Properties

Label 105.3.v.a.58.1
Level 105
Weight 3
Character 105.58
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 58.1
Character \(\chi\) \(=\) 105.58
Dual form 105.3.v.a.67.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.945463 - 3.52852i) q^{2} +(0.448288 - 1.67303i) q^{3} +(-8.09242 + 4.67216i) q^{4} +(-4.69698 - 1.71417i) q^{5} -6.32716 q^{6} +(1.65300 + 6.80203i) q^{7} +(13.8047 + 13.8047i) q^{8} +(-2.59808 - 1.50000i) q^{9} +O(q^{10})\) \(q+(-0.945463 - 3.52852i) q^{2} +(0.448288 - 1.67303i) q^{3} +(-8.09242 + 4.67216i) q^{4} +(-4.69698 - 1.71417i) q^{5} -6.32716 q^{6} +(1.65300 + 6.80203i) q^{7} +(13.8047 + 13.8047i) q^{8} +(-2.59808 - 1.50000i) q^{9} +(-1.60767 + 18.1940i) q^{10} +(-7.38858 - 12.7974i) q^{11} +(4.18894 + 15.6334i) q^{12} +(-7.90282 - 7.90282i) q^{13} +(22.4382 - 12.2637i) q^{14} +(-4.97347 + 7.08975i) q^{15} +(16.9695 - 29.3921i) q^{16} +(8.26159 + 2.21369i) q^{17} +(-2.83639 + 10.5855i) q^{18} +(-7.14233 - 4.12363i) q^{19} +(46.0188 - 8.07322i) q^{20} +(12.1210 + 0.283745i) q^{21} +(-38.1702 + 38.1702i) q^{22} +(-18.1839 + 4.87235i) q^{23} +(29.2841 - 16.9072i) q^{24} +(19.1232 + 16.1029i) q^{25} +(-20.4134 + 35.3570i) q^{26} +(-3.67423 + 3.67423i) q^{27} +(-45.1569 - 47.3218i) q^{28} -5.44111i q^{29} +(29.7185 + 10.8459i) q^{30} +(-26.5427 - 45.9734i) q^{31} +(-44.3244 - 11.8767i) q^{32} +(-24.7227 + 6.62442i) q^{33} -31.2441i q^{34} +(3.89576 - 34.7825i) q^{35} +28.0330 q^{36} +(-9.25110 - 34.5256i) q^{37} +(-7.79747 + 29.1006i) q^{38} +(-16.7644 + 9.67894i) q^{39} +(-41.1766 - 88.5038i) q^{40} -40.8709 q^{41} +(-10.4588 - 43.0375i) q^{42} +(53.7395 + 53.7395i) q^{43} +(119.583 + 69.0412i) q^{44} +(9.63185 + 11.4990i) q^{45} +(34.3844 + 59.5555i) q^{46} +(-10.7959 - 40.2908i) q^{47} +(-41.5667 - 41.5667i) q^{48} +(-43.5352 + 22.4875i) q^{49} +(38.7390 - 82.7012i) q^{50} +(7.40714 - 12.8295i) q^{51} +(100.876 + 27.0297i) q^{52} +(14.8813 - 55.5377i) q^{53} +(16.4384 + 9.49074i) q^{54} +(12.7670 + 72.7744i) q^{55} +(-71.0806 + 116.719i) q^{56} +(-10.1008 + 10.1008i) q^{57} +(-19.1990 + 5.14437i) q^{58} +(14.5251 - 8.38608i) q^{59} +(7.12291 - 80.6101i) q^{60} +(46.7481 - 80.9701i) q^{61} +(-137.123 + 137.123i) q^{62} +(5.90843 - 20.1517i) q^{63} +31.8720i q^{64} +(23.5726 + 50.6662i) q^{65} +(46.7487 + 80.9712i) q^{66} +(105.368 + 28.2333i) q^{67} +(-77.1989 + 20.6854i) q^{68} +32.6064i q^{69} +(-126.414 + 19.1393i) q^{70} +51.0976 q^{71} +(-15.1586 - 56.5726i) q^{72} +(-11.3190 + 42.2429i) q^{73} +(-113.077 + 65.2853i) q^{74} +(35.5133 - 24.7750i) q^{75} +77.0650 q^{76} +(74.8349 - 71.4114i) q^{77} +(50.0024 + 50.0024i) q^{78} +(24.7788 + 14.3061i) q^{79} +(-130.089 + 108.965i) q^{80} +(4.50000 + 7.79423i) q^{81} +(38.6419 + 144.213i) q^{82} +(-34.5883 - 34.5883i) q^{83} +(-99.4142 + 54.3352i) q^{84} +(-35.0099 - 24.5594i) q^{85} +(138.812 - 240.429i) q^{86} +(-9.10315 - 2.43918i) q^{87} +(74.6669 - 278.660i) q^{88} +(-45.7486 - 26.4130i) q^{89} +(31.4679 - 44.8580i) q^{90} +(40.6919 - 66.8186i) q^{91} +(124.387 - 124.387i) q^{92} +(-88.8137 + 23.7976i) q^{93} +(-131.960 + 76.1869i) q^{94} +(26.4788 + 31.6118i) q^{95} +(-39.7401 + 68.8319i) q^{96} +(-33.9979 + 33.9979i) q^{97} +(120.508 + 132.353i) q^{98} +44.3315i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.945463 3.52852i −0.472731 1.76426i −0.629890 0.776684i \(-0.716900\pi\)
0.157159 0.987573i \(-0.449767\pi\)
\(3\) 0.448288 1.67303i 0.149429 0.557678i
\(4\) −8.09242 + 4.67216i −2.02310 + 1.16804i
\(5\) −4.69698 1.71417i −0.939396 0.342835i
\(6\) −6.32716 −1.05453
\(7\) 1.65300 + 6.80203i 0.236143 + 0.971718i
\(8\) 13.8047 + 13.8047i 1.72558 + 1.72558i
\(9\) −2.59808 1.50000i −0.288675 0.166667i
\(10\) −1.60767 + 18.1940i −0.160767 + 1.81940i
\(11\) −7.38858 12.7974i −0.671689 1.16340i −0.977425 0.211283i \(-0.932236\pi\)
0.305736 0.952116i \(-0.401098\pi\)
\(12\) 4.18894 + 15.6334i 0.349079 + 1.30278i
\(13\) −7.90282 7.90282i −0.607909 0.607909i 0.334490 0.942399i \(-0.391436\pi\)
−0.942399 + 0.334490i \(0.891436\pi\)
\(14\) 22.4382 12.2637i 1.60273 0.875978i
\(15\) −4.97347 + 7.08975i −0.331564 + 0.472650i
\(16\) 16.9695 29.3921i 1.06060 1.83700i
\(17\) 8.26159 + 2.21369i 0.485976 + 0.130217i 0.493484 0.869755i \(-0.335723\pi\)
−0.00750800 + 0.999972i \(0.502390\pi\)
\(18\) −2.83639 + 10.5855i −0.157577 + 0.588086i
\(19\) −7.14233 4.12363i −0.375912 0.217033i 0.300126 0.953900i \(-0.402971\pi\)
−0.676038 + 0.736867i \(0.736305\pi\)
\(20\) 46.0188 8.07322i 2.30094 0.403661i
\(21\) 12.1210 + 0.283745i 0.577192 + 0.0135116i
\(22\) −38.1702 + 38.1702i −1.73501 + 1.73501i
\(23\) −18.1839 + 4.87235i −0.790603 + 0.211842i −0.631454 0.775413i \(-0.717542\pi\)
−0.159149 + 0.987255i \(0.550875\pi\)
\(24\) 29.2841 16.9072i 1.22017 0.704466i
\(25\) 19.1232 + 16.1029i 0.764929 + 0.644115i
\(26\) −20.4134 + 35.3570i −0.785131 + 1.35989i
\(27\) −3.67423 + 3.67423i −0.136083 + 0.136083i
\(28\) −45.1569 47.3218i −1.61275 1.69006i
\(29\) 5.44111i 0.187624i −0.995590 0.0938122i \(-0.970095\pi\)
0.995590 0.0938122i \(-0.0299053\pi\)
\(30\) 29.7185 + 10.8459i 0.990618 + 0.361529i
\(31\) −26.5427 45.9734i −0.856217 1.48301i −0.875511 0.483198i \(-0.839475\pi\)
0.0192943 0.999814i \(-0.493858\pi\)
\(32\) −44.3244 11.8767i −1.38514 0.371146i
\(33\) −24.7227 + 6.62442i −0.749172 + 0.200740i
\(34\) 31.2441i 0.918944i
\(35\) 3.89576 34.7825i 0.111307 0.993786i
\(36\) 28.0330 0.778693
\(37\) −9.25110 34.5256i −0.250030 0.933124i −0.970788 0.239938i \(-0.922873\pi\)
0.720758 0.693186i \(-0.243794\pi\)
\(38\) −7.79747 + 29.1006i −0.205197 + 0.765804i
\(39\) −16.7644 + 9.67894i −0.429857 + 0.248178i
\(40\) −41.1766 88.5038i −1.02942 2.21259i
\(41\) −40.8709 −0.996850 −0.498425 0.866933i \(-0.666088\pi\)
−0.498425 + 0.866933i \(0.666088\pi\)
\(42\) −10.4588 43.0375i −0.249019 1.02470i
\(43\) 53.7395 + 53.7395i 1.24976 + 1.24976i 0.955828 + 0.293927i \(0.0949624\pi\)
