 137.576i −0.369829 0.369829i
\(373\) 136.663 + 510.035i 0.366390 + 1.36739i 0.865527 + 0.500862i \(0.166984\pi\)
−0.499137 + 0.866523i \(0.666350\pi\)
\(374\) 959.686 554.075i 2.56600 1.48148i
\(375\) −159.113 + 146.827i −0.424301 + 0.391538i
\(376\) 13.4825 23.3524i 0.0358577 0.0621074i
\(377\) −141.468 141.468i −0.375246 0.375246i
\(378\) −30.4157 + 103.852i −0.0804649 + 0.274741i
\(379\) 177.062i 0.467182i 0.972335 + 0.233591i \(0.0750476\pi\)
−0.972335 + 0.233591i \(0.924952\pi\)
\(380\) 605.900 + 522.382i 1.59447 + 1.37469i
\(381\) 169.288 + 293.215i 0.444325 + 0.769594i
\(382\) −119.829 + 447.208i −0.313688 + 1.17070i
\(383\) −69.8407 260.649i −0.182352 0.680545i −0.995182 0.0980450i \(-0.968741\pi\)
0.812830 0.582500i \(-0.197926\pi\)
\(384\) 137.213i 0.357327i
\(385\) 486.661 24.7336i 1.26405 0.0642432i
\(386\) 625.777 1.62118
\(387\) 109.825 29.4275i 0.283786 0.0760401i
\(388\) −439.433 117.746i −1.13256 0.303468i
\(389\) 161.408 93.1891i 0.414931 0.239561i −0.277975 0.960588i \(-0.589663\pi\)
0.692906 + 0.721028i \(0.256330\pi\)
\(390\) −283.185 + 20.9620i −0.726116 + 0.0537487i
\(391\) 567.157 1.45053
\(392\) 37.6284 118.276i 0.0959909 0.301725i
\(393\) 27.0089 27.0089i 0.0687248 0.0687248i
\(394\) 359.349 + 207.470i 0.912053 + 0.526574i
\(395\) 20.0347 + 57.4238i 0.0507206 + 0.145377i
\(396\) 101.316 + 175.484i 0.255847 + 0.443141i
\(397\) −659.091 + 176.603i −1.66018 + 0.444844i −0.962437 0.271506i \(-0.912478\pi\)
−0.697742 + 0.716349i \(0.745812\pi\)
\(398\) 87.0158 87.0158i 0.218633 0.218633i
\(399\) 207.879 341.579i 0.521001 0.856089i
\(400\) −276.028 108.915i −0.690070 0.272287i
\(401\) 63.9305 110.731i 0.159428 0.276137i −0.775235 0.631673i \(-0.782368\pi\)
0.934662 + 0.355536i \(0.115702\pi\)
\(402\) −56.4772 + 210.776i −0.140491 + 0.524318i
\(403\) −246.488 66.0463i −0.611634 0.163887i
\(404\) −192.551 111.170i −0.476612 0.275172i
\(405\) −8.40636 + 44.2078i −0.0207564 + 0.109155i
\(406\) 331.686 181.412i 0.816961 0.446829i
\(407\) −205.445 205.445i −0.504778 0.504778i
\(408\) −30.3786 113.375i −0.0744574 0.277879i
\(409\) 67.5742 39.0140i 0.165218 0.0953887i −0.415111 0.909771i \(-0.636257\pi\)
0.580329 + 0.814382i \(0.302924\pi\)
\(410\) 22.7500 + 10.9814i 0.0554878 + 0.0267839i
\(411\) −185.671 + 321.592i −0.451754 + 0.782462i
\(412\) 75.2137 + 75.2137i 0.182558 + 0.182558i
\(413\) −50.4939 52.8832i −0.122261 0.128046i
\(414\) 189.215i 0.457042i
\(415\) 145.725 10.7868i 0.351143 0.0259924i
\(416\) −250.427 433.752i −0.601988 1.04267i
\(417\) 91.3140 340.789i 0.218979 0.817239i
\(418\) −353.568 1319.53i −0.845856 3.15678i
\(419\) 38.0855i 0.0908962i −0.998967 0.0454481i \(-0.985528\pi\)
0.998967 0.0454481i \(-0.0144716\pi\)
\(420\) 61.6014 287.576i 0.146670 0.684706i
