Properties

Label 105.3.v.a.37.8
Level 105
Weight 3
Character 105.37
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.8
Character \(\chi\) \(=\) 105.37
Dual form 105.3.v.a.88.8

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.435396 + 0.116664i) q^{2} +(1.67303 + 0.448288i) q^{3} +(-3.28814 + 1.89841i) q^{4} +(3.62365 - 3.44517i) q^{5} -0.780730 q^{6} +(6.87993 + 1.29096i) q^{7} +(2.48509 - 2.48509i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-0.435396 + 0.116664i) q^{2} +(1.67303 + 0.448288i) q^{3} +(-3.28814 + 1.89841i) q^{4} +(3.62365 - 3.44517i) q^{5} -0.780730 q^{6} +(6.87993 + 1.29096i) q^{7} +(2.48509 - 2.48509i) q^{8} +(2.59808 + 1.50000i) q^{9} +(-1.17579 + 1.92276i) q^{10} +(10.0112 + 17.3398i) q^{11} +(-6.35220 + 1.70207i) q^{12} +(-2.67217 + 2.67217i) q^{13} +(-3.14610 + 0.240560i) q^{14} +(7.60691 - 4.13944i) q^{15} +(6.80156 - 11.7807i) q^{16} +(3.22785 - 12.0465i) q^{17} +(-1.30619 - 0.349992i) q^{18} +(-18.7697 - 10.8367i) q^{19} +(-5.37472 + 18.2074i) q^{20} +(10.9316 + 5.24401i) q^{21} +(-6.38175 - 6.38175i) q^{22} +(7.07907 + 26.4195i) q^{23} +(5.27168 - 3.04361i) q^{24} +(1.26162 - 24.9681i) q^{25} +(0.851706 - 1.47520i) q^{26} +(3.67423 + 3.67423i) q^{27} +(-25.0730 + 8.81606i) q^{28} -29.0697i q^{29} +(-2.82909 + 2.68975i) q^{30} +(-22.1260 - 38.3234i) q^{31} +(-5.22542 + 19.5015i) q^{32} +(8.97576 + 33.4980i) q^{33} +5.62157i q^{34} +(29.3780 - 19.0245i) q^{35} -11.3905 q^{36} +(-59.0392 + 15.8195i) q^{37} +(9.43648 + 2.52850i) q^{38} +(-5.66854 + 3.27273i) q^{39} +(0.443533 - 17.5667i) q^{40} -19.8782 q^{41} +(-5.37137 - 1.00789i) q^{42} +(-14.0418 + 14.0418i) q^{43} +(-65.8363 - 38.0106i) q^{44} +(14.5823 - 3.51534i) q^{45} +(-6.16439 - 10.6770i) q^{46} +(-10.8275 + 2.90122i) q^{47} +(16.6604 - 16.6604i) q^{48} +(45.6668 + 17.7635i) q^{49} +(2.36358 + 11.0182i) q^{50} +(10.8006 - 18.7072i) q^{51} +(3.71361 - 13.8594i) q^{52} +(-31.2612 - 8.37642i) q^{53} +(-2.02840 - 1.17109i) q^{54} +(96.0156 + 28.3433i) q^{55} +(20.3054 - 13.8891i) q^{56} +(-26.5443 - 26.5443i) q^{57} +(3.39139 + 12.6568i) q^{58} +(49.6246 - 28.6507i) q^{59} +(-17.1542 + 28.0521i) q^{60} +(-9.82028 + 17.0092i) q^{61} +(14.1045 + 14.1045i) q^{62} +(15.9381 + 13.6739i) q^{63} +45.3120i q^{64} +(-0.476922 + 18.8891i) q^{65} +(-7.81601 - 13.5377i) q^{66} +(-3.54467 + 13.2289i) q^{67} +(12.2556 + 45.7384i) q^{68} +47.3741i q^{69} +(-10.5716 + 11.7105i) q^{70} +71.1638 q^{71} +(10.1841 - 2.72882i) q^{72} +(90.0261 + 24.1224i) q^{73} +(23.8598 - 13.7755i) q^{74} +(13.3037 - 41.2070i) q^{75} +82.2898 q^{76} +(46.4910 + 132.221i) q^{77} +(2.08625 - 2.08625i) q^{78} +(-112.260 - 64.8134i) q^{79} +(-15.9399 - 66.1214i) q^{80} +(4.50000 + 7.79423i) q^{81} +(8.65488 - 2.31907i) q^{82} +(-20.5661 + 20.5661i) q^{83} +(-45.9000 + 3.50965i) q^{84} +(-29.8056 - 54.7727i) q^{85} +(4.47558 - 7.75193i) q^{86} +(13.0316 - 48.6346i) q^{87} +(67.9698 + 18.2125i) q^{88} +(-29.0452 - 16.7692i) q^{89} +(-5.93894 + 3.23179i) q^{90} +(-21.8340 + 14.9347i) q^{91} +(-73.4319 - 73.4319i) q^{92} +(-19.8376 - 74.0351i) q^{93} +(4.37578 - 2.52635i) q^{94} +(-105.349 + 25.3964i) q^{95} +(-17.4846 + 30.2842i) q^{96} +(-36.1403 - 36.1403i) q^{97} +(-21.9555 - 2.40646i) q^{98} +60.0670i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.435396 + 0.116664i −0.217698 + 0.0583319i −0.366019 0.930607i \(-0.619280\pi\)
0.148322 + 0.988939i \(0.452613\pi\)
\(3\) 1.67303 + 0.448288i 0.557678 + 0.149429i
\(4\) −3.28814 + 1.89841i −0.822036 + 0.474603i
\(5\) 3.62365 3.44517i 0.724729 0.689034i
\(6\) −0.780730 −0.130122
\(7\) 6.87993 + 1.29096i 0.982847 + 0.184423i
\(8\) 2.48509 2.48509i 0.310637 0.310637i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) −1.17579 + 1.92276i −0.117579 + 0.192276i
\(11\) 10.0112 + 17.3398i 0.910106 + 1.57635i 0.813913 + 0.580987i \(0.197333\pi\)
0.0961926 + 0.995363i \(0.469334\pi\)
\(12\) −6.35220 + 1.70207i −0.529350 + 0.141839i
\(13\) −2.67217 + 2.67217i −0.205552 + 0.205552i −0.802374 0.596822i \(-0.796430\pi\)
0.596822 + 0.802374i \(0.296430\pi\)
\(14\) −3.14610 + 0.240560i −0.224721 + 0.0171828i
\(15\) 7.60691 4.13944i 0.507127 0.275963i
\(16\) 6.80156 11.7807i 0.425098 0.736291i
\(17\) 3.22785 12.0465i 0.189874 0.708618i −0.803661 0.595087i \(-0.797117\pi\)
0.993535 0.113530i \(-0.0362159\pi\)
\(18\) −1.30619 0.349992i −0.0725659 0.0194440i
\(19\) −18.7697 10.8367i −0.987878 0.570352i −0.0832385 0.996530i \(-0.526526\pi\)