0.293927 + 0.955828i \(0.405038\pi\)
\(44\) 119.583 + 69.0412i 2.71779 + 1.56912i
\(45\) 9.63185 + 11.4990i 0.214041 + 0.255534i
\(46\) 34.3844 + 59.5555i 0.747486 + 1.29468i
\(47\) −10.7959 40.2908i −0.229700 0.857251i −0.980467 0.196684i \(-0.936983\pi\)
0.750767 0.660567i \(-0.229684\pi\)
\(48\) −41.5667 41.5667i −0.865972 0.865972i
\(49\) −43.5352 + 22.4875i −0.888473 + 0.458928i
\(50\) 38.7390 82.7012i 0.774779 1.65402i
\(51\) 7.40714 12.8295i 0.145238 0.251560i
\(52\) 100.876 + 27.0297i 1.93993 + 0.519802i
\(53\) 14.8813 55.5377i 0.280779 1.04788i −0.671090 0.741376i \(-0.734174\pi\)
0.951869 0.306505i \(-0.0991596\pi\)
\(54\) 16.4384 + 9.49074i 0.304416 + 0.175754i
\(55\) 12.7670 + 72.7744i 0.232128 + 1.32317i
\(56\) −71.0806 + 116.719i −1.26930 + 2.08426i
\(57\) −10.1008 + 10.1008i −0.177207 + 0.177207i
\(58\) −19.1990 + 5.14437i −0.331018 + 0.0886959i
\(59\) 14.5251 8.38608i 0.246188 0.142137i −0.371829 0.928301i \(-0.621269\pi\)
0.618018 + 0.786164i \(0.287936\pi\)
\(60\) 7.12291 80.6101i 0.118715 1.34350i
\(61\) 46.7481 80.9701i 0.766363 1.32738i −0.173161 0.984894i \(-0.555398\pi\)
0.939523 0.342485i \(-0.111269\pi\)
\(62\) −137.123 + 137.123i −2.21165 + 2.21165i
\(63\) 5.90843 20.1517i 0.0937845 0.319868i
\(64\) 31.8720i 0.498000i
\(65\) 23.5726 + 50.6662i 0.362655 + 0.779480i
\(66\) 46.7487 + 80.9712i 0.708314 + 1.22684i
\(67\) 105.368 + 28.2333i 1.57266 + 0.421393i 0.936644 0.350284i \(-0.113915\pi\)
0.636015 + 0.771677i \(0.280582\pi\)
\(68\) −77.1989 + 20.6854i −1.13528 + 0.304197i
\(69\) 32.6064i 0.472557i
\(70\) −126.414 + 19.1393i −1.80591 + 0.273419i
\(71\) 51.0976 0.719685 0.359842 0.933013i \(-0.382830\pi\)
0.359842 + 0.933013i \(0.382830\pi\)
\(72\) −15.1586 56.5726i −0.210536 0.785730i
\(73\) −11.3190 + 42.2429i −0.155054 + 0.578670i 0.844046 + 0.536270i \(0.180167\pi\)
−0.999101 + 0.0424003i \(0.986500\pi\)
\(74\) −113.077 + 65.2853i −1.52807 + 0.882234i
\(75\) 35.5133 24.7750i 0.473511 0.330334i
\(76\) 77.0650 1.01401
\(77\) 74.8349 71.4114i 0.971882 0.927421i
\(78\) 50.0024 + 50.0024i 0.641057 + 0.641057i
\(79\) 24.7788 + 14.3061i 0.313656 + 0.181089i 0.648561 0.761162i \(-0.275371\pi\)
−0.334905 + 0.942252i \(0.608704\pi\)
\(80\) −130.089 + 108.965i −1.62611 + 1.36207i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 38.6419 + 144.213i 0.471242 + 1.75870i
\(83\) −34.5883 34.5883i −0.416726 0.416726i 0.467348 0.884074i \(-0.345210\pi\)
−0.884074 + 0.467348i \(0.845210\pi\)
\(84\) −99.4142 + 54.3352i −1.18350 + 0.646848i
\(85\) −35.0099 24.5594i −0.411881 0.288935i
\(86\) 138.812 240.429i 1.61409 2.79569i
\(87\) −9.10315 2.43918i −0.104634 0.0280366i
\(88\) 74.6669 278.660i 0.848487 3.16660i
\(89\) −45.7486 26.4130i −0.514029 0.296775i 0.220459 0.975396i \(-0.429244\pi\)
−0.734488 + 0.678621i \(0.762578\pi\)
\(90\) 31.4679 44.8580i 0.349644 0.498422i
\(91\) 40.6919 66.8186i 0.447163 0.734270i
\(92\) 124.387 124.387i 1.35203 1.35203i
\(93\) −88.8137 + 23.7976i −0.954986 + 0.255888i
\(94\) −131.960 + 76.1869i −1.40383 + 0.810499i
\(95\) 26.4788 + 31.6118i 0.278724 + 0.332756i
\(96\) −39.7401 + 68.8319i −0.413960 + 0.716999i
\(97\) −33.9979 + 33.9979i −0.350494 + 0.350494i −0.860293 0.509799i \(-0.829720\pi\)
0.509799 + 0.860293i \(0.329720\pi\)
\(98\) 120.508 + 132.353i 1.22968 + 1.35055i
\(99\) 44.3315i 0.447793i
\(100\) −229.988 40.9645i −2.29988 0.409645i
\(101\) −9.50773 16.4679i −0.0941360 0.163048i 0.815112 0.579304i \(-0.196676\pi\)
−0.909248 + 0.416256i \(0.863342\pi\)
\(102\) −52.2724 14.0063i −0.512474 0.137317i
\(103\) 31.1989 8.35972i 0.302902 0.0811623i −0.104167 0.994560i \(-0.533218\pi\)
0.407069 + 0.913398i \(0.366551\pi\)
\(104\) 218.192i 2.09800i
\(105\) −56.4459 22.1103i −0.537580 0.210574i
\(106\) −210.035 −1.98146
\(107\) 38.5636 + 143.921i 0.360408 + 1.34506i 0.873541 + 0.486750i \(0.161818\pi\)
−0.513134 + 0.858309i \(0.671515\pi\)
\(108\) 12.5668 46.9001i 0.116360 0.434260i
\(109\) −111.636 + 64.4531i −1.02418 + 0.591313i −0.915313 0.402743i \(-0.868057\pi\)
−0.108871 + 0.994056i \(0.534724\pi\)
\(110\) 244.715 113.854i 2.22468 1.03504i
\(111\) −61.9096 −0.557744
\(112\) 227.976 + 66.8421i 2.03550 + 0.596804i
\(113\) −60.2587 60.2587i −0.533263 0.533263i 0.388279 0.921542i \(-0.373070\pi\)
−0.921542 + 0.388279i \(0.873070\pi\)
\(114\) 45.1907 + 26.0908i 0.396409 + 0.228867i
\(115\) 93.7613 + 8.28498i 0.815316 + 0.0720433i
\(116\) 25.4217 + 44.0317i 0.219153 + 0.379584i
\(117\) 8.67790 + 32.3864i 0.0741701 + 0.276806i
\(118\) −43.3234 43.3234i −0.367147 0.367147i
\(119\) −1.40116 + 59.8548i −0.0117744 + 0.502981i
\(120\) −166.529 + 29.2146i −1.38774 + 0.243455i
\(121\) −48.6822 + 84.3200i −0.402332 + 0.696859i
\(122\) −329.903 88.3972i −2.70412 0.724567i
\(123\) −18.3219 + 68.3783i −0.148959 + 0.555921i
\(124\) 429.590 + 248.024i 3.46443 + 2.00019i
\(125\) −62.2182 108.415i −0.497746 0.867323i
\(126\) −76.6917 1.79530i −0.608665 0.0142484i
\(127\) 66.3619 66.3619i 0.522534 0.522534i −0.395802 0.918336i \(-0.629533\pi\)
0.918336 + 0.395802i \(0.129533\pi\)
\(128\) −64.8366 + 17.3729i −0.506536 + 0.135726i
\(129\) 113.999 65.8171i 0.883710 0.510210i
\(130\) 156.489 131.079i 1.20376 1.00830i
\(131\) 0.764516 1.32418i 0.00583600 0.0101082i −0.863093 0.505046i \(-0.831476\pi\)
0.868929 + 0.494937i \(0.164809\pi\)
\(132\) 169.116 169.116i 1.28118 1.28118i
\(133\) 16.2428 55.3987i 0.122126 0.416531i
\(134\) 398.487i 2.97378i
\(135\) 23.5561 10.9595i 0.174489 0.0811817i
\(136\) 83.4892 + 144.608i 0.613891 + 1.06329i
\(137\) 47.4866 + 12.7240i 0.346618 + 0.0928759i 0.427928 0.903813i \(-0.359244\pi\)
−0.0813101 + 0.996689i \(0.525910\pi\)
\(138\) 115.052 30.8282i 0.833712 0.223393i
\(139\) 63.4936i 0.456789i −0.973569 0.228394i \(-0.926652\pi\)
0.973569 0.228394i \(-0.0733476\pi\)
\(140\) 130.983 + 299.676i 0.935595 + 2.14054i
\(141\) −72.2475 −0.512393