\(421\) −151.613 −0.360126 −0.180063 0.983655i \(-0.557630\pi\)
−0.180063 + 0.983655i \(0.557630\pi\)
\(422\) −938.231 + 251.398i −2.22330 + 0.595730i
\(423\) −30.8481 8.26573i −0.0729270 0.0195407i
\(424\) 97.8519 56.4948i 0.230783 0.133242i
\(425\) −664.484 76.0976i −1.56349 0.179053i
\(426\) 103.631 0.243265
\(427\) −545.255 159.691i −1.27694 0.373985i
\(428\) −346.442 + 346.442i −0.809444 + 0.809444i
\(429\) 230.160 + 132.883i 0.536504 + 0.309751i
\(430\) −532.315 + 185.720i −1.23794 + 0.431907i
\(431\) −268.299 464.707i −0.622503 1.07821i −0.989018 0.147795i \(-0.952782\pi\)
0.366515 0.930412i \(-0.380551\pi\)
\(432\) −59.5744 + 15.9629i −0.137904 + 0.0369512i
\(433\) 421.429 421.429i 0.973278 0.973278i −0.0263739 0.999652i \(-0.508396\pi\)
0.999652 + 0.0263739i \(0.00839605\pi\)
\(434\) 250.690 411.923i 0.577626 0.949132i
\(435\) 129.974 88.4415i 0.298792 0.203314i
\(436\) −307.796 + 533.119i −0.705955 + 1.22275i
\(437\) 180.958 675.344i 0.414092 1.54541i
\(438\) −32.3657 8.67236i −0.0738942 0.0197999i
\(439\) 411.292 + 237.460i 0.936884 + 0.540910i 0.888982 0.457942i \(-0.151413\pi\)
0.0479017 + 0.998852i \(0.484747\pi\)
\(440\) −99.1970 145.781i −0.225448 0.331320i
\(441\) −146.843 6.79133i −0.332977 0.0153998i
\(442\) −620.277 620.277i −1.40334 1.40334i
\(443\) 24.3833 + 90.9998i 0.0550414 + 0.205417i 0.987970 0.154643i \(-0.0494228\pi\)
−0.932929 + 0.360060i \(0.882756\pi\)
\(444\) −151.862 + 87.6776i −0.342032 + 0.197472i
\(445\) −275.778 790.441i −0.619726 1.77627i
\(446\) 82.4678 142.839i 0.184905 0.320266i
\(447\) 150.805 + 150.805i 0.337371 + 0.337371i
\(448\) 596.685 145.192i 1.33189 0.324088i
\(449\) 521.631i 1.16176i 0.813989 + 0.580881i \(0.197292\pi\)
−0.813989 + 0.580881i \(0.802708\pi\)
\(450\) 25.3877 221.686i 0.0564172 0.492635i
\(451\) −11.8216 20.4756i −0.0262119 0.0454003i
\(452\) −18.1875 + 67.8765i −0.0402377 + 0.150169i
\(453\) −45.4056 169.456i −0.100233 0.374075i
\(454\) 10.7258i 0.0236251i
\(455\) −118.619 367.043i −0.260700 0.806689i
\(456\) −144.694 −0.317311
\(457\) 401.339 107.539i 0.878204 0.235314i 0.208572 0.978007i \(-0.433118\pi\)
0.669632 + 0.742693i \(0.266452\pi\)
\(458\) 152.661 + 40.9053i 0.333320 + 0.0893128i
\(459\) −120.389 + 69.5066i −0.262285 + 0.151431i
\(460\) −37.9613 512.837i −0.0825246 1.11486i
\(461\) 280.539 0.608544 0.304272 0.952585i \(-0.401587\pi\)
0.304272 + 0.952585i \(0.401587\pi\)
\(462\) −363.224 + 346.814i −0.786200 + 0.750679i
\(463\) −326.436 + 326.436i −0.705045 + 0.705045i −0.965489 0.260444i \(-0.916131\pi\)
0.260444 + 0.965489i \(0.416131\pi\)
\(464\) 186.602 + 107.735i 0.402160 + 0.232187i
\(465\) 87.1681 180.585i 0.187458 0.388354i
\(466\) 192.257 + 333.000i 0.412570 + 0.714592i