−0.904639 + 0.426178i \(0.859860\pi\)
\(20\) −5.37472 + 18.2074i −0.268736 + 0.910369i
\(21\) 10.9316 + 5.24401i 0.520553 + 0.249715i
\(22\) −6.38175 6.38175i −0.290080 0.290080i
\(23\) 7.07907 + 26.4195i 0.307786 + 1.14867i 0.930521 + 0.366239i \(0.119355\pi\)
−0.622735 + 0.782433i \(0.713979\pi\)
\(24\) 5.27168 3.04361i 0.219653 0.126817i
\(25\) 1.26162 24.9681i 0.0504649 0.998726i
\(26\) 0.851706 1.47520i 0.0327579 0.0567384i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) −25.0730 + 8.81606i −0.895463 + 0.314859i
\(29\) 29.0697i 1.00240i −0.865330 0.501202i \(-0.832891\pi\)
0.865330 0.501202i \(-0.167109\pi\)
\(30\) −2.82909 + 2.68975i −0.0943030 + 0.0896582i
\(31\) −22.1260 38.3234i −0.713742 1.23624i −0.963443 0.267915i \(-0.913666\pi\)
0.249701 0.968323i \(-0.419668\pi\)
\(32\) −5.22542 + 19.5015i −0.163294 + 0.609423i
\(33\) 8.97576 + 33.4980i 0.271993 + 1.01509i
\(34\) 5.62157i 0.165340i
\(35\) 29.3780 19.0245i 0.839372 0.543558i
\(36\) −11.3905 −0.316402
\(37\) −59.0392 + 15.8195i −1.59565 + 0.427554i −0.943727 0.330727i \(-0.892706\pi\)
−0.651928 + 0.758281i \(0.726040\pi\)
\(38\) 9.43648 + 2.52850i 0.248329 + 0.0665394i
\(39\) −5.66854 + 3.27273i −0.145347 + 0.0839162i
\(40\) 0.443533 17.5667i 0.0110883 0.439167i
\(41\) −19.8782 −0.484834 −0.242417 0.970172i \(-0.577940\pi\)
−0.242417 + 0.970172i \(0.577940\pi\)
\(42\) −5.37137 1.00789i −0.127890 0.0239975i
\(43\) −14.0418 + 14.0418i −0.326555 + 0.326555i −0.851275 0.524720i \(-0.824170\pi\)
0.524720 + 0.851275i \(0.324170\pi\)
\(44\) −65.8363 38.0106i −1.49628 0.863877i
\(45\) 14.5823 3.51534i 0.324050 0.0781187i
\(46\) −6.16439 10.6770i −0.134009 0.232110i
\(47\) −10.8275 + 2.90122i −0.230372 + 0.0617280i −0.372158 0.928169i \(-0.621382\pi\)
0.141786 + 0.989897i \(0.454715\pi\)
\(48\) 16.6604 16.6604i 0.347091 0.347091i
\(49\) 45.6668 + 17.7635i 0.931976 + 0.362520i
\(50\) 2.36358 + 11.0182i 0.0472715 + 0.220364i
\(51\) 10.8006 18.7072i 0.211776 0.366808i
\(52\) 3.71361 13.8594i 0.0714155 0.266526i
\(53\) −31.2612 8.37642i −0.589834 0.158046i −0.0484568 0.998825i \(-0.515430\pi\)
−0.541377 + 0.840780i \(0.682097\pi\)
\(54\) −2.02840 1.17109i −0.0375629 0.0216869i
\(55\) 96.0156 + 28.3433i 1.74574 + 0.515333i
\(56\) 20.3054 13.8891i 0.362597 0.248020i
\(57\) −26.5443 26.5443i −0.465690 0.465690i
\(58\) 3.39139 + 12.6568i 0.0584722 + 0.218221i
\(59\) 49.6246 28.6507i 0.841094 0.485606i −0.0165419 0.999863i \(-0.505266\pi\)
0.857636 + 0.514257i \(0.171932\pi\)
\(60\) −17.1542 + 28.0521i −0.285904 + 0.467535i
\(61\) −9.82028 + 17.0092i −0.160988 + 0.278840i −0.935223 0.354058i \(-0.884801\pi\)
0.774235 + 0.632898i \(0.218135\pi\)
\(62\) 14.1045 + 14.1045i 0.227492 + 0.227492i
\(63\) 15.9381 + 13.6739i 0.252986 + 0.217046i
\(64\) 45.3120i 0.708000i
\(65\) −0.476922 + 18.8891i −0.00733727 + 0.290602i
\(66\) −7.81601 13.5377i −0.118424 0.205117i
\(67\) −3.54467 + 13.2289i −0.0529055 + 0.197446i −0.987320 0.158741i \(-0.949257\pi\)
0.934415 + 0.356187i \(0.115923\pi\)
\(68\) 12.2556 + 45.7384i 0.180229 + 0.672624i
\(69\) 47.3741i 0.686581i
\(70\) −10.5716 + 11.7105i −0.151023 + 0.167294i
\(71\) 71.1638 1.00231 0.501153 0.865358i \(-0.332909\pi\)
0.501153 + 0.865358i \(0.332909\pi\)
\(72\) 10.1841 2.72882i 0.141446 0.0379003i
\(73\) 90.0261 + 24.1224i 1.23323 + 0.330444i 0.815838 0.578281i \(-0.196276\pi\)
0.417396 + 0.908725i \(0.362943\pi\)
\(74\) 23.8598 13.7755i 0.322430 0.186155i
\(75\) 13.3037 41.2070i 0.177382 0.549426i
\(76\) 82.2898 1.08276
\(77\) 46.4910 + 132.221i 0.603779 + 1.71715i
\(78\) 2.08625 2.08625i 0.0267467 0.0267467i
\(79\) −112.260 64.8134i −1.42101 0.820423i −0.424629 0.905368i \(-0.639595\pi\)
−0.996386 + 0.0849448i \(0.972929\pi\)
\(80\) −15.9399 66.1214i −0.199248 0.826518i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 8.65488 2.31907i 0.105547 0.0282813i
\(83\) −20.5661 + 20.5661i −0.247785 + 0.247785i −0.820061 0.572276i \(-0.806061\pi\)
0.572276 + 0.820061i \(0.306061\pi\)
\(84\) −45.9000 + 3.50965i −0.546429 + 0.0417815i
\(85\) −29.8056 54.7727i −0.350655 0.644385i
\(86\) 4.47558 7.75193i 0.0520416 0.0901388i
\(87\) 13.0316 48.6346i 0.149788 0.559018i
\(88\) 67.9698 + 18.2125i 0.772384 + 0.206960i
\(89\) −29.0452 16.7692i −0.326350 0.188418i 0.327869 0.944723i \(-0.393669\pi\)
−0.654219 + 0.756305i \(0.727003\pi\)
\(90\) −5.93894 + 3.23179i −0.0659882 + 0.0359088i
\(91\) −21.8340 + 14.9347i −0.239935 + 0.164117i
\(92\) −73.4319 73.4319i −0.798173 0.798173i