\(142\) −48.3109 180.299i −0.340218 1.26971i
\(143\) −42.7449 + 159.526i −0.298915 + 1.11557i
\(144\) −88.1762 + 50.9086i −0.612335 + 0.353532i
\(145\) −9.32701 + 25.5568i −0.0643242 + 0.176254i
\(146\) 159.757 1.09422
\(147\) 18.1060 + 82.9167i 0.123170 + 0.564059i
\(148\) 236.173 + 236.173i 1.59576 + 1.59576i
\(149\) −30.8385 17.8046i −0.206970 0.119494i 0.392932 0.919567i \(-0.371461\pi\)
−0.599902 + 0.800073i \(0.704794\pi\)
\(150\) −120.996 101.885i −0.806638 0.679237i
\(151\) 21.9235 + 37.9726i 0.145189 + 0.251474i 0.929443 0.368965i \(-0.120288\pi\)
−0.784255 + 0.620439i \(0.786954\pi\)
\(152\) −41.6722 155.523i −0.274159 1.02318i
\(153\) −18.1437 18.1437i −0.118586 0.118586i
\(154\) −322.730 196.539i −2.09565 1.27623i
\(155\) 45.8643 + 261.435i 0.295899 + 1.68668i
\(156\) 90.4431 156.652i 0.579763 1.00418i
\(157\) 76.5190 + 20.5032i 0.487382 + 0.130594i 0.494138 0.869384i \(-0.335484\pi\)
−0.00675588 + 0.999977i \(0.502150\pi\)
\(158\) 27.0517 100.958i 0.171213 0.638977i
\(159\) −86.2452 49.7937i −0.542423 0.313168i
\(160\) 187.832 + 131.764i 1.17395 + 0.823526i
\(161\) −63.1998 115.633i −0.392546 0.718219i
\(162\) 23.2475 23.2475i 0.143503 0.143503i
\(163\) 88.0217 23.5853i 0.540010 0.144695i 0.0215035 0.999769i \(-0.493155\pi\)
0.518507 + 0.855073i \(0.326488\pi\)
\(164\) 330.744 190.955i 2.01673 1.16436i
\(165\) 127.477 + 11.2642i 0.772589 + 0.0682679i
\(166\) −89.3433 + 154.747i −0.538213 + 0.932212i
\(167\) −189.696 + 189.696i −1.13590 + 1.13590i −0.146725 + 0.989177i \(0.546873\pi\)
−0.989177 + 0.146725i \(0.953127\pi\)
\(168\) 163.410 + 171.244i 0.972677 + 1.01931i
\(169\) 44.0909i 0.260893i
\(170\) −53.5578 + 146.753i −0.315046 + 0.863252i
\(171\) 12.3709 + 21.4270i 0.0723443 + 0.125304i
\(172\) −685.962 183.803i −3.98815 1.06862i
\(173\) −214.606 + 57.5035i −1.24050 + 0.332390i −0.818659 0.574280i \(-0.805282\pi\)
−0.421839 + 0.906671i \(0.638615\pi\)
\(174\) 34.4268i 0.197855i
\(175\) −77.9216 + 156.695i −0.445266 + 0.895398i
\(176\) −501.523 −2.84956
\(177\) −7.51875 28.0604i −0.0424788 0.158533i
\(178\) −49.9449 + 186.397i −0.280589 + 1.04717i
\(179\) −3.21768 + 1.85773i −0.0179759 + 0.0103784i −0.508961 0.860790i \(-0.669970\pi\)
0.490985 + 0.871168i \(0.336637\pi\)
\(180\) −131.670 48.0534i −0.731501 0.266963i
\(181\) −127.476 −0.704286 −0.352143 0.935946i \(-0.614547\pi\)
−0.352143 + 0.935946i \(0.614547\pi\)
\(182\) −274.243 80.4074i −1.50683 0.441799i
\(183\) −114.509 114.509i −0.625732 0.625732i
\(184\) −318.283 183.761i −1.72980 0.998701i
\(185\) −15.7306 + 178.024i −0.0850305 + 0.962292i
\(186\) 167.940 + 290.881i 0.902904 + 1.56388i
\(187\) −32.7120 122.083i −0.174930 0.652849i
\(188\) 275.610 + 275.610i 1.46601 + 1.46601i
\(189\) −31.0658 18.9187i −0.164369 0.100099i
\(190\) 86.5080 123.318i 0.455305 0.649045i
\(191\) −91.2245 + 158.005i −0.477615 + 0.827254i −0.999671 0.0256577i \(-0.991832\pi\)
0.522056 + 0.852911i \(0.325165\pi\)
\(192\) 53.3229 + 14.2878i 0.277723 + 0.0744158i
\(193\) 11.3644 42.4123i 0.0588827 0.219753i −0.930215 0.367016i \(-0.880380\pi\)
0.989097 + 0.147263i \(0.0470462\pi\)
\(194\) 152.106 + 87.8185i 0.784052 + 0.452673i
\(195\) 95.3335 16.7246i 0.488890 0.0857674i
\(196\) 247.240 385.382i 1.26143 1.96623i
\(197\) 101.036 101.036i 0.512872 0.512872i −0.402533 0.915405i \(-0.631870\pi\)
0.915405 + 0.402533i \(0.131870\pi\)
\(198\) 156.424 41.9138i 0.790022 0.211686i
\(199\) 147.574 85.2021i 0.741580 0.428151i −0.0810635 0.996709i \(-0.525832\pi\)
0.822644 + 0.568558i \(0.192498\pi\)
\(200\) 41.6947 + 486.284i 0.208474 + 2.43142i
\(201\) 94.4705 163.628i 0.470002 0.814068i
\(202\) −49.1179 + 49.1179i −0.243158 + 0.243158i
\(203\) 37.0106 8.99415i 0.182318 0.0443061i
\(204\) 138.429i 0.678575i
\(205\) 191.970 + 70.0598i 0.936437 + 0.341755i
\(206\) −58.9948 102.182i −0.286382 0.496029i
\(207\) 54.5516 + 14.6171i 0.263534 + 0.0706138i
\(208\) −366.387 + 98.1732i −1.76148 + 0.471987i
\(209\) 121.871i 0.583115i
\(210\) −24.6491 + 220.075i −0.117377 + 1.04797i
\(211\) −97.2989 −0.461132 −0.230566 0.973057i \(-0.574058\pi\)
−0.230566 + 0.973057i \(0.574058\pi\)
\(212\) 139.055 + 518.962i 0.655922 + 2.44793i
\(213\) 22.9064 85.4880i 0.107542 0.401352i
\(214\) 471.368 272.145i 2.20266 1.27170i
\(215\) −160.294 344.532i −0.745555 1.60247i
\(216\) −101.443 −0.469644
\(217\) 268.837 256.538i 1.23888 1.18220i
\(218\) 332.972 + 332.972i 1.52739 + 1.52739i
\(219\) 65.5997 + 37.8740i 0.299542 + 0.172941i
\(220\) −443.330 529.271i −2.01514 2.40578i
\(221\) −47.7955 82.7842i −0.216269 0.374589i
\(222\) 58.5332 + 218.449i 0.263663 + 0.984004i
\(223\) 46.8438 + 46.8438i 0.210062 + 0.210062i 0.804294 0.594232i \(-0.202544\pi\)
−0.594232 + 0.804294i \(0.702544\pi\)
\(224\) 7.51737 321.128i 0.0335597 1.43361i
\(225\) −25.5293 70.5213i −0.113463 0.313428i
\(226\) −155.652 + 269.596i −0.688723 + 1.19290i
\(227\) 133.684 + 35.8205i 0.588916 + 0.157799i 0.540958 0.841050i \(-0.318062\pi\)
0.0479581 + 0.998849i \(0.484729\pi\)
\(228\) 34.5473 128.932i 0.151523 0.565492i
\(229\) −261.304 150.864i −1.14106 0.658793i −0.194370 0.980928i \(-0.562266\pi\)
−0.946694 + 0.322135i \(0.895599\pi\)
\(230\) −59.4142 338.671i −0.258322 1.47248i
\(231\) −85.9260 157.214i −0.371974 0.680581i
\(232\) 75.1126 75.1126i 0.323761 0.323761i
\(233\) 229.286 61.4371i 0.984062 0.263679i 0.269307 0.963054i \(-0.413205\pi\)
0.714754 + 0.699376i \(0.246539\pi\)
\(234\) 106.071 61.2402i 0.453295 0.261710i
\(235\) −18.3574 + 207.751i −0.0781166 + 0.884047i
\(236\) −78.3622 + 135.727i −0.332043 + 0.575116i
\(237\) 35.0426 35.0426i 0.147859 0.147859i
\(238\) 212.523 51.6465i 0.892955 0.217002i
\(239\) 414.515i 1.73437i 0.497984 + 0.867186i \(0.334074\pi\)
−0.497984 + 0.867186i \(0.665926\pi\)
\(240\) 123.985 + 266.490i 0.516605 + 1.11038i
\(241\) −48.5940 84.1673i −0.201635 0.349242i 0.747420 0.664351i \(-0.231292\pi\)
−0.949055 + 0.315109i \(0.897959\pi\)