\(467\) −410.520 + 109.999i −0.879058 + 0.235543i −0.670001 0.742360i \(-0.733706\pi\)
−0.209057 + 0.977903i \(0.567040\pi\)
\(468\) 113.421 113.421i 0.242353 0.242353i
\(469\) −296.342 6.84907i −0.631858 0.0146036i
\(470\) 155.570 + 29.5825i 0.331000 + 0.0629415i
\(471\) −62.7729 + 108.726i −0.133276 + 0.230840i
\(472\) −6.84795 + 25.5569i −0.0145084 + 0.0541459i
\(473\) 509.681 + 136.569i 1.07755 + 0.288728i
\(474\) −54.2828 31.3402i −0.114521 0.0661185i
\(475\) −302.625 + 766.958i −0.637105 + 1.61465i
\(476\) 797.096 435.963i 1.67457 0.915889i
\(477\) −94.6255 94.6255i −0.198376 0.198376i
\(478\) −281.171 1049.35i −0.588225 2.19529i
\(479\) −183.280 + 105.817i −0.382630 + 0.220912i −0.678962 0.734173i \(-0.737570\pi\)
0.296332 + 0.955085i \(0.404237\pi\)
\(480\) 371.602 129.649i 0.774171 0.270102i
\(481\) −114.996 + 199.179i −0.239077 + 0.414093i
\(482\) 827.956 + 827.956i 1.71775 + 1.71775i
\(483\) −249.745 + 60.7705i −0.517071 + 0.125819i
\(484\) 353.361i 0.730084i
\(485\) −34.6121 467.590i −0.0713651 0.964104i
\(486\) −23.1888 40.1642i −0.0477137 0.0826425i
\(487\) 12.4096 46.3134i 0.0254818 0.0950993i −0.952014 0.306055i \(-0.900991\pi\)
0.977496 + 0.210956i \(0.0676575\pi\)
\(488\) 53.2114 + 198.588i 0.109040 + 0.406942i
\(489\) 315.446i 0.645084i
\(490\) 728.628 20.1673i 1.48700 0.0411578i
\(491\) −784.457 −1.59767 −0.798836 0.601549i \(-0.794551\pi\)
−0.798836 + 0.601549i \(0.794551\pi\)
\(492\) −13.7834 + 3.69326i −0.0280151 + 0.00750663i
\(493\) 469.105 + 125.696i 0.951531 + 0.254962i
\(494\) −936.504 + 540.691i −1.89576 + 1.09452i
\(495\) −136.367 + 158.169i −0.275488 + 0.319533i
\(496\) 274.831 0.554095
\(497\) 33.2833 + 136.782i 0.0669684 + 0.275216i
\(498\) −106.488 + 106.488i −0.213831 + 0.213831i
\(499\) −50.6730 29.2561i −0.101549 0.0586294i 0.448365 0.893850i \(-0.352006\pi\)
−0.549914 + 0.835221i \(0.685340\pi\)
\(500\) −24.3336 + 605.936i −0.0486671 + 1.21187i
\(501\) −231.417 400.825i −0.461909 0.800050i
\(502\) −1015.44 + 272.086i −2.02279 + 0.542004i
\(503\) 144.269 144.269i 0.286816 0.286816i −0.549004 0.835820i \(-0.684993\pi\)
0.835820 + 0.549004i \(0.184993\pi\)
\(504\) 25.5251 + 46.6689i 0.0506450 + 0.0925970i
\(505\) 42.8070 225.116i 0.0847664 0.445774i
\(506\) −439.059 + 760.473i −0.867706 + 1.50291i
\(507\) −21.3106 + 79.5322i −0.0420327 + 0.156868i
\(508\) 916.021 + 245.447i 1.80319 + 0.483164i
\(509\) −38.7059 22.3469i −0.0760431 0.0439035i 0.461496 0.887142i \(-0.347313\pi\)
−0.537539 + 0.843239i \(0.680646\pi\)
\(510\) 569.884 387.779i 1.11742 0.760351i
\(511\) 1.05171 45.5047i 0.00205814 0.0890503i
\(512\) 466.464 + 466.464i 0.911063 + 0.911063i
\(513\) 44.3538 + 165.531i 0.0864596 + 0.322672i
\(514\) −145.319 + 83.9001i −0.282722 + 0.163230i
\(515\) −47.6552 + 98.7266i −0.0925344 + 0.191702i