\(93\) −19.8376 74.0351i −0.213308 0.796076i
\(94\) 4.37578 2.52635i 0.0465508 0.0268761i
\(95\) −105.349 + 25.3964i −1.10894 + 0.267331i
\(96\) −17.4846 + 30.2842i −0.182131 + 0.315461i
\(97\) −36.1403 36.1403i −0.372580 0.372580i 0.495836 0.868416i \(-0.334862\pi\)
−0.868416 + 0.495836i \(0.834862\pi\)
\(98\) −21.9555 2.40646i −0.224036 0.0245557i
\(99\) 60.0670i 0.606737i
\(100\) 43.2514 + 84.4939i 0.432514 + 0.844939i
\(101\) −40.1000 69.4552i −0.397030 0.687676i 0.596328 0.802741i \(-0.296626\pi\)
−0.993358 + 0.115065i \(0.963292\pi\)
\(102\) −2.52008 + 9.40506i −0.0247067 + 0.0922065i
\(103\) −8.04297 30.0168i −0.0780871 0.291425i 0.915828 0.401570i \(-0.131535\pi\)
−0.993916 + 0.110145i \(0.964869\pi\)
\(104\) 13.2812i 0.127704i
\(105\) 57.6788 18.6588i 0.549322 0.177703i
\(106\) 14.5882 0.137625
\(107\) 101.272 27.1358i 0.946469 0.253606i 0.247606 0.968861i \(-0.420356\pi\)
0.698863 + 0.715255i \(0.253689\pi\)
\(108\) −19.0566 5.10620i −0.176450 0.0472797i
\(109\) 11.9781 6.91555i 0.109891 0.0634454i −0.444047 0.896003i \(-0.646458\pi\)
0.553938 + 0.832558i \(0.313124\pi\)
\(110\) −45.1114 1.13900i −0.410104 0.0103545i
\(111\) −105.866 −0.953750
\(112\) 62.0026 72.2695i 0.553595 0.645263i
\(113\) −67.9147 + 67.9147i −0.601015 + 0.601015i −0.940582 0.339567i \(-0.889720\pi\)
0.339567 + 0.940582i \(0.389720\pi\)
\(114\) 14.6540 + 8.46052i 0.128544 + 0.0742151i
\(115\) 116.672 + 71.3461i 1.01453 + 0.620401i
\(116\) 55.1862 + 95.5854i 0.475743 + 0.824012i
\(117\) −10.9508 + 2.93425i −0.0935963 + 0.0250791i
\(118\) −18.2638 + 18.2638i −0.154778 + 0.154778i
\(119\) 37.7590 78.7120i 0.317302 0.661446i
\(120\) 8.61697 29.1908i 0.0718080 0.243256i
\(121\) −139.947 + 242.395i −1.15658 + 2.00326i
\(122\) 2.29134 8.55141i 0.0187815 0.0700936i
\(123\) −33.2569 8.91115i −0.270381 0.0724484i
\(124\) 145.507 + 84.0085i 1.17344 + 0.677488i
\(125\) −81.4478 94.8222i −0.651582 0.758578i
\(126\) −8.53464 4.09416i −0.0677353 0.0324933i
\(127\) −1.81108 1.81108i −0.0142604 0.0142604i 0.699941 0.714201i \(-0.253210\pi\)
−0.714201 + 0.699941i \(0.753210\pi\)
\(128\) −26.1880 97.7348i −0.204593 0.763553i
\(129\) −29.7872 + 17.1977i −0.230909 + 0.133315i
\(130\) −1.99603 8.27987i −0.0153540 0.0636913i
\(131\) 66.0246 114.358i 0.504005 0.872961i −0.495985 0.868331i \(-0.665193\pi\)
0.999989 0.00463021i \(-0.00147385\pi\)
\(132\) −93.1065 93.1065i −0.705353 0.705353i
\(133\) −115.144 98.7865i −0.865747 0.742756i
\(134\) 6.17334i 0.0460697i
\(135\) 25.9725 + 0.655768i 0.192389 + 0.00485754i
\(136\) −21.9152 37.9582i −0.161141 0.279104i
\(137\) 11.7173 43.7294i 0.0855275 0.319193i −0.909886 0.414858i \(-0.863831\pi\)
0.995414 + 0.0956653i \(0.0304979\pi\)
\(138\) −5.52684 20.6265i −0.0400496 0.149467i
\(139\) 104.614i 0.752620i 0.926494 + 0.376310i \(0.122807\pi\)
−0.926494 + 0.376310i \(0.877193\pi\)
\(140\) −60.4827 + 118.327i −0.432020 + 0.845192i
\(141\) −19.4153 −0.137697
\(142\) −30.9844 + 8.30224i −0.218200 + 0.0584665i
\(143\) −73.0866 19.5835i −0.511095 0.136948i
\(144\) 35.3420 20.4047i 0.245430 0.141699i
\(145\) −100.150 105.338i −0.690690 0.726471i
\(146\) −42.0112 −0.287748
\(147\) 68.4390 + 50.1907i 0.465571 + 0.341434i
\(148\) 164.097 164.097i 1.10877 1.10877i
\(149\) 39.0472 + 22.5439i 0.262061 + 0.151301i 0.625275 0.780405i \(-0.284987\pi\)
−0.363213 + 0.931706i \(0.618320\pi\)
\(150\) −0.984987 + 19.4934i −0.00656658 + 0.129956i
\(151\) −84.2120 145.859i −0.557695 0.965956i −0.997688 0.0679552i \(-0.978353\pi\)
0.439993 0.898001i \(-0.354981\pi\)
\(152\) −73.5746 + 19.7142i −0.484043 + 0.129699i
\(153\) 26.4560 26.4560i 0.172915 0.172915i
\(154\) −35.6674 52.1446i −0.231606 0.338601i
\(155\) −212.207 62.6425i −1.36908 0.404145i
\(156\) 12.4260 21.5224i 0.0796537 0.137964i
\(157\) −61.9280 + 231.119i −0.394446 + 1.47209i 0.428276 + 0.903648i \(0.359121\pi\)
−0.822722 + 0.568444i \(0.807545\pi\)
\(158\) 56.4389 + 15.1228i 0.357208 + 0.0957137i
\(159\) −48.5460 28.0280i −0.305321 0.176277i
\(160\) 48.2510 + 88.6692i 0.301569 + 0.554182i
\(161\) 14.5970 + 190.903i 0.0906645 + 1.18573i
\(162\) −2.86858 2.86858i −0.0177073 0.0177073i
\(163\) −7.78599 29.0577i −0.0477668 0.178268i 0.937921 0.346849i \(-0.112748\pi\)
−0.985688 + 0.168581i \(0.946082\pi\)
\(164\) 65.3624 37.7370i 0.398551 0.230103i
\(165\) 147.931 + 90.4619i 0.896553 + 0.548254i
\(166\) 6.55508 11.3537i 0.0394884 0.0683959i
\(167\) 205.571 + 205.571i 1.23096 + 1.23096i 0.963594 + 0.267371i \(0.0861549\pi\)