\(242\) 343.552 + 92.0544i 1.41963 + 0.380390i
\(243\) 15.0573 4.03459i 0.0619642 0.0166032i
\(244\) 873.659i 3.58057i
\(245\) 243.031 30.9964i 0.991965 0.126516i
\(246\) 258.596 1.05121
\(247\) 23.8563 + 89.0328i 0.0965841 + 0.360457i
\(248\) 268.233 1001.06i 1.08159 4.03653i
\(249\) −73.3728 + 42.3618i −0.294670 + 0.170128i
\(250\) −323.720 + 322.041i −1.29488 + 1.28816i
\(251\) 183.078 0.729394 0.364697 0.931126i \(-0.381173\pi\)
0.364697 + 0.931126i \(0.381173\pi\)
\(252\) 46.3385 + 190.681i 0.183883 + 0.756671i
\(253\) 196.706 + 196.706i 0.777496 + 0.777496i
\(254\) −296.902 171.416i −1.16890 0.674867i
\(255\) −56.7832 + 47.5629i −0.222679 + 0.186521i
\(256\) 186.345 + 322.759i 0.727911 + 1.26078i
\(257\) 42.2001 + 157.493i 0.164203 + 0.612813i 0.998141 + 0.0609543i \(0.0194144\pi\)
−0.833938 + 0.551858i \(0.813919\pi\)
\(258\) −340.018 340.018i −1.31790 1.31790i
\(259\) 219.552 119.997i 0.847691 0.463309i
\(260\) −427.480 299.877i −1.64415 1.15337i
\(261\) −8.16166 + 14.1364i −0.0312707 + 0.0541625i
\(262\) −5.39521 1.44564i −0.0205924 0.00551772i
\(263\) 106.365 396.959i 0.404429 1.50935i −0.400679 0.916219i \(-0.631226\pi\)
0.805107 0.593129i \(-0.202108\pi\)
\(264\) −432.736 249.840i −1.63915 0.946364i
\(265\) −165.098 + 235.350i −0.623012 + 0.888114i
\(266\) −210.832 4.93542i −0.792602 0.0185542i
\(267\) −64.6983 + 64.6983i −0.242316 + 0.242316i
\(268\) −984.594 + 263.821i −3.67386 + 0.984407i
\(269\) −63.6605 + 36.7544i −0.236656 + 0.136633i −0.613639 0.789587i \(-0.710295\pi\)
0.376983 + 0.926220i \(0.376962\pi\)
\(270\) −60.9422 72.7562i −0.225712 0.269467i
\(271\) 208.069 360.386i 0.767782 1.32984i −0.170981 0.985274i \(-0.554694\pi\)
0.938763 0.344563i \(-0.111973\pi\)
\(272\) 205.260 205.260i 0.754632 0.754632i
\(273\) −93.5480 98.0327i −0.342667 0.359094i
\(274\) 179.587i 0.655428i
\(275\) 64.7815 363.705i 0.235569 1.32256i
\(276\) −152.342 263.865i −0.551966 0.956032i
\(277\) −298.645 80.0217i −1.07814 0.288887i −0.324307 0.945952i \(-0.605131\pi\)
−0.753834 + 0.657065i \(0.771798\pi\)
\(278\) −224.038 + 60.0309i −0.805893 + 0.215938i
\(279\) 159.256i 0.570811i
\(280\) 533.940 426.381i 1.90693 1.52279i
\(281\) 61.2527 0.217981 0.108991 0.994043i \(-0.465238\pi\)
0.108991 + 0.994043i \(0.465238\pi\)
\(282\) 68.3073 + 254.926i 0.242224 + 0.903994i
\(283\) 40.8640 152.506i 0.144396 0.538892i −0.855386 0.517991i \(-0.826680\pi\)
0.999782 0.0209006i \(-0.00665337\pi\)
\(284\) −413.503 + 238.736i −1.45600 + 0.840621i
\(285\) 64.7576 30.1287i 0.227220 0.105715i
\(286\) 603.304 2.10945
\(287\) −67.5595 278.005i −0.235399 0.968658i
\(288\) 97.3431 + 97.3431i 0.337997 + 0.337997i
\(289\) −186.928 107.923i −0.646809 0.373436i
\(290\) 98.9958 + 8.74751i 0.341365 + 0.0301638i
\(291\) 41.6388 + 72.1205i 0.143089 + 0.247837i
\(292\) −105.768 394.732i −0.362219 1.35182i
\(293\) 37.4650 + 37.4650i 0.127867 + 0.127867i 0.768144 0.640277i \(-0.221180\pi\)
−0.640277 + 0.768144i \(0.721180\pi\)
\(294\) 275.454 142.282i 0.936919 0.483952i
\(295\) −82.5994 + 14.4907i −0.279998 + 0.0491209i
\(296\) 348.906 604.322i 1.17874 2.04163i
\(297\) 74.1680 + 19.8733i 0.249724 + 0.0669133i
\(298\) −33.6672 + 125.648i −0.112977 + 0.421637i
\(299\) 182.209 + 105.199i 0.609395 + 0.351835i
\(300\) −171.636 + 366.414i −0.572120 + 1.22138i
\(301\) −276.706 + 454.369i −0.919289 + 1.50953i
\(302\) 113.259 113.259i 0.375030 0.375030i
\(303\) −31.8135 + 8.52440i −0.104995 + 0.0281333i
\(304\) −242.404 + 139.952i −0.797381 + 0.460368i
\(305\) −358.372 + 300.180i −1.17499 + 0.984198i
\(306\) −46.8661 + 81.1746i −0.153157 + 0.265276i
\(307\) 293.400 293.400i 0.955699 0.955699i −0.0433607 0.999059i \(-0.513806\pi\)
0.999059 + 0.0433607i \(0.0138065\pi\)
\(308\) −271.950 + 927.532i −0.882955 + 3.01147i
\(309\) 55.9443i 0.181050i
\(310\) 879.113 409.010i 2.83585 1.31939i
\(311\) 133.293 + 230.871i 0.428596 + 0.742351i 0.996749 0.0805727i \(-0.0256749\pi\)
−0.568152 + 0.822923i \(0.692342\pi\)
\(312\) −365.042 97.8126i −1.17000 0.313502i
\(313\) 213.767 57.2788i 0.682963 0.182999i 0.0993760 0.995050i \(-0.468315\pi\)
0.583587 + 0.812051i \(0.301649\pi\)
\(314\) 289.383i 0.921603i
\(315\) −62.2952 + 84.5240i −0.197763 + 0.268330i
\(316\) −267.361 −0.846079
\(317\) −119.525 446.075i −0.377052 1.40718i −0.850324 0.526260i \(-0.823594\pi\)
0.473272 0.880917i \(-0.343073\pi\)
\(318\) −94.1562 + 351.396i −0.296089 + 1.10502i
\(319\) −69.6320 + 40.2020i −0.218282 + 0.126025i
\(320\) 54.6342 149.702i 0.170732 0.467819i
\(321\) 258.073 0.803965
\(322\) −348.261 + 332.329i −1.08155 + 1.03208i
\(323\) −49.8786 49.8786i −0.154423 0.154423i
\(324\) −72.8318 42.0494i −0.224789 0.129782i
\(325\) −23.8692 278.385i −0.0734436 0.856571i
\(326\) −166.442 288.287i −0.510560 0.884315i
\(327\) 57.7871 + 215.664i 0.176719 + 0.659524i
\(328\) −564.208 564.208i −1.72015 1.72015i
\(329\) 256.214 140.035i 0.778764 0.425637i
\(330\) −80.7791 460.455i −0.244785 1.39532i
\(331\) −228.038 + 394.974i −0.688937 + 1.19327i 0.283245 + 0.959048i \(0.408589\pi\)
−0.972182 + 0.234226i \(0.924744\pi\)
\(332\) 441.505 + 118.301i 1.32983 + 0.356328i
\(333\) −27.7533 + 103.577i −0.0833433 + 0.311041i
\(334\) 848.694 + 489.994i 2.54100 + 1.46705i
\(335\) −446.515 313.231i −1.33288 0.935017i
\(336\) 214.028 351.447i 0.636988 1.04597i
\(337\) −334.947 + 334.947i −0.993908 + 0.993908i −0.999982 0.00607399i \(-0.998067\pi\)
0.00607399 + 0.999982i \(0.498067\pi\)
\(338\) −155.575 + 41.6863i −0.460282 + 0.123332i
\(339\) −127.828 + 73.8016i −0.377074 + 0.217704i
\(340\) 398.060 + 35.1736i 1.17076 + 0.103452i
\(341\) −392.226 + 679.355i −1.15022 + 1.99224i
\(342\) 63.9093 63.9093i 0.186869 0.186869i
\(343\) −224.924 258.956i −0.655756 0.754973i
\(344\) 1483.71i 4.31311i
\(345\) 55.8931 153.152i 0.162009 0.443918i
\(346\) 405.804 + 702.874i 1.17284 + 2.03143i