\(516\) 159.233 275.800i 0.308591 0.534496i
\(517\) −104.801 104.801i −0.202711 0.202711i
\(518\) −300.130 314.331i −0.579401 0.606817i
\(519\) 15.8064i 0.0304555i
\(520\) −91.1437 + 105.716i −0.175276 + 0.203299i
\(521\) 139.872 + 242.266i 0.268469 + 0.465001i 0.968467 0.249143i \(-0.0801491\pi\)
−0.699998 + 0.714145i \(0.746816\pi\)
\(522\) −41.9349 + 156.503i −0.0803350 + 0.299814i
\(523\) 63.7856 + 238.051i 0.121961 + 0.455165i 0.999713 0.0239502i \(-0.00762432\pi\)
−0.877752 + 0.479115i \(0.840958\pi\)
\(524\) 106.986i 0.204172i
\(525\) 300.757 37.6898i 0.572870 0.0717902i
\(526\) 845.520 1.60745
\(527\) 598.343 160.325i 1.13537 0.304223i
\(528\) −276.476 74.0814i −0.523628 0.140306i
\(529\) 68.9129 39.7869i 0.130270 0.0752115i
\(530\) 502.562 + 433.288i 0.948229 + 0.817524i
\(531\) 31.3364 0.0590139
\(532\) −264.802 1088.24i −0.497749 2.04557i
\(533\) −13.2340 + 13.2340i −0.0248293 + 0.0248293i
\(534\) 747.205 + 431.399i 1.39926 + 0.807863i
\(535\) −454.745 219.505i −0.849990 0.410289i
\(536\) 53.6312 + 92.8919i 0.100058 + 0.173306i
\(537\) 448.204 120.096i 0.834645 0.223642i
\(538\) −555.176 + 555.176i −1.03193 + 1.03193i
\(539\) −574.416 368.033i −1.06571 0.682807i
\(540\) 70.9075 + 104.206i 0.131310 + 0.192975i
\(541\) −391.651 + 678.360i −0.723939 + 1.25390i 0.235470 + 0.971882i \(0.424337\pi\)
−0.959409 + 0.282018i \(0.908996\pi\)
\(542\) −77.6942 + 289.959i −0.143347 + 0.534979i
\(543\) −379.737 101.750i −0.699332 0.187385i
\(544\) 1052.92 + 607.904i 1.93552 + 1.11747i
\(545\) −623.281 118.520i −1.14363 0.217468i
\(546\) 339.598 + 206.674i 0.621975 + 0.378524i
\(547\) −32.2224 32.2224i −0.0589074 0.0589074i 0.677039 0.735947i \(-0.263263\pi\)
−0.735947 + 0.677039i \(0.763263\pi\)
\(548\) 269.201 + 1004.67i 0.491243 + 1.83334i
\(549\) 210.874 121.748i 0.384106 0.221764i
\(550\) 616.440 832.064i 1.12080 1.51284i
\(551\) 299.347 518.484i 0.543279 0.940986i
\(552\) 65.7676 + 65.7676i 0.119144 + 0.119144i
\(553\) 23.9318 81.7133i 0.0432763 0.147764i
\(554\) 780.291i 1.40847i
\(555\) −136.878 118.011i −0.246627 0.212632i
\(556\) −494.103 855.811i −0.888674 1.53923i
\(557\) −215.849 + 805.560i −0.387521 + 1.44625i 0.446634 + 0.894717i \(0.352623\pi\)
−0.834155 + 0.551531i \(0.814044\pi\)
\(558\) 53.4879 + 199.619i 0.0958564 + 0.357741i
\(559\) 417.693i 0.747214i
\(560\) 225.711 + 348.770i 0.403055 + 0.622803i
\(561\) −645.139 −1.14998
\(562\) −1133.96 + 303.843i −2.01772 + 0.540646i
\(563\) −810.525 217.180i −1.43965 0.385754i −0.547241 0.836975i \(-0.684322\pi\)
−0.892412 + 0.451221i \(0.850989\pi\)
\(564\) −77.4678 + 44.7261i −0.137354 + 0.0793016i
\(565\) −72.2258 + 5.34631i −0.127833 + 0.00946250i
\(566\) −909.271 −1.60649
\(567\) 45.5652 43.5065i 0.0803618 0.0767311i