0.267371 + 0.963594i \(0.413845\pi\)
\(168\) 40.1980 14.1342i 0.239274 0.0841324i
\(169\) 154.719i 0.915497i
\(170\) 19.3672 + 20.3706i 0.113925 + 0.119827i
\(171\) −32.5100 56.3090i −0.190117 0.329293i
\(172\) 19.5144 72.8288i 0.113456 0.423423i
\(173\) 12.9989 + 48.5124i 0.0751379 + 0.280418i 0.993265 0.115869i \(-0.0369652\pi\)
−0.918127 + 0.396287i \(0.870299\pi\)
\(174\) 22.6956i 0.130434i
\(175\) 40.9128 170.150i 0.233788 0.972288i
\(176\) 272.366 1.54754
\(177\) 95.8673 25.6876i 0.541623 0.145127i
\(178\) 14.6025 + 3.91273i 0.0820365 + 0.0219816i
\(179\) 100.688 58.1320i 0.562500 0.324760i −0.191648 0.981464i \(-0.561383\pi\)
0.754148 + 0.656704i \(0.228050\pi\)
\(180\) −41.2750 + 39.2421i −0.229306 + 0.218011i
\(181\) 43.1119 0.238187 0.119094 0.992883i \(-0.462001\pi\)
0.119094 + 0.992883i \(0.462001\pi\)
\(182\) 7.76411 9.04974i 0.0426599 0.0497239i
\(183\) −24.0547 + 24.0547i −0.131446 + 0.131446i
\(184\) 83.2470 + 48.0627i 0.452429 + 0.261210i
\(185\) −159.436 + 260.724i −0.861818 + 1.40932i
\(186\) 17.2744 + 29.9202i 0.0928733 + 0.160861i
\(187\) 241.199 64.6291i 1.28983 0.345610i
\(188\) 30.0946 30.0946i 0.160078 0.160078i
\(189\) 20.5352 + 30.0218i 0.108652 + 0.158845i
\(190\) 42.9056 23.3479i 0.225819 0.122884i
\(191\) 65.1517 112.846i 0.341109 0.590817i −0.643530 0.765421i \(-0.722531\pi\)
0.984639 + 0.174603i \(0.0558643\pi\)
\(192\) −20.3128 + 75.8084i −0.105796 + 0.394836i
\(193\) −327.789 87.8309i −1.69839 0.455082i −0.725857 0.687846i \(-0.758557\pi\)
−0.972533 + 0.232763i \(0.925223\pi\)
\(194\) 19.9516 + 11.5191i 0.102843 + 0.0593766i
\(195\) −9.26566 + 31.3883i −0.0475162 + 0.160966i
\(196\) −183.881 + 28.2856i −0.938170 + 0.144314i
\(197\) 90.1542 + 90.1542i 0.457636 + 0.457636i 0.897879 0.440243i \(-0.145108\pi\)
−0.440243 + 0.897879i \(0.645108\pi\)
\(198\) −7.00765 26.1529i −0.0353922 0.132085i
\(199\) 25.6088 14.7853i 0.128688 0.0742979i −0.434274 0.900781i \(-0.642995\pi\)
0.562962 + 0.826483i \(0.309662\pi\)
\(200\) −58.9129 65.1834i −0.294565 0.325917i
\(201\) −11.8607 + 20.5433i −0.0590085 + 0.102206i
\(202\) 25.5623 + 25.5623i 0.126546 + 0.126546i
\(203\) 37.5279 199.998i 0.184867 0.985210i
\(204\) 82.0159i 0.402038i
\(205\) −72.0316 + 68.4837i −0.351373 + 0.334067i
\(206\) 7.00375 + 12.1308i 0.0339988 + 0.0588876i
\(207\) −21.2372 + 79.2584i −0.102595 + 0.382891i
\(208\) 13.3050 + 49.6549i 0.0639663 + 0.238726i
\(209\) 433.951i 2.07632i
\(210\) −22.9363 + 14.8530i −0.109220 + 0.0707286i
\(211\) 116.220 0.550808 0.275404 0.961329i \(-0.411188\pi\)
0.275404 + 0.961329i \(0.411188\pi\)
\(212\) 118.693 31.8038i 0.559874 0.150018i
\(213\) 119.059 + 31.9018i 0.558964 + 0.149774i
\(214\) −40.9277 + 23.6296i −0.191251 + 0.110419i
\(215\) −2.50615 + 99.2592i −0.0116565 + 0.461671i
\(216\) 18.2616 0.0845446
\(217\) −102.751 292.226i −0.473508 1.34666i
\(218\) −4.40841 + 4.40841i −0.0202221 + 0.0202221i
\(219\) 139.803 + 80.7152i 0.638369 + 0.368562i
\(220\) −369.520 + 89.0801i −1.67964 + 0.404910i
\(221\) 23.5650 + 40.8157i 0.106629 + 0.184687i
\(222\) 46.0937 12.3508i 0.207629 0.0556341i
\(223\) 268.713 268.713i 1.20499 1.20499i 0.232363 0.972629i \(-0.425354\pi\)
0.972629 0.232363i \(-0.0746456\pi\)
\(224\) −61.1263 + 127.423i −0.272885 + 0.568854i
\(225\) 40.7300 62.9767i 0.181022 0.279896i
\(226\) 21.6466 37.4930i 0.0957813 0.165898i
\(227\) −48.3424 + 180.416i −0.212962 + 0.794785i 0.773912 + 0.633293i \(0.218297\pi\)
−0.986874 + 0.161492i \(0.948369\pi\)
\(228\) 137.674 + 36.8895i 0.603832 + 0.161796i
\(229\) 8.99125 + 5.19110i 0.0392631 + 0.0226686i 0.519503 0.854469i \(-0.326117\pi\)
−0.480240 + 0.877137i \(0.659450\pi\)
\(230\) −59.1218 17.4524i −0.257051 0.0758802i
\(231\) 18.5079 + 242.051i 0.0801210 + 1.04784i
\(232\) −72.2410 72.2410i −0.311383 0.311383i
\(233\) 28.9305 + 107.970i 0.124165 + 0.463391i 0.999809 0.0195672i \(-0.00622883\pi\)
−0.875643 + 0.482959i \(0.839562\pi\)
\(234\) 4.42560 2.55512i 0.0189128 0.0109193i
\(235\) −29.2398 + 47.8155i −0.124425 + 0.203470i
\(236\) −108.782 + 188.416i −0.460940 + 0.798371i
\(237\) −158.760 158.760i −0.669873 0.669873i
\(238\) −7.25723 + 38.6760i −0.0304926 + 0.162504i
\(239\) 196.209i 0.820956i 0.911870 + 0.410478i \(0.134638\pi\)
−0.911870 + 0.410478i \(0.865362\pi\)
\(240\) 2.97350 117.769i 0.0123896 0.490704i
\(241\) −20.5135 35.5305i −0.0851183 0.147429i 0.820323 0.571900i \(-0.193794\pi\)
−0.905442 + 0.424471i \(0.860460\pi\)
\(242\) 32.6535 121.864i 0.134932 0.503572i