\(347\) −81.7004 21.8916i −0.235448 0.0630881i 0.139166 0.990269i \(-0.455558\pi\)
−0.374614 + 0.927181i \(0.622225\pi\)
\(348\) 85.0628 22.7925i 0.244433 0.0654957i
\(349\) 1.96290i 0.00562435i −0.999996 0.00281218i \(-0.999105\pi\)
0.999996 0.00281218i \(-0.000895145\pi\)
\(350\) 626.572 + 126.798i 1.79020 + 0.362281i
\(351\) 58.0736 0.165452
\(352\) 175.504 + 654.988i 0.498590 + 1.86076i
\(353\) 113.672 424.231i 0.322018 1.20179i −0.595258 0.803535i \(-0.702950\pi\)
0.917276 0.398253i \(-0.130383\pi\)
\(354\) −91.9028 + 53.0601i −0.259612 + 0.149887i
\(355\) −240.004 87.5902i −0.676069 0.246733i
\(356\) 493.622 1.38658
\(357\) 99.5109 + 29.1763i 0.278742 + 0.0817265i
\(358\) 9.59723 + 9.59723i 0.0268079 + 0.0268079i
\(359\) 206.235 + 119.070i 0.574471 + 0.331671i 0.758933 0.651169i \(-0.225721\pi\)
−0.184462 + 0.982840i \(0.559054\pi\)
\(360\) −25.7757 + 291.704i −0.0715993 + 0.810290i
\(361\) −146.491 253.731i −0.405793 0.702855i
\(362\) 120.524 + 449.800i 0.332938 + 1.24254i
\(363\) 119.246 + 119.246i 0.328503 + 0.328503i
\(364\) −17.1085 + 730.843i −0.0470014 + 2.00781i
\(365\) 125.577 179.012i 0.344046 0.490443i
\(366\) −295.783 + 512.311i −0.808150 + 1.39976i
\(367\) −372.666 99.8556i −1.01544 0.272086i −0.287539 0.957769i \(-0.592837\pi\)
−0.727901 + 0.685683i \(0.759504\pi\)
\(368\) −165.363 + 617.143i −0.449356 + 1.67702i
\(369\) 106.186 + 61.3063i 0.287766 + 0.166142i
\(370\) 643.033 112.809i 1.73793 0.304890i
\(371\) 402.368 + 9.41913i 1.08455 + 0.0253885i
\(372\) 607.532 607.532i 1.63315 1.63315i
\(373\) 171.804 46.0346i 0.460599 0.123417i −0.0210554 0.999778i \(-0.506703\pi\)
0.481655 + 0.876361i \(0.340036\pi\)
\(374\) −399.843 + 230.849i −1.06910 + 0.617245i
\(375\) −209.274 + 55.4918i −0.558064 + 0.147978i
\(376\) 407.167 705.234i 1.08289 1.87562i
\(377\) −43.0001 + 43.0001i −0.114059 + 0.114059i
\(378\) −37.3836 + 127.503i −0.0988983 + 0.337309i
\(379\) 530.767i 1.40044i −0.713927 0.700220i \(-0.753085\pi\)
0.713927 0.700220i \(-0.246915\pi\)
\(380\) −361.973 132.103i −0.952559 0.347639i
\(381\) −81.2764 140.775i −0.213324 0.369488i
\(382\) 643.774 + 172.499i 1.68527 + 0.451567i
\(383\) 92.4927 24.7833i 0.241495 0.0647085i −0.136041 0.990703i \(-0.543438\pi\)
0.377536 + 0.925995i \(0.376771\pi\)
\(384\) 116.262i 0.302765i
\(385\) −473.910 + 207.138i −1.23093 + 0.538020i
\(386\) −160.397 −0.415537
\(387\) −59.0100 220.228i −0.152481 0.569066i
\(388\) 116.282 433.969i 0.299695 1.11848i
\(389\) 275.146 158.856i 0.707317 0.408370i −0.102750 0.994707i \(-0.532764\pi\)
0.810067 + 0.586337i \(0.199431\pi\)
\(390\) −149.147 320.573i −0.382429 0.821982i
\(391\) −161.014 −0.411799
\(392\) −911.421 290.556i −2.32505 0.741215i
\(393\) −1.87267 1.87267i −0.00476507 0.00476507i
\(394\) −452.032 260.981i −1.14729 0.662388i
\(395\) −91.8626 109.671i −0.232563 0.277647i
\(396\) −207.124 358.749i −0.523040 0.905931i
\(397\) −72.8713 271.959i −0.183555 0.685036i −0.994935 0.100518i \(-0.967950\pi\)
0.811380 0.584519i \(-0.198717\pi\)
\(398\) −440.163 440.163i −1.10594 1.10594i
\(399\) −85.4024 52.0092i −0.214041 0.130349i
\(400\) 797.809 288.813i 1.99452 0.722032i
\(401\) −196.938 + 341.107i −0.491118 + 0.850642i −0.999948 0.0102254i \(-0.996745\pi\)
0.508829 + 0.860867i \(0.330078\pi\)
\(402\) −666.681 178.637i −1.65841 0.444370i
\(403\) −153.557 + 573.082i −0.381034 + 1.42204i
\(404\) 153.881 + 88.8433i 0.380894 + 0.219909i
\(405\) −7.77574 44.3231i −0.0191994 0.109440i
\(406\) −66.7281 122.089i −0.164355 0.300711i
\(407\) −373.485 + 373.485i −0.917654 + 0.917654i
\(408\) 279.360 74.8544i 0.684707 0.183467i
\(409\) −261.465 + 150.957i −0.639280 + 0.369088i −0.784337 0.620335i \(-0.786997\pi\)
0.145057 + 0.989423i \(0.453663\pi\)
\(410\) 65.7069 743.606i 0.160261 1.81367i
\(411\) 42.5753 73.7427i 0.103590 0.179423i
\(412\) −213.417 + 213.417i −0.518001 + 0.518001i
\(413\) 81.0524 + 84.9381i 0.196253 + 0.205661i
\(414\) 206.306i 0.498324i
\(415\) 103.170 + 221.751i 0.248602 + 0.534339i
\(416\) 256.428 + 444.147i 0.616414 + 1.06766i
\(417\) −106.227 28.4634i −0.254741 0.0682576i
\(418\) 430.023 115.224i 1.02876 0.275657i
\(419\) 439.671i 1.04934i −0.851307 0.524668i \(-0.824190\pi\)
0.851307 0.524668i \(-0.175810\pi\)
\(420\) 560.086 84.7982i 1.33354 0.201900i
\(421\) −134.308 −0.319020 −0.159510 0.987196i \(-0.550991\pi\)
−0.159510 + 0.987196i \(0.550991\pi\)
\(422\) 91.9925 + 343.321i 0.217992 + 0.813556i
\(423\) −32.3877 + 120.872i −0.0765666 + 0.285750i
\(424\) 972.110 561.248i 2.29271 1.32370i
\(425\) 122.341 + 175.368i 0.287862 + 0.412631i
\(426\) −323.303 −0.758927
\(427\) 628.036 + 184.139i 1.47081 + 0.431238i
\(428\) −984.496 984.496i −2.30023 2.30023i
\(429\) 247.730 + 143.027i 0.577460 + 0.333397i
\(430\) −1064.13 + 891.343i −2.47473 + 2.07289i
\(431\) −369.794 640.501i −0.857990 1.48608i −0.873843 0.486208i \(-0.838380\pi\)
0.0158536 0.999874i \(-0.494953\pi\)
\(432\) 45.6434 + 170.343i 0.105656 + 0.394313i
\(433\) 419.987 + 419.987i 0.969947 + 0.969947i 0.999561 0.0296144i \(-0.00942795\pi\)
−0.0296144 + 0.999561i \(0.509428\pi\)
\(434\) −1159.37 706.048i −2.67137 1.62684i
\(435\) 38.5761 + 27.0612i 0.0886807 + 0.0622096i
\(436\) 602.271 1043.16i 1.38136 2.39258i
\(437\) 149.967 + 40.1835i 0.343174 + 0.0919532i
\(438\) 71.6169 267.278i 0.163509 0.610223i
\(439\) 160.861 + 92.8731i 0.366426 + 0.211556i 0.671896 0.740646i \(-0.265480\pi\)
−0.305470 + 0.952202i \(0.598814\pi\)
\(440\) −828.381 + 1180.87i −1.88268 + 2.68380i
\(441\) 146.839 + 6.87856i 0.332968 + 0.0155976i
\(442\) −246.917 + 246.917i −0.558635 + 0.558635i
\(443\) −796.525 + 213.428i −1.79802 + 0.481779i −0.993667 0.112366i \(-0.964157\pi\)
−0.804358 + 0.594145i \(0.797491\pi\)
\(444\) 500.998 289.252i 1.12837 0.651467i
\(445\) 169.604 + 202.482i 0.381132 + 0.455016i
\(446\) 121.000 209.578i 0.271301 0.469907i
\(447\) −43.6123 + 43.6123i −0.0975666 + 0.0975666i
\(448\) −216.794 + 52.6844i −0.483916 + 0.117599i