\(568\) 36.0201 36.0201i 0.0634157 0.0634157i
\(569\) 663.998 + 383.359i 1.16696 + 0.673742i 0.952961 0.303093i \(-0.0980191\pi\)
0.213995 + 0.976835i \(0.431352\pi\)
\(570\) −279.921 802.316i −0.491090 1.40757i
\(571\) −525.520 910.227i −0.920350 1.59409i −0.798874 0.601498i \(-0.794571\pi\)
−0.121476 0.992594i \(-0.538763\pi\)
\(572\) 719.034 192.665i 1.25705 0.336826i
\(573\) 190.592 190.592i 0.332622 0.332622i
\(574\) −16.9708 31.0286i −0.0295658 0.0540568i
\(575\) 486.156 211.053i 0.845490 0.367048i
\(576\) −131.592 + 227.924i −0.228458 + 0.395701i
\(577\) 51.2986 191.449i 0.0889058 0.331801i −0.907119 0.420873i \(-0.861724\pi\)
0.996025 + 0.0890726i \(0.0283903\pi\)
\(578\) 1226.31 + 328.590i 2.12165 + 0.568494i
\(579\) −315.504 182.156i −0.544912 0.314605i
\(580\) 82.2591 432.589i 0.141826 0.745843i
\(581\) −174.754 106.352i −0.300782 0.183051i
\(582\) 341.691 + 341.691i 0.587098 + 0.587098i
\(583\) −160.737 599.879i −0.275707 1.02895i
\(584\) −14.2640 + 8.23534i −0.0244247 + 0.0141016i
\(585\) 148.878 + 71.8633i 0.254492 + 0.122843i
\(586\) −489.604 + 848.019i −0.835502 + 1.44713i
\(587\) 425.592 + 425.592i 0.725029 + 0.725029i 0.969625 0.244596i \(-0.0786554\pi\)
−0.244596 + 0.969625i \(0.578655\pi\)
\(588\) −304.284 + 277.383i −0.517490 + 0.471739i
\(589\) 763.632i 1.29649i
\(590\) −154.959 + 11.4704i −0.262642 + 0.0194414i
\(591\) −120.784 209.204i −0.204373 0.353984i
\(592\) 64.1094 239.260i 0.108293 0.404155i
\(593\) 139.637 + 521.131i 0.235475 + 0.878805i 0.977934 + 0.208914i \(0.0669928\pi\)
−0.742459 + 0.669892i \(0.766341\pi\)
\(594\) 215.232i 0.362343i
\(595\) 694.859 + 627.645i 1.16783 + 1.05487i
\(596\) 597.360 1.00228
\(597\) −69.2009 + 18.5423i −0.115914 + 0.0310592i
\(598\) 671.428 + 179.909i 1.12279 + 0.300851i
\(599\) −329.578 + 190.282i −0.550213 + 0.317666i −0.749208 0.662335i \(-0.769566\pi\)
0.198995 + 0.980001i \(0.436232\pi\)
\(600\) −68.2294 85.8779i −0.113716 0.143130i
\(601\) −566.492 −0.942582 −0.471291 0.881978i \(-0.656212\pi\)
−0.471291 + 0.881978i \(0.656212\pi\)
\(602\) 757.478 + 221.846i 1.25827 + 0.368516i
\(603\) 89.8290 89.8290i 0.148970 0.148970i
\(604\) −425.550 245.691i −0.704552 0.406773i
\(605\) −343.857 + 119.969i −0.568359 + 0.198296i
\(606\) 118.083 + 204.525i 0.194856 + 0.337500i
\(607\) 1039.09 278.422i 1.71184 0.458685i 0.735963 0.677021i \(-0.236730\pi\)
0.975874 + 0.218336i \(0.0700629\pi\)
\(608\) 1059.81 1059.81i 1.74311 1.74311i
\(609\) −220.036 5.08550i −0.361308 0.00835058i
\(610\) −998.212 + 679.236i −1.63641 + 1.11350i
\(611\) −58.6616 + 101.605i −0.0960092 + 0.166293i
\(612\) −100.776 + 376.102i −0.164667 + 0.614546i
\(613\) 405.242 + 108.584i 0.661079 + 0.177136i 0.573733 0.819042i \(-0.305495\pi\)
0.0873463 + 0.996178i \(0.472161\pi\)