\(243\) 4.03459 + 15.0573i 0.0166032 + 0.0619642i
\(244\) 74.5717i 0.305622i
\(245\) 226.679 92.9615i 0.925219 0.379435i
\(246\) 15.5195 0.0630874
\(247\) 79.1133 21.1984i 0.320297 0.0858233i
\(248\) −150.222 40.2520i −0.605735 0.162306i
\(249\) −43.6273 + 25.1883i −0.175210 + 0.101158i
\(250\) 46.5243 + 31.7832i 0.186097 + 0.127133i
\(251\) −495.319 −1.97338 −0.986692 0.162600i \(-0.948012\pi\)
−0.986692 + 0.162600i \(0.948012\pi\)
\(252\) −78.3656 14.7047i −0.310974 0.0583518i
\(253\) −387.239 + 387.239i −1.53059 + 1.53059i
\(254\) 0.999822 + 0.577247i 0.00393631 + 0.00227263i
\(255\) −25.3119 104.998i −0.0992622 0.411757i
\(256\) −67.8197 117.467i −0.264921 0.458856i
\(257\) −55.3682 + 14.8359i −0.215440 + 0.0577271i −0.364925 0.931037i \(-0.618905\pi\)
0.149484 + 0.988764i \(0.452239\pi\)
\(258\) 10.9629 10.9629i 0.0424918 0.0424918i
\(259\) −426.608 + 32.6197i −1.64713 + 0.125945i
\(260\) −34.2911 63.0155i −0.131889 0.242367i
\(261\) 43.6046 75.5253i 0.167067 0.289369i
\(262\) −15.4054 + 57.4936i −0.0587991 + 0.219441i
\(263\) 299.121 + 80.1492i 1.13734 + 0.304750i 0.777882 0.628410i \(-0.216294\pi\)
0.359460 + 0.933160i \(0.382961\pi\)
\(264\) 105.551 + 60.9401i 0.399815 + 0.230834i
\(265\) −142.138 + 77.3470i −0.536369 + 0.291875i
\(266\) 61.6581 + 29.5780i 0.231797 + 0.111196i
\(267\) −41.0760 41.0760i −0.153843 0.153843i
\(268\) −13.4585 50.2277i −0.0502182 0.187417i
\(269\) 231.086 133.418i 0.859056 0.495976i −0.00464016 0.999989i \(-0.501477\pi\)
0.863696 + 0.504013i \(0.168144\pi\)
\(270\) −11.3848 + 2.74453i −0.0421660 + 0.0101649i
\(271\) 135.488 234.673i 0.499957 0.865951i −0.500043 0.866001i \(-0.666682\pi\)
1.00000 4.97359e-5i \(1.58314e-5\pi\)
\(272\) −119.961 119.961i −0.441034 0.441034i
\(273\) −43.2241 + 15.1983i −0.158330 + 0.0556714i
\(274\) 20.4066i 0.0744766i
\(275\) 445.574 228.084i 1.62027 0.829396i
\(276\) −89.9354 155.773i −0.325853 0.564394i
\(277\) 68.0999 254.152i 0.245848 0.917517i −0.727107 0.686524i \(-0.759136\pi\)
0.972955 0.230994i \(-0.0741976\pi\)
\(278\) −12.2047 45.5486i −0.0439018 0.163844i
\(279\) 132.756i 0.475828i
\(280\) 25.7294 120.285i 0.0918906 0.429589i
\(281\) −4.50255 −0.0160233 −0.00801165 0.999968i \(-0.502550\pi\)
−0.00801165 + 0.999968i \(0.502550\pi\)
\(282\) 8.45335 2.26507i 0.0299764 0.00803216i
\(283\) 352.367 + 94.4165i 1.24511 + 0.333627i 0.820447 0.571722i \(-0.193725\pi\)
0.424667 + 0.905350i \(0.360391\pi\)
\(284\) −233.997 + 135.098i −0.823932 + 0.475697i
\(285\) −187.637 4.73756i −0.658375 0.0166230i
\(286\) 34.1063 0.119253
\(287\) −136.761 25.6620i −0.476518 0.0894147i
\(288\) −42.8284 + 42.8284i −0.148710 + 0.148710i
\(289\) 115.582 + 66.7314i 0.399938 + 0.230905i
\(290\) 55.8941 + 34.1800i 0.192738 + 0.117862i
\(291\) −44.2627 76.6652i −0.152105 0.263454i
\(292\) −341.813 + 91.5885i −1.17059 + 0.313659i
\(293\) −159.329 + 159.329i −0.543786 + 0.543786i −0.924637 0.380851i \(-0.875631\pi\)
0.380851 + 0.924637i \(0.375631\pi\)
\(294\) −35.6535 13.8685i −0.121270 0.0471716i
\(295\) 81.1152 274.785i 0.274967 0.931475i
\(296\) −107.405 + 186.031i −0.362855 + 0.628483i
\(297\) −26.9273 + 100.494i −0.0906643 + 0.338364i
\(298\) −19.6310 5.26011i −0.0658759 0.0176514i
\(299\) −89.5139 51.6809i −0.299378 0.172846i
\(300\) 34.4834 + 160.750i 0.114945 + 0.535834i
\(301\) −114.734 + 78.4794i −0.381177 + 0.260729i
\(302\) 53.6820 + 53.6820i 0.177755 + 0.177755i
\(303\) −35.9527 134.177i −0.118656 0.442829i
\(304\) −255.326 + 147.413i −0.839889 + 0.484910i
\(305\) 23.0144 + 95.4680i 0.0754572 + 0.313010i
\(306\) −8.43235 + 14.6053i −0.0275567 + 0.0477296i
\(307\) 170.687 + 170.687i 0.555983 + 0.555983i 0.928161 0.372179i \(-0.121389\pi\)
−0.372179 + 0.928161i \(0.621389\pi\)
\(308\) −403.879 346.502i −1.31129 1.12501i
\(309\) 53.8246i 0.174190i
\(310\) 99.7022 + 2.51734i 0.321620 + 0.00812044i
\(311\) 21.6690 + 37.5319i 0.0696754 + 0.120681i 0.898758 0.438444i \(-0.144470\pi\)
−0.829083 + 0.559126i \(0.811137\pi\)
\(312\) −5.95380 + 22.2199i −0.0190827 + 0.0712176i
\(313\) 49.7049 + 185.501i 0.158802 + 0.592656i 0.998750 + 0.0499891i \(0.0159186\pi\)
−0.839948 + 0.542667i \(0.817415\pi\)
\(314\) 107.853i 0.343480i
\(315\) 104.863 5.36015i 0.332899 0.0170163i
\(316\) 492.170 1.55750
\(317\) 15.9228 4.26650i 0.0502296 0.0134590i −0.233617 0.972329i \(-0.575056\pi\)
0.283846 + 0.958870i \(0.408389\pi\)
\(318\) 24.4066 + 6.53972i 0.0767502 + 0.0205652i
\(319\) 504.064 291.022i 1.58014 0.912294i