\(449\) 116.438i 0.259328i 0.991558 + 0.129664i \(0.0413898\pi\)
−0.991558 + 0.129664i \(0.958610\pi\)
\(450\) −224.699 + 156.756i −0.499330 + 0.348346i
\(451\) 301.978 + 523.040i 0.669573 + 1.15973i
\(452\) 769.178 + 206.101i 1.70172 + 0.455975i
\(453\) 73.3575 19.6561i 0.161937 0.0433909i
\(454\) 505.572i 1.11360i
\(455\) −305.667 + 244.092i −0.671797 + 0.536467i
\(456\) −278.876 −0.611569
\(457\) −23.0344 85.9655i −0.0504035 0.188108i 0.936134 0.351643i \(-0.114377\pi\)
−0.986538 + 0.163535i \(0.947710\pi\)
\(458\) −285.272 + 1064.65i −0.622865 + 2.32456i
\(459\) −38.4886 + 22.2214i −0.0838532 + 0.0484127i
\(460\) −797.465 + 371.022i −1.73362 + 0.806571i
\(461\) 556.638 1.20746 0.603729 0.797190i \(-0.293681\pi\)
0.603729 + 0.797190i \(0.293681\pi\)
\(462\) −473.493 + 451.831i −1.02488 + 0.977990i
\(463\) −154.534 154.534i −0.333767 0.333767i 0.520248 0.854015i \(-0.325840\pi\)
−0.854015 + 0.520248i \(0.825840\pi\)
\(464\) −159.925 92.3330i −0.344667 0.198994i
\(465\) 457.949 + 40.4655i 0.984837 + 0.0870226i
\(466\) −433.563 750.954i −0.930394 1.61149i
\(467\) 0.204689 + 0.763909i 0.000438306 + 0.00163578i 0.966145 0.258001i \(-0.0830638\pi\)
−0.965706 + 0.259637i \(0.916397\pi\)
\(468\) −221.539 221.539i −0.473375 0.473375i
\(469\) −17.8703 + 763.387i −0.0381030 + 1.62769i
\(470\) 750.409 131.647i 1.59661 0.280099i
\(471\) 68.6050 118.827i 0.145658 0.252287i
\(472\) 316.281 + 84.7473i 0.670088 + 0.179549i
\(473\) 290.667 1084.78i 0.614518 2.29341i
\(474\) −156.780 90.5168i −0.330759 0.190964i
\(475\) −70.1821 193.869i −0.147752 0.408145i
\(476\) −268.312 490.916i −0.563681 1.03134i
\(477\) −121.969 + 121.969i −0.255701 + 0.255701i
\(478\) 1462.62 391.909i 3.05988 0.819892i
\(479\) 758.464 437.899i 1.58343 0.914195i 0.589079 0.808076i \(-0.299491\pi\)
0.994353 0.106119i \(-0.0338426\pi\)
\(480\) 304.649 255.181i 0.634684 0.531626i
\(481\) −199.740 + 345.959i −0.415259 + 0.719250i
\(482\) −251.042 + 251.042i −0.520834 + 0.520834i
\(483\) −221.790 + 53.8984i −0.459192 + 0.111591i
\(484\) 909.804i 1.87976i
\(485\) 217.966 101.409i 0.449414 0.209091i
\(486\) −28.4722 49.3153i −0.0585848 0.101472i
\(487\) 541.121 + 144.993i 1.11113 + 0.297727i 0.767289 0.641301i \(-0.221605\pi\)
0.343841 + 0.939028i \(0.388272\pi\)
\(488\) 1763.11 472.423i 3.61292 0.968080i
\(489\) 157.836i 0.322773i
\(490\) −339.148 828.234i −0.692139 1.69027i
\(491\) 383.827 0.781726 0.390863 0.920449i \(-0.372177\pi\)
0.390863 + 0.920449i \(0.372177\pi\)
\(492\) −171.206 638.949i −0.347979 1.29868i
\(493\) 12.0449 44.9522i 0.0244319 0.0911809i
\(494\) 291.598 168.354i 0.590280 0.340798i
\(495\) 75.9919 208.224i 0.153519 0.420654i
\(496\) −1801.67 −3.63240
\(497\) 84.4643 + 347.567i 0.169948 + 0.699331i
\(498\) 218.845 + 218.845i 0.439449 + 0.439449i
\(499\) 10.5456 + 6.08851i 0.0211335 + 0.0122014i 0.510530 0.859860i \(-0.329449\pi\)
−0.489396 + 0.872062i \(0.662783\pi\)
\(500\) 1010.03 + 586.649i 2.02006 + 1.17330i
\(501\) 232.329 + 402.405i 0.463730 + 0.803204i
\(502\) −173.093 645.993i −0.344808 1.28684i
\(503\) 250.202 + 250.202i 0.497420 + 0.497420i 0.910634 0.413214i \(-0.135594\pi\)
−0.413214 + 0.910634i \(0.635594\pi\)
\(504\) 359.751 196.623i 0.713792 0.390126i
\(505\) 16.4288 + 93.6472i 0.0325323 + 0.185440i
\(506\) 508.103 880.060i 1.00416 1.73925i
\(507\) −73.7654 19.7654i −0.145494 0.0389850i
\(508\) −226.975 + 847.081i −0.446801 + 1.66748i
\(509\) −536.048 309.488i −1.05314 0.608031i −0.129613 0.991565i \(-0.541374\pi\)
−0.923527 + 0.383534i \(0.874707\pi\)
\(510\) 221.513 + 155.391i 0.434339 + 0.304689i
\(511\) −306.048 7.16436i −0.598920 0.0140203i
\(512\) 772.824 772.824i 1.50942 1.50942i
\(513\) 41.3938 11.0914i 0.0806896 0.0216207i
\(514\) 515.817 297.807i 1.00354 0.579392i
\(515\) −160.870 14.2149i −0.312370 0.0276018i
\(516\) −615.016 + 1065.24i −1.19189 + 2.06442i
\(517\) −435.851 + 435.851i −0.843038 + 0.843038i
\(518\) −630.990 661.240i −1.21813 1.27652i
\(519\) 384.821i 0.741467i
\(520\) −374.018 + 1024.84i −0.719266 + 1.97085i
\(521\) 234.346 + 405.900i 0.449801 + 0.779078i 0.998373 0.0570252i \(-0.0181615\pi\)
−0.548572 + 0.836104i \(0.684828\pi\)
\(522\) 57.5971 + 15.4331i 0.110339 + 0.0295653i
\(523\) 15.0962 4.04502i 0.0288647 0.00773427i −0.244358 0.969685i \(-0.578577\pi\)
0.273222 + 0.961951i \(0.411910\pi\)
\(524\) 14.2878i 0.0272667i
\(525\) 227.224 + 200.610i 0.432808 + 0.382114i
\(526\) −1501.24 −2.85407
\(527\) −117.515 438.570i −0.222988 0.832202i
\(528\) −224.826 + 839.064i −0.425808 + 1.58914i
\(529\) −151.214 + 87.3034i −0.285849 + 0.165035i
\(530\) 986.531 + 360.037i 1.86138 + 0.679315i
\(531\) −50.3165 −0.0947580
\(532\) 127.388 + 524.198i 0.239452 + 0.985335i
\(533\) 322.995 + 322.995i 0.605994 + 0.605994i
\(534\) 289.459 + 167.119i 0.542057 + 0.312957i
\(535\) 65.5738 742.100i 0.122568 1.38710i
\(536\) 1064.82 + 1844.32i 1.98660 + 3.44090i
\(537\) 1.66560 + 6.21609i 0.00310167 + 0.0115756i
\(538\) 189.877 + 189.877i 0.352931 + 0.352931i
\(539\) 609.444 + 390.986i 1.13069 + 0.725392i
\(540\) −139.421 + 198.747i −0.258187 + 0.368050i
\(541\) 364.758 631.779i 0.674229 1.16780i −0.302465 0.953161i \(-0.597810\pi\)
0.976694 0.214638i \(-0.0688571\pi\)
\(542\) −1468.35 393.443i −2.70913 0.725909i
\(543\) −57.1458 + 213.271i −0.105241 + 0.392765i
\(544\) −339.898 196.240i −0.624813 0.360736i
\(545\) 634.836 111.371i 1.16484 0.204351i
\(546\) −257.464 + 422.772i −0.471546 + 0.774307i
\(547\) 464.863 464.863i 0.849841 0.849841i −0.140272 0.990113i \(-0.544798\pi\)
0.990113 + 0.140272i \(0.0447977\pi\)
\(548\) −443.730 + 118.897i −0.809727 + 0.216966i
\(549\) −242.910 + 140.244i −0.442460 + 0.255454i
\(550\) −1344.59 + 115.287i −2.44470 + 0.209612i
\(551\) −22.4371 + 38.8622i −0.0407207 + 0.0705303i
\(552\) −450.121 + 450.121i −0.815436 + 0.815436i
\(553\) −56.3509 + 192.194i −0.101900 + 0.347548i