\(614\) −700.241 404.284i −1.14046 0.658444i
\(615\) −8.27353 12.1589i −0.0134529 0.0197705i
\(616\) −5.70396 + 246.795i −0.00925968 + 0.400642i
\(617\) −504.052 504.052i −0.816940 0.816940i 0.168724 0.985663i \(-0.446035\pi\)
−0.985663 + 0.168724i \(0.946035\pi\)
\(618\) −29.2421 109.133i −0.0473173 0.176590i
\(619\) −210.689 + 121.641i −0.340369 + 0.196512i −0.660435 0.750883i \(-0.729628\pi\)
0.320066 + 0.947395i \(0.396295\pi\)
\(620\) −185.019 530.304i −0.298417 0.855330i
\(621\) 55.0784 95.3985i 0.0886930 0.153621i
\(622\) −293.821 293.821i −0.472381 0.472381i
\(623\) −329.422 + 1124.79i −0.528768 + 1.80544i
\(624\) 226.577i 0.363104i
\(625\) −597.901 + 182.041i −0.956642 + 0.291266i
\(626\) −72.7413 125.992i −0.116200 0.201264i
\(627\) −205.839 + 768.201i −0.328292 + 1.22520i
\(628\) 91.0132 + 339.666i 0.144926 + 0.540869i
\(629\) 558.298i 0.887596i
\(630\) −209.395 + 231.819i −0.332374 + 0.367967i
\(631\) 912.593 1.44626 0.723132 0.690710i \(-0.242702\pi\)
0.723132 + 0.690710i \(0.242702\pi\)
\(632\) −29.7609 + 7.97440i −0.0470900 + 0.0126177i
\(633\) 546.216 + 146.358i 0.862900 + 0.231213i
\(634\) −768.315 + 443.587i −1.21185 + 0.699663i
\(635\) 72.1507 + 974.717i 0.113623 + 1.53499i
\(636\) −374.825 −0.589348
\(637\) −163.719 + 514.613i −0.257016 + 0.807870i
\(638\) −531.693 + 531.693i −0.833375 + 0.833375i
\(639\) −52.2486 30.1658i −0.0817662 0.0472078i
\(640\) 172.187 356.718i 0.269043 0.557371i
\(641\) 114.103 + 197.632i 0.178007 + 0.308318i 0.941198 0.337856i \(-0.109702\pi\)
−0.763191 + 0.646173i \(0.776368\pi\)
\(642\) 502.677 134.692i 0.782986 0.209801i
\(643\) 434.914 434.914i 0.676382 0.676382i −0.282797 0.959180i \(-0.591262\pi\)
0.959180 + 0.282797i \(0.0912624\pi\)
\(644\) −374.278 + 614.999i −0.581177 + 0.954967i
\(645\) 322.444 + 61.3144i 0.499912 + 0.0950611i
\(646\) 1312.51 2273.33i 2.03175 3.51909i
\(647\) 92.6027 345.598i 0.143126 0.534155i −0.856705 0.515806i \(-0.827492\pi\)
0.999832 0.0183485i \(-0.00584085\pi\)
\(648\) −22.0203 5.90032i −0.0339819 0.00910543i
\(649\) 125.944 + 72.7136i 0.194058 + 0.112039i
\(650\) −762.510 300.870i −1.17309 0.462877i
\(651\) −246.299 + 134.711i −0.378339 + 0.206929i
\(652\) 624.764 + 624.764i 0.958228 + 0.958228i
\(653\) 177.811 + 663.599i 0.272298 + 1.01623i 0.957630 + 0.288000i \(0.0929904\pi\)
−0.685332 + 0.728231i \(0.740343\pi\)
\(654\) 566.271 326.937i 0.865857 0.499903i
\(655\) 104.109 36.3226i 0.158945 0.0554544i
\(656\) 10.0784 17.4563i 0.0153634 0.0266102i
\(657\) 13.7937 + 13.7937i 0.0209950 + 0.0209950i
\(658\) −153.102 160.347i −0.232678 0.243688i
\(659\) 619.112i 0.939471i −0.882807 0.469736i \(-0.844349\pi\)
0.882807 0.469736i \(-0.155651\pi\)
\(660\) 43.1808 + 583.350i 0.0654255 + 0.883863i