\(320\) 156.107 + 164.195i 0.487836 + 0.513108i
\(321\) 181.596 0.565721
\(322\) −28.6269 81.4153i −0.0889035 0.252842i
\(323\) −191.130 + 191.130i −0.591733 + 0.591733i
\(324\) −29.5933 17.0857i −0.0913373 0.0527336i
\(325\) 63.3480 + 70.0905i 0.194917 + 0.215663i
\(326\) 6.77997 + 11.7432i 0.0207974 + 0.0360222i
\(327\) 23.1399 6.20031i 0.0707641 0.0189612i
\(328\) −49.3992 + 49.3992i −0.150607 + 0.150607i
\(329\) −78.2377 + 5.98229i −0.237805 + 0.0181832i
\(330\) −74.9623 22.1285i −0.227158 0.0670560i
\(331\) −270.891 + 469.197i −0.818402 + 1.41751i 0.0884570 + 0.996080i \(0.471806\pi\)
−0.906859 + 0.421434i \(0.861527\pi\)
\(332\) 28.5814 106.667i 0.0860886 0.321287i
\(333\) −177.118 47.4585i −0.531885 0.142518i
\(334\) −113.487 65.5220i −0.339783 0.196174i
\(335\) 32.7311 + 60.1488i 0.0977049 + 0.179549i
\(336\) 136.130 93.1142i 0.405149 0.277126i
\(337\) 182.640 + 182.640i 0.541959 + 0.541959i 0.924103 0.382144i \(-0.124814\pi\)
−0.382144 + 0.924103i \(0.624814\pi\)
\(338\) −18.0501 67.3640i −0.0534027 0.199302i
\(339\) −144.069 + 83.1782i −0.424982 + 0.245363i
\(340\) 201.986 + 123.517i 0.594077 + 0.363286i
\(341\) 443.014 767.323i 1.29916 2.25021i
\(342\) 20.7240 + 20.7240i 0.0605964 + 0.0605964i
\(343\) 291.253 + 181.165i 0.849133 + 0.528179i
\(344\) 69.7906i 0.202880i
\(345\) 163.212 + 171.667i 0.473077 + 0.497585i
\(346\) −11.3193 19.6056i −0.0327147 0.0566635i
\(347\) −110.100 + 410.897i −0.317290 + 1.18414i 0.604549 + 0.796568i \(0.293353\pi\)
−0.921839 + 0.387573i \(0.873313\pi\)
\(348\) 49.4786 + 184.657i 0.142180 + 0.530623i
\(349\) 205.632i 0.589202i −0.955620 0.294601i \(-0.904813\pi\)
0.955620 0.294601i \(-0.0951868\pi\)
\(350\) 2.03714 + 78.8558i 0.00582041 + 0.225302i
\(351\) −19.6364 −0.0559441
\(352\) −390.466 + 104.625i −1.10928 + 0.297230i
\(353\) 302.605 + 81.0827i 0.857237 + 0.229696i 0.660561 0.750772i \(-0.270319\pi\)
0.196676 + 0.980468i \(0.436985\pi\)
\(354\) −38.7434 + 22.3685i −0.109445 + 0.0631878i
\(355\) 257.872 245.171i 0.726401 0.690623i
\(356\) 127.339 0.357695
\(357\) 98.4576 114.761i 0.275792 0.321459i
\(358\) −37.0570 + 37.0570i −0.103511 + 0.103511i
\(359\) −327.820 189.267i −0.913149 0.527207i −0.0317058 0.999497i \(-0.510094\pi\)
−0.881443 + 0.472291i \(0.843427\pi\)
\(360\) 27.5023 44.9742i 0.0763954 0.124928i
\(361\) 54.3672 + 94.1668i 0.150602 + 0.260850i
\(362\) −18.7707 + 5.02960i −0.0518528 + 0.0138939i
\(363\) −342.798 + 342.798i −0.944348 + 0.944348i
\(364\) 43.4413 90.5574i 0.119344 0.248784i
\(365\) 409.328 222.744i 1.12145 0.610257i
\(366\) 7.66699 13.2796i 0.0209481 0.0362831i
\(367\) −57.1272 + 213.202i −0.155660 + 0.580931i 0.843388 + 0.537305i \(0.180558\pi\)
−0.999048 + 0.0436259i \(0.986109\pi\)
\(368\) 359.387 + 96.2975i 0.976595 + 0.261678i
\(369\) −51.6451 29.8173i −0.139960 0.0808057i
\(370\) 39.0008 132.119i 0.105407 0.357078i
\(371\) −204.261 97.9862i −0.550570 0.264114i
\(372\) 205.778 + 205.778i 0.553166 + 0.553166i
\(373\) −63.4330 236.735i −0.170062 0.634679i −0.997340 0.0728868i \(-0.976779\pi\)
0.827279 0.561792i \(-0.189888\pi\)
\(374\) −97.4771 + 56.2784i −0.260634 + 0.150477i
\(375\) −93.7572 195.153i −0.250019 0.520407i
\(376\) −19.6975 + 34.1171i −0.0523871 + 0.0907371i
\(377\) 77.6793 + 77.6793i 0.206046 + 0.206046i
\(378\) −12.4434 10.6756i −0.0329190 0.0282424i
\(379\) 238.727i 0.629888i 0.949110 + 0.314944i \(0.101986\pi\)
−0.949110 + 0.314944i \(0.898014\pi\)
\(380\) 298.189 283.502i 0.784709 0.746059i
\(381\) −2.21811 3.84187i −0.00582180 0.0100837i
\(382\) −15.2017 + 56.7335i −0.0397950 + 0.148517i
\(383\) 54.5095 + 203.432i 0.142322 + 0.531154i 0.999860 + 0.0167331i \(0.00532656\pi\)
−0.857538 + 0.514421i \(0.828007\pi\)
\(384\) 175.253i 0.456389i
\(385\) 623.990 + 318.952i 1.62075 + 0.828448i
\(386\) 152.965 0.396282
\(387\) −57.5445 + 15.4190i −0.148694 + 0.0398424i
\(388\) 187.444 + 50.2254i 0.483102 + 0.129447i
\(389\) −322.620 + 186.264i −0.829356 + 0.478829i −0.853632 0.520876i \(-0.825605\pi\)
0.0242760 + 0.999705i \(0.492272\pi\)
\(390\) 0.372348 14.7473i 0.000954738 0.0378136i
\(391\) 341.112 0.872409
\(392\) 157.630 69.3425i 0.402118 0.176894i
\(393\) 161.727 161.727i 0.411518 0.411518i
\(394\) −49.7705 28.7350i −0.126321 0.0729315i
\(395\) −630.084 + 151.894i −1.59515 + 0.384542i
\(396\) −114.032 197.509i −0.287959 0.498760i
\(397\) −209.470 + 56.1274i −0.527633 + 0.141379i −0.512795 0.858511i \(-0.671390\pi\)
−0.0148382 + 0.999890i \(0.504723\pi\)