\(554\) 1129.43i 2.03868i
\(555\) 290.788 + 106.124i 0.523942 + 0.191214i
\(556\) 296.653 + 513.817i 0.533548 + 0.924132i
\(557\) −368.054 98.6198i −0.660779 0.177055i −0.0871816 0.996192i \(-0.527786\pi\)
−0.573598 + 0.819137i \(0.694453\pi\)
\(558\) 561.939 150.571i 1.00706 0.269840i
\(559\) 849.387i 1.51948i
\(560\) −956.221 704.747i −1.70754 1.25848i
\(561\) −218.913 −0.390219
\(562\) −57.9121 216.131i −0.103046 0.384575i
\(563\) −204.414 + 762.882i −0.363079 + 1.35503i 0.506927 + 0.861989i \(0.330781\pi\)
−0.870006 + 0.493041i \(0.835885\pi\)
\(564\) 584.657 337.552i 1.03663 0.598496i
\(565\) 179.740 + 386.328i 0.318124 + 0.683766i
\(566\) −576.757 −1.01900
\(567\) −45.5781 + 43.4930i −0.0803846 + 0.0767072i
\(568\) 705.385 + 705.385i 1.24188 + 1.24188i
\(569\) 271.365 + 156.673i 0.476916 + 0.275347i 0.719130 0.694875i \(-0.244540\pi\)
−0.242215 + 0.970223i \(0.577874\pi\)
\(570\) −167.535 200.013i −0.293922 0.350900i
\(571\) −385.124 667.054i −0.674472 1.16822i −0.976623 0.214960i \(-0.931038\pi\)
0.302151 0.953260i \(-0.402295\pi\)
\(572\) −399.422 1490.66i −0.698290 2.60605i
\(573\) 223.453 + 223.453i 0.389971 + 0.389971i
\(574\) −917.069 + 501.228i −1.59768 + 0.873219i
\(575\) −426.193 199.638i −0.741205 0.347196i
\(576\) 47.8080 82.8059i 0.0830000 0.143760i
\(577\) −812.444 217.694i −1.40805 0.377286i −0.526821 0.849976i \(-0.676616\pi\)
−0.881228 + 0.472691i \(0.843283\pi\)
\(578\) −204.074 + 761.615i −0.353069 + 1.31767i
\(579\) −65.8627 38.0259i −0.113753 0.0656751i
\(580\) −43.9273 250.393i −0.0757367 0.431713i
\(581\) 178.096 292.445i 0.306533 0.503347i
\(582\) 215.110 215.110i 0.369606 0.369606i
\(583\) −820.689 + 219.903i −1.40770 + 0.377192i
\(584\) −739.404 + 426.895i −1.26610 + 0.730985i
\(585\) 14.7560 166.993i 0.0252239 0.285459i
\(586\) 96.7740 167.618i 0.165143 0.286037i
\(587\) 300.621 300.621i 0.512131 0.512131i −0.403048 0.915179i \(-0.632049\pi\)
0.915179 + 0.403048i \(0.132049\pi\)
\(588\) −533.921 586.402i −0.908030 0.997282i
\(589\) 437.809i 0.743309i
\(590\) 129.225 + 277.753i 0.219026 + 0.470767i
\(591\) −123.743 214.329i −0.209379 0.362656i
\(592\) −1171.77 313.974i −1.97933 0.530361i
\(593\) −331.323 + 88.7777i −0.558723 + 0.149709i −0.527120 0.849791i \(-0.676728\pi\)
−0.0316034 + 0.999500i \(0.510061\pi\)
\(594\) 280.492i 0.472209i
\(595\) 109.183 278.735i 0.183500 0.468462i
\(596\) 332.744 0.558296
\(597\) −76.3901 285.092i −0.127957 0.477541i
\(598\) 198.923 742.389i 0.332647 1.24145i
\(599\) −407.516 + 235.280i −0.680328 + 0.392787i −0.799978 0.600029i \(-0.795156\pi\)
0.119651 + 0.992816i \(0.461822\pi\)
\(600\) 832.261 + 148.239i 1.38710 + 0.247064i
\(601\) 1180.46 1.96417 0.982083 0.188450i \(-0.0603464\pi\)
0.982083 + 0.188450i \(0.0603464\pi\)
\(602\) 1864.86 + 546.773i 3.09778 + 0.908261i
\(603\) −231.404 231.404i −0.383755 0.383755i
\(604\) −354.828 204.860i −0.587464 0.339173i
\(605\) 373.198 312.599i 0.616857 0.516693i
\(606\) 60.1569 + 104.195i 0.0992689 + 0.171939i
\(607\) 223.553 + 834.313i 0.368292 + 1.37449i 0.862902 + 0.505371i \(0.168644\pi\)
−0.494610 + 0.869115i \(0.664689\pi\)
\(608\) 267.604 + 267.604i 0.440139 + 0.440139i
\(609\) 1.54388 65.9519i 0.00253511 0.108295i
\(610\) 1398.02 + 980.711i 2.29183 + 1.60772i
\(611\) −233.093 + 403.729i −0.381494 + 0.660767i
\(612\) 231.597 + 62.0562i 0.378426 + 0.101399i
\(613\) 128.245 478.615i 0.209208 0.780775i −0.778918 0.627126i \(-0.784231\pi\)
0.988126 0.153649i \(-0.0491024\pi\)
\(614\) −1312.66 757.866i −2.13789 1.23431i
\(615\) 203.270 289.764i 0.330520 0.471162i
\(616\) 2018.88 + 47.2605i 3.27740 + 0.0767216i
\(617\) 13.0926 13.0926i 0.0212197 0.0212197i −0.696417 0.717637i \(-0.745224\pi\)
0.717637 + 0.696417i \(0.245224\pi\)
\(618\) −197.400 + 52.8933i −0.319418 + 0.0855878i
\(619\) −386.935 + 223.397i −0.625096 + 0.360899i −0.778850 0.627210i \(-0.784197\pi\)
0.153754 + 0.988109i \(0.450864\pi\)
\(620\) −1592.62 1901.35i −2.56874 3.06670i
\(621\) 48.9097 84.7140i 0.0787595 0.136415i
\(622\) 688.608 688.608i 1.10709 1.10709i
\(623\) 104.039 354.844i 0.166997 0.569573i
\(624\) 656.988i 1.05287i
\(625\) 106.395 + 615.878i 0.170231 + 0.985404i
\(626\) −404.218 700.127i −0.645716 1.11841i
\(627\) 203.894 + 54.6332i 0.325190 + 0.0871344i
\(628\) −715.018 + 191.588i −1.13856 + 0.305077i
\(629\) 305.715i 0.486034i
\(630\) 357.142 + 139.895i 0.566892 + 0.222056i
\(631\) 905.125 1.43443 0.717215 0.696852i \(-0.245417\pi\)
0.717215 + 0.696852i \(0.245417\pi\)
\(632\) 144.573 + 539.554i 0.228755 + 0.853724i
\(633\) −43.6179 + 162.784i −0.0689067 + 0.257163i
\(634\) −1460.98 + 843.495i −2.30438 + 1.33043i
\(635\) −425.456 + 197.945i −0.670010 + 0.311724i
\(636\) 930.577 1.46317
\(637\) 521.765 + 166.336i 0.819098 + 0.261124i
\(638\) 207.688 + 207.688i 0.325530 + 0.325530i
\(639\) −132.756 76.6464i −0.207755 0.119947i
\(640\) 334.316 + 29.5410i 0.522369 + 0.0461579i
\(641\) 112.385 + 194.656i 0.175327 + 0.303675i 0.940274 0.340417i \(-0.110568\pi\)
−0.764947 + 0.644093i \(0.777235\pi\)
\(642\) −243.998 910.613i −0.380059 1.41840i
\(643\) −115.806 115.806i −0.180102 0.180102i 0.611298 0.791400i \(-0.290648\pi\)
−0.791400 + 0.611298i \(0.790648\pi\)
\(644\) 1051.70 + 640.473i 1.63307 + 0.994523i
\(645\) −648.271 + 113.728i −1.00507 + 0.176323i
\(646\) −128.839 + 223.156i −0.199441 + 0.345442i
\(647\) −457.021 122.458i −0.706369 0.189271i −0.112288 0.993676i \(-0.535818\pi\)
−0.594082 + 0.804405i \(0.702484\pi\)
\(648\) −45.4757 + 169.718i −0.0701786 + 0.261910i
\(649\) −214.640 123.922i −0.330724 0.190944i
\(650\) −959.720 + 347.426i −1.47649 + 0.534501i
\(651\) −308.681 564.776i −0.474164 0.867551i
\(652\) −602.114 + 602.114i −0.923488 + 0.923488i
\(653\) 1017.45 272.625i 1.55812 0.417497i 0.626051 0.779782i \(-0.284670\pi\)
0.932067 + 0.362285i \(0.118003\pi\)
\(654\) 706.340 407.805i 1.08003 0.623556i
\(655\) −5.86079 + 4.90913i −0.00894777 + 0.00749486i