\(661\) −249.541 432.217i −0.377520 0.653884i 0.613181 0.789943i \(-0.289890\pi\)
−0.990701 + 0.136059i \(0.956556\pi\)
\(662\) 67.4013 251.545i 0.101815 0.379978i
\(663\) 132.176 + 493.287i 0.199360 + 0.744022i
\(664\) 74.0263i 0.111485i
\(665\) 969.074 627.149i 1.45725 0.943081i
\(666\) 186.260 0.279669
\(667\) −371.728 + 99.6041i −0.557313 + 0.149332i
\(668\) −1252.20 335.526i −1.87455 0.502285i
\(669\) −83.1572 + 48.0109i −0.124301 + 0.0717651i
\(670\) −411.325 + 477.087i −0.613918 + 0.712071i
\(671\) 1130.03 1.68410
\(672\) −528.785 154.868i −0.786883 0.230458i
\(673\) 588.355 588.355i 0.874227 0.874227i −0.118703 0.992930i \(-0.537874\pi\)
0.992930 + 0.118703i \(0.0378735\pi\)
\(674\) −623.006 359.693i −0.924341 0.533669i
\(675\) −77.3301 + 104.379i −0.114563 + 0.154636i
\(676\) 115.312 + 199.727i 0.170580 + 0.295454i
\(677\) 825.046 221.070i 1.21868 0.326544i 0.408518 0.912750i \(-0.366046\pi\)
0.810162 + 0.586206i \(0.199379\pi\)
\(678\) 52.7789 52.7789i 0.0778450 0.0778450i
\(679\) −341.256 + 560.739i −0.502586 + 0.825830i
\(680\) 63.2961 332.865i 0.0930824 0.489507i
\(681\) 3.12215 5.40773i 0.00458466 0.00794086i
\(682\) −248.229 + 926.403i −0.363972 + 1.35836i
\(683\) 289.626 + 77.6050i 0.424050 + 0.113624i 0.464532 0.885557i \(-0.346223\pi\)
−0.0404821 + 0.999180i \(0.512889\pi\)
\(684\) 415.691 + 239.999i 0.607736 + 0.350876i
\(685\) −886.256 + 603.055i −1.29380 + 0.880373i
\(686\) −846.287 570.225i −1.23365 0.831232i
\(687\) −65.0613 65.0613i −0.0947035 0.0947035i
\(688\) 116.430 + 434.524i 0.169230 + 0.631576i
\(689\) −425.748 + 245.806i −0.617922 + 0.356758i
\(690\) −237.444 + 491.909i −0.344122 + 0.712911i
\(691\) −422.621 + 732.000i −0.611607 + 1.05933i 0.379363 + 0.925248i \(0.376143\pi\)
−0.990970 + 0.134086i \(0.957190\pi\)
\(692\) −31.3057 31.3057i −0.0452395 0.0452395i
\(693\) 284.084 69.1262i 0.409933 0.0997492i
\(694\) 198.443i 0.285941i
\(695\) 665.043 771.369i 0.956896 1.10988i
\(696\) 39.8217 + 68.9732i 0.0572150 + 0.0990994i
\(697\) 11.7586 43.8839i 0.0168704 0.0629611i
\(698\) −342.863 1279.58i −0.491208 1.83321i
\(699\) 223.856i 0.320251i
\(700\) 521.023 670.318i 0.744318 0.957597i
\(701\) −177.525 −0.253245 −0.126623 0.991951i \(-0.540414\pi\)
−0.126623 + 0.991951i \(0.540414\pi\)
\(702\) −164.571 + 44.0966i −0.234431 + 0.0628156i
\(703\) −664.795 178.131i −0.945654 0.253387i
\(704\) −1057.76 + 610.698i −1.50250 + 0.867469i
\(705\) −69.8242 60.1996i −0.0990414 0.0853894i
\(706\) 1102.00 1.56091
\(707\) −232.028 + 221.545i −0.328186 + 0.313359i
\(708\) 62.0640 62.0640i 0.0876610 0.0876610i
\(709\) −488.278 281.907i −0.688685 0.397613i 0.114434 0.993431i \(-0.463495\pi\)
−0.803119 + 0.595818i \(0.796828\pi\)
\(710\) 269.412 + 130.045i 0.379454 + 0.183162i
\(711\) 18.2455 + 31.6022i 0.0256618 + 0.0444475i