\(398\) −9.42507 + 9.42507i −0.0236811 + 0.0236811i
\(399\) −148.355 216.891i −0.371818 0.543586i
\(400\) −285.560 184.685i −0.713900 0.461713i
\(401\) −207.883 + 360.064i −0.518412 + 0.897915i 0.481360 + 0.876523i \(0.340143\pi\)
−0.999771 + 0.0213919i \(0.993190\pi\)
\(402\) 2.76743 10.3282i 0.00688416 0.0256920i
\(403\) 161.531 + 43.2822i 0.400822 + 0.107400i
\(404\) 263.709 + 152.252i 0.652745 + 0.376863i
\(405\) 43.1588 + 12.7403i 0.106565 + 0.0314574i
\(406\) 6.99301 + 91.4562i 0.0172242 + 0.225262i
\(407\) −865.359 865.359i −2.12619 2.12619i
\(408\) −19.6486 73.3296i −0.0481583 0.179729i
\(409\) 360.314 208.027i 0.880963 0.508624i 0.00998686 0.999950i \(-0.496821\pi\)
0.870976 + 0.491326i \(0.163488\pi\)
\(410\) 23.3726 38.2210i 0.0570064 0.0932220i
\(411\) 39.2067 67.9080i 0.0953935 0.165226i
\(412\) 83.4306 + 83.4306i 0.202501 + 0.202501i
\(413\) 378.400 133.052i 0.916224 0.322159i
\(414\) 36.9863i 0.0893390i
\(415\) −3.67059 + 145.378i −0.00884479 + 0.350309i
\(416\) −38.1483 66.0748i −0.0917026 0.158834i
\(417\) −46.8973 + 175.023i −0.112463 + 0.419719i
\(418\) 50.6264 + 188.940i 0.121116 + 0.452010i
\(419\) 655.999i 1.56563i 0.622254 + 0.782815i \(0.286217\pi\)
−0.622254 + 0.782815i \(0.713783\pi\)
\(420\) −154.234 + 170.851i −0.367224 + 0.406788i
\(421\) 65.9825 0.156728 0.0783641 0.996925i \(-0.475030\pi\)
0.0783641 + 0.996925i \(0.475030\pi\)
\(422\) −50.6019 + 13.5587i −0.119910 + 0.0321297i
\(423\) −32.4825 8.70365i −0.0767907 0.0205760i
\(424\) −98.5032 + 56.8709i −0.232319 + 0.134129i
\(425\) −296.706 95.7916i −0.698133 0.225392i
\(426\) −55.5597 −0.130422
\(427\) −89.5211 + 104.345i −0.209651 + 0.244367i
\(428\) −281.483 + 281.483i −0.657670 + 0.657670i
\(429\) −113.497 65.5277i −0.264562 0.152745i
\(430\) −10.4888 43.5094i −0.0243926 0.101185i
\(431\) −355.868 616.382i −0.825681 1.43012i −0.901398 0.432992i \(-0.857458\pi\)
0.0757171 0.997129i \(-0.475875\pi\)
\(432\) 68.2754 18.2943i 0.158045 0.0423480i
\(433\) −8.06832 + 8.06832i −0.0186335 + 0.0186335i −0.716362 0.697729i \(-0.754194\pi\)
0.697729 + 0.716362i \(0.254194\pi\)
\(434\) 78.8297 + 115.246i 0.181635 + 0.265545i
\(435\) −120.332 221.131i −0.276626 0.508346i
\(436\) −26.2571 + 45.4786i −0.0602227 + 0.104309i
\(437\) 153.427 572.598i 0.351092 1.31029i
\(438\) −70.2860 18.8331i −0.160470 0.0429979i
\(439\) −103.783 59.9191i −0.236408 0.136490i 0.377117 0.926166i \(-0.376915\pi\)
−0.613525 + 0.789676i \(0.710249\pi\)
\(440\) 309.044 168.172i 0.702372 0.382209i
\(441\) 92.0007 + 114.651i 0.208618 + 0.259980i
\(442\) −15.0218 15.0218i −0.0339860 0.0339860i
\(443\) 86.6536 + 323.396i 0.195606 + 0.730012i 0.992109 + 0.125378i \(0.0400143\pi\)
−0.796503 + 0.604635i \(0.793319\pi\)
\(444\) 348.103 200.978i 0.784016 0.452652i
\(445\) −163.022 + 39.2997i −0.366342 + 0.0883140i
\(446\) −85.6474 + 148.346i −0.192035 + 0.332614i
\(447\) 55.2210 + 55.2210i 0.123537 + 0.123537i
\(448\) −58.4961 + 311.743i −0.130572 + 0.695856i
\(449\) 63.6098i 0.141670i 0.997488 + 0.0708349i \(0.0225664\pi\)
−0.997488 + 0.0708349i \(0.977434\pi\)
\(450\) −10.3866 + 32.1715i −0.0230812 + 0.0714922i
\(451\) −199.004 344.685i −0.441250 0.764268i
\(452\) 94.3833 352.243i 0.208813 0.779299i
\(453\) −75.5024 281.779i −0.166672 0.622028i
\(454\) 84.1922i 0.185445i
\(455\) −27.6663 + 129.340i −0.0608051 + 0.284264i
\(456\) −131.930 −0.289321
\(457\) 644.842 172.785i 1.41103 0.378085i 0.528739 0.848784i \(-0.322665\pi\)
0.882294 + 0.470699i \(0.155998\pi\)
\(458\) −4.52036 1.21123i −0.00986979 0.00264460i
\(459\) 56.1215 32.4018i 0.122269 0.0705921i
\(460\) −519.077 13.1059i −1.12843 0.0284912i
\(461\) −3.62806 −0.00786997 −0.00393499 0.999992i \(-0.501253\pi\)
−0.00393499 + 0.999992i \(0.501253\pi\)
\(462\) −36.2969 103.229i −0.0785647 0.223439i
\(463\) −283.246 + 283.246i −0.611763 + 0.611763i −0.943405 0.331642i \(-0.892397\pi\)
0.331642 + 0.943405i \(0.392397\pi\)
\(464\) −342.460 197.719i −0.738061 0.426120i
\(465\) −326.948 199.933i −0.703114 0.429963i
\(466\) −25.1924 43.6346i −0.0540610 0.0936365i
\(467\) −791.002 + 211.948i −1.69379 + 0.453851i −0.971365 0.237593i \(-0.923642\pi\)
−0.722430 + 0.691444i \(0.756975\pi\)
\(468\) 30.4373 30.4373i 0.0650369 0.0650369i
\(469\) −41.4651 + 86.4378i −0.0884117 + 0.184302i
\(470\) 7.15254 24.2299i 0.0152182 0.0515530i
\(471\) −207.215 + 358.907i −0.439947 + 0.762011i
\(472\) 52.1219 194.521i 0.110428 0.412122i
\(473\) −384.059 102.908i −0.811963 0.217565i