\(656\) −693.559 + 1201.28i −1.05725 + 1.83122i
\(657\) 92.7719 92.7719i 0.141205 0.141205i
\(658\) −736.354 771.656i −1.11908 1.17273i
\(659\) 77.0532i 0.116924i 0.998290 + 0.0584622i \(0.0186197\pi\)
−0.998290 + 0.0584622i \(0.981380\pi\)
\(660\) −1084.23 + 504.439i −1.64277 + 0.764302i
\(661\) −321.259 556.436i −0.486019 0.841810i 0.513852 0.857879i \(-0.328218\pi\)
−0.999871 + 0.0160692i \(0.994885\pi\)
\(662\) 1609.27 + 431.203i 2.43093 + 0.651364i
\(663\) −159.927 + 42.8523i −0.241217 + 0.0646339i
\(664\) 954.958i 1.43819i
\(665\) −171.255 + 232.364i −0.257526 + 0.349419i
\(666\) 391.712 0.588156
\(667\) 26.5110 + 98.9404i 0.0397466 + 0.148336i
\(668\) 648.808 2421.38i 0.971270 3.62483i
\(669\) 99.3708 57.3718i 0.148536 0.0857575i
\(670\) −683.075 + 1871.68i −1.01952 + 2.79356i
\(671\) −1381.61 −2.05903
\(672\) −533.887 156.534i −0.794475 0.232938i
\(673\) −321.230 321.230i −0.477310 0.477310i 0.426960 0.904270i \(-0.359584\pi\)
−0.904270 + 0.426960i \(0.859584\pi\)
\(674\) 1498.54 + 865.185i 2.22336 + 1.28366i
\(675\) −129.429 + 11.0974i −0.191747 + 0.0164406i
\(676\) 206.000 + 356.802i 0.304733 + 0.527813i
\(677\) 291.552 + 1088.09i 0.430654 + 1.60722i 0.751259 + 0.660008i \(0.229447\pi\)
−0.320605 + 0.947213i \(0.603886\pi\)
\(678\) 381.267 + 381.267i 0.562340 + 0.562340i
\(679\) −287.454 175.056i −0.423348 0.257815i
\(680\) −144.265 822.334i −0.212154 1.20931i
\(681\) 119.858 207.600i 0.176002 0.304845i
\(682\) 2767.95 + 741.670i 4.05858 + 1.08749i
\(683\) −283.849 + 1059.34i −0.415592 + 1.55101i 0.368056 + 0.929804i \(0.380023\pi\)
−0.783648 + 0.621206i \(0.786643\pi\)
\(684\) −200.221 115.597i −0.292720 0.169002i
\(685\) −201.233 141.165i −0.293770 0.206080i
\(686\) −701.072 + 1038.48i −1.02197 + 1.51382i
\(687\) −369.539 + 369.539i −0.537902 + 0.537902i
\(688\) 2491.45 667.581i 3.62129 0.970322i
\(689\) −556.508 + 321.300i −0.807704 + 0.466328i
\(690\) −593.243 52.4204i −0.859773 0.0759716i
\(691\) −47.8948 + 82.9562i −0.0693123 + 0.120052i −0.898599 0.438771i \(-0.855414\pi\)
0.829286 + 0.558824i \(0.188747\pi\)
\(692\) 1468.02 1468.02i 2.12141 2.12141i
\(693\) −301.544 + 73.2799i −0.435128 + 0.105743i
\(694\) 308.979i 0.445214i
\(695\) −108.839 + 298.228i −0.156603 + 0.429105i
\(696\) −91.9938 159.338i −0.132175 0.228934i
\(697\) −337.658 90.4752i −0.484445 0.129807i
\(698\) −6.92612 + 1.85585i −0.00992281 + 0.00265881i
\(699\) 411.145i 0.588190i
\(700\) −101.529 1632.10i −0.145041 2.33157i
\(701\) −518.219 −0.739257 −0.369628 0.929180i \(-0.620515\pi\)
−0.369628 + 0.929180i \(0.620515\pi\)
\(702\) −54.9065 204.914i −0.0782143 0.291900i
\(703\) −76.2962 + 284.741i −0.108529 + 0.405037i
\(704\) 407.879 235.489i 0.579373 0.334501i
\(705\) 339.345 + 123.845i 0.481340 + 0.175666i
\(706\) −1604.38 −2.27249
\(707\) 96.2987 91.8932i 0.136207 0.129976i
\(708\) 191.947 + 191.947i 0.271112 + 0.271112i
\(709\) 382.186 + 220.655i 0.539049 + 0.311220i 0.744693 0.667407i \(-0.232596\pi\)
−0.205645 + 0.978627i \(0.565929\pi\)
\(710\) −82.1482 + 929.673i −0.115702 + 1.30940i
\(711\) −42.9182 74.3365i −0.0603631 0.104552i
\(712\) −266.922 996.165i −0.374890 1.39911i
\(713\) 706.648 + 706.648i 0.991091 + 0.991091i
\(714\) 8.86534 378.711i 0.0124164 0.530407i
\(715\) 474.227 676.018i 0.663255 0.945480i
\(716\) 17.3592 30.0671i 0.0242447 0.0419931i
\(717\) 693.497 + 185.822i 0.967220 + 0.259166i
\(718\) 225.152 840.279i 0.313582 1.17031i
\(719\) −922.670 532.704i −1.28327 0.740896i −0.305825 0.952088i \(-0.598932\pi\)
−0.977445 + 0.211192i \(0.932265\pi\)
\(720\) 501.428 87.9670i 0.696428 0.122176i
\(721\) 108.435 + 198.397i 0.150395 + 0.275169i
\(722\) −756.790 + 756.790i −1.04819 + 1.04819i
\(723\) −162.599 + 43.5682i −0.224895 + 0.0602603i
\(724\) 1031.59 595.587i 1.42484 0.822634i
\(725\) 87.6175 104.051i 0.120852 0.143519i
\(726\) 308.020 533.506i 0.424270 0.734857i
\(727\) −1013.20 + 1013.20i −1.39367 + 1.39367i −0.576755 + 0.816917i \(0.695681\pi\)
−0.816917 + 0.576755i \(0.804319\pi\)
\(728\) 1484.14 360.670i 2.03866 0.495426i
\(729\) 27.0000i 0.0370370i
\(730\) −750.373 273.851i −1.02791 0.375138i
\(731\) 325.011 + 562.936i 0.444612 + 0.770090i
\(732\) 1461.66 + 391.651i 1.99680 + 0.535042i
\(733\) 489.670 131.207i 0.668035 0.178999i 0.0911656 0.995836i \(-0.470941\pi\)
0.576870 + 0.816836i \(0.304274\pi\)
\(734\) 1409.37i 1.92012i
\(735\) 57.0900 420.495i 0.0776735 0.572102i
\(736\) 863.856 1.17372
\(737\) −417.208 1557.04i −0.566090 2.11267i
\(738\) 115.926 432.640i 0.157081 0.586234i
\(739\) 436.379 251.943i 0.590499 0.340925i −0.174796 0.984605i \(-0.555927\pi\)
0.765295 + 0.643680i \(0.222593\pi\)
\(740\) −704.457 1514.14i −0.951970 2.04614i
\(741\) 159.649 0.215451
\(742\) −347.188 1428.67i −0.467908 1.92543i
\(743\) −93.7564 93.7564i −0.126186 0.126186i 0.641193 0.767380i \(-0.278440\pi\)
−0.767380 + 0.641193i \(0.778440\pi\)
\(744\) −1554.56 897.526i −2.08946 1.20635i
\(745\) 114.328 + 136.491i 0.153460 + 0.183209i
\(746\) −324.868 562.687i −0.435480 0.754273i
\(747\) 37.9805 + 141.745i 0.0508441 + 0.189753i
\(748\) 835.109 + 835.109i 1.11646 + 1.11646i
\(749\) −915.211 + 500.213i −1.22191 + 0.667841i
\(750\) 393.664 + 685.962i 0.524886 + 0.914615i
\(751\) 236.900 410.323i 0.315446 0.546369i −0.664086 0.747656i \(-0.731179\pi\)
0.979532 + 0.201287i \(0.0645125\pi\)
\(752\) −1367.43 366.402i −1.81839 0.487237i
\(753\) 82.0716 306.295i 0.108993 0.406767i
\(754\) 192.381 + 111.072i 0.255148 + 0.147310i
\(755\) −37.8825 215.937i −0.0501755 0.286010i
\(756\) 339.789 + 7.95420i 0.449456 + 0.0105214i
\(757\) −119.279 + 119.279i −0.157568 + 0.157568i −0.781488 0.623920i \(-0.785539\pi\)
0.623920 + 0.781488i \(0.285539\pi\)
\(758\) −1872.82 + 501.821i −2.47074 + 0.662032i
\(759\) 417.277 240.915i 0.549773 0.317411i
\(760\) −70.8596 + 801.920i −0.0932364 + 1.05516i
\(761\) 378.809 656.117i 0.497778