\(712\) 409.660 109.768i 0.575365 0.154169i
\(713\) −347.093 + 347.093i −0.486807 + 0.486807i
\(714\) −964.768 22.2978i −1.35122 0.0312294i
\(715\) 431.601 + 634.285i 0.603638 + 0.887112i
\(716\) 649.843 1125.56i 0.907602 1.57201i
\(717\) −163.691 + 610.905i −0.228301 + 0.852029i
\(718\) 1683.43 + 451.074i 2.34461 + 0.628236i
\(719\) −340.465 196.567i −0.473525 0.273390i 0.244189 0.969728i \(-0.421478\pi\)
−0.717714 + 0.696338i \(0.754812\pi\)
\(720\) −174.909 33.2599i −0.242929 0.0461943i
\(721\) 134.653 73.6469i 0.186758 0.102146i
\(722\) −1528.76 1528.76i −2.11740 2.11740i
\(723\) −176.430 658.447i −0.244025 0.910715i
\(724\) −953.622 + 550.574i −1.31716 + 0.760461i
\(725\) 448.882 66.8207i 0.619148 0.0921664i
\(726\) 187.667 325.049i 0.258494 0.447726i
\(727\) −110.762 110.762i −0.152356 0.152356i 0.626814 0.779169i \(-0.284359\pi\)
−0.779169 + 0.626814i \(0.784359\pi\)
\(728\) 189.874 46.2020i 0.260815 0.0634643i
\(729\) 27.0000i 0.0370370i
\(730\) −73.2592 63.1610i −0.100355 0.0865220i
\(731\) 506.968 + 878.094i 0.693527 + 1.20122i
\(732\) 176.520 658.783i 0.241148 0.899977i
\(733\) −180.535 673.766i −0.246296 0.919190i −0.972727 0.231951i \(-0.925489\pi\)
0.726431 0.687239i \(-0.241178\pi\)
\(734\) 896.977i 1.22204i
\(735\) −373.230 201.927i −0.507796 0.274731i
\(736\) −963.429 −1.30901
\(737\) 569.472 152.590i 0.772689 0.207042i
\(738\) 14.6406 + 3.92293i 0.0198382 + 0.00531562i
\(739\) 701.070 404.763i 0.948675 0.547717i 0.0560056 0.998430i \(-0.482164\pi\)
0.892669 + 0.450713i \(0.148830\pi\)
\(740\) −504.826 + 37.3683i −0.682197 + 0.0504977i
\(741\) 629.555 0.849602
\(742\) −219.640 902.640i −0.296010 1.21650i
\(743\) 615.379 615.379i 0.828235 0.828235i −0.159037 0.987273i \(-0.550839\pi\)
0.987273 + 0.159037i \(0.0508390\pi\)
\(744\) 87.9752 + 50.7925i 0.118246 + 0.0682695i
\(745\) 202.809 + 581.294i 0.272226 + 0.780261i
\(746\) −785.474 1360.48i −1.05291 1.82370i
\(747\) 84.6865 22.6917i 0.113369 0.0303771i
\(748\) −1277.74 + 1277.74i −1.70821 + 1.70821i
\(749\) 339.225 + 620.224i 0.452904 + 0.828069i
\(750\) 344.192 544.464i 0.458922 0.725952i
\(751\) −666.673 + 1154.71i −0.887713 + 1.53756i −0.0451417 + 0.998981i \(0.514374\pi\)
−0.842572 + 0.538584i \(0.818959\pi\)
\(752\) 32.7035 122.051i 0.0434887 0.162302i
\(753\) 591.165 + 158.402i 0.785080 + 0.210361i
\(754\) 515.477 + 297.611i 0.683656 + 0.394709i
\(755\) 94.6059 497.519i 0.125306 0.658966i
\(756\) 4.07727 176.413i 0.00539322 0.233351i
\(757\) 897.927 + 897.927i 1.18617 + 1.18617i 0.978119 + 0.208047i \(0.0667106\pi\)
0.208047 + 0.978119i \(0.433289\pi\)
\(758\) −136.341 508.832i −0.179870 0.671283i
\(759\) 442.730 255.610i 0.583307 0.336772i
\(760\) −376.165 181.574i −0.494954 0.238914i
\(761\) −19.9063 + 34.4788i &mi