\(474\) 87.6448 + 50.6018i 0.184905 + 0.106755i
\(475\) −294.252 + 454.972i −0.619478 + 0.957836i
\(476\) 25.2709 + 330.498i 0.0530901 + 0.694324i
\(477\) −68.6544 68.6544i −0.143930 0.143930i
\(478\) −22.8905 85.4283i −0.0478880 0.178720i
\(479\) 464.561 268.214i 0.969856 0.559947i 0.0706637 0.997500i \(-0.477488\pi\)
0.899192 + 0.437554i \(0.144155\pi\)
\(480\) 40.9762 + 169.977i 0.0853672 + 0.354118i
\(481\) 115.491 200.036i 0.240105 0.415874i
\(482\) 13.0766 + 13.0766i 0.0271299 + 0.0271299i
\(483\) −61.1581 + 325.930i −0.126621 + 0.674804i
\(484\) 1062.71i 2.19567i
\(485\) −255.469 6.45023i −0.526741 0.0132994i
\(486\) −3.51328 6.08519i −0.00722898 0.0125210i
\(487\) −97.5549 + 364.080i −0.200318 + 0.747597i 0.790508 + 0.612452i \(0.209817\pi\)
−0.990826 + 0.135145i \(0.956850\pi\)
\(488\) 17.8652 + 66.6738i 0.0366090 + 0.136627i
\(489\) 52.1048i 0.106554i
\(490\) −87.8496 + 66.9202i −0.179285 + 0.136572i
\(491\) 142.980 0.291202 0.145601 0.989343i \(-0.453488\pi\)
0.145601 + 0.989343i \(0.453488\pi\)
\(492\) 126.270 33.8340i 0.256647 0.0687684i
\(493\) −350.188 93.8327i −0.710321 0.190330i
\(494\) −31.9725 + 18.4593i −0.0647217 + 0.0373671i
\(495\) 206.941 + 217.661i 0.418062 + 0.439720i
\(496\) −601.966 −1.21364
\(497\) 489.602 + 91.8698i 0.985114 + 0.184849i
\(498\) 16.0566 16.0566i 0.0322422 0.0322422i
\(499\) −536.150 309.546i −1.07445 0.620334i −0.145056 0.989424i \(-0.546336\pi\)
−0.929394 + 0.369090i \(0.879669\pi\)
\(500\) 447.823 + 157.168i 0.895647 + 0.314335i
\(501\) 251.772 + 436.082i 0.502539 + 0.870423i
\(502\) 215.660 57.7859i 0.429601 0.115111i
\(503\) 661.069 661.069i 1.31425 1.31425i 0.396004 0.918249i \(-0.370397\pi\)
0.918249 0.396004i \(-0.129603\pi\)
\(504\) 73.5887 5.62681i 0.146009 0.0111643i
\(505\) −384.593 113.530i −0.761571 0.224812i
\(506\) 123.425 213.779i 0.243924 0.422488i
\(507\) −69.3586 + 258.850i −0.136802 + 0.510552i
\(508\) 9.39324 + 2.51691i 0.0184906 + 0.00495455i
\(509\) 416.656 + 240.557i 0.818578 + 0.472606i 0.849926 0.526902i \(-0.176647\pi\)
−0.0313476 + 0.999509i \(0.509980\pi\)
\(510\) 23.2702 + 42.7627i 0.0456278 + 0.0838485i
\(511\) 588.232 + 282.181i 1.15114 + 0.552213i
\(512\) 329.420 + 329.420i 0.643398 + 0.643398i
\(513\) −29.1477 108.781i −0.0568181 0.212048i
\(514\) 22.3762 12.9189i 0.0435336 0.0251341i
\(515\) −132.558 81.0608i −0.257394 0.157400i
\(516\) 65.2965 113.097i 0.126544 0.219180i
\(517\) −158.702 158.702i −0.306968 0.306968i
\(518\) 181.938 63.9722i 0.351231 0.123498i
\(519\) 86.9900i 0.167611i
\(520\) 45.7560 + 48.1264i 0.0879923 + 0.0925507i
\(521\) −164.031 284.110i −0.314839 0.545318i 0.664564 0.747231i \(-0.268617\pi\)
−0.979403 + 0.201914i \(0.935284\pi\)
\(522\) −10.1742 + 37.9705i −0.0194907 + 0.0727404i
\(523\) −88.9020 331.787i −0.169985 0.634391i −0.997352 0.0727298i \(-0.976829\pi\)
0.827367 0.561662i \(-0.189838\pi\)
\(524\) 501.367i 0.956807i
\(525\) 144.725 266.326i 0.275666 0.507288i
\(526\) −139.586 −0.265374
\(527\) −533.082 + 142.839i −1.01154 + 0.271041i
\(528\) 455.678 + 122.098i 0.863026 + 0.231247i
\(529\) −189.747 + 109.550i −0.358689 + 0.207089i
\(530\) 52.8625 50.2589i 0.0997407 0.0948281i
\(531\) 171.904 0.323737
\(532\) 566.148 + 106.233i 1.06419 + 0.199686i
\(533\) 53.1180 53.1180i 0.0996585 0.0996585i
\(534\) 22.6764 + 13.0922i 0.0424652 + 0.0245173i
\(535\) 273.487 447.231i 0.511191 0.835945i
\(536\) 24.0662 + 41.6839i 0.0448996 + 0.0777684i
\(537\) 194.513 52.1197i 0.362222 0.0970572i
\(538\) −85.0488 + 85.0488i −0.158083 + 0.158083i
\(539\) 149.163 + 969.689i 0.276739 + 1.79905i
\(540\) −86.6462 + 47.1502i −0.160456 + 0.0873151i
\(541\) 253.542 439.148i 0.468655 0.811735i −0.530703 0.847558i \(-0.678072\pi\)
0.999358 + 0.0358232i \(0.0114053\pi\)
\(542\) −31.6132 + 117.982i −0.0583269 + 0.217679i
\(543\) 72.1276 + 19.3265i 0.132832 + 0.0355921i
\(544\) 218.058 + 125.896i 0.400843 + 0.231427i
\(545\) 19.5791 66.3260i 0.0359249 0.121699i
\(546\) 17.0465 11.6600i 0.0312207 0.0213552i
\(547\) −24.1757 24.1757i −0.0441969 0.0441969i 0.684663 0.728860i \(-0.259949\pi\)
−0.728860 + 0.684663i \(0.759949\pi\)
\(548\) 44.4883 + 166.033i 0.0811831 + 0.302979i
\(549\) −51.0277 + 29.4608i −0.0929466 + 0.0536627i
\(550\) −167.392 + 151.289i −0.304349 + 0.275071i
\(551\) −315.019 + 545.629i −0.571723 + 0.990253i
\(552\) 117.729 + 117.729i 0.213277 + 0.213277i
\(553\) −688.670 590.835i −1.24533 1.06842i
\(554\) 118.602i 0.214082i
\(555\) −383.622 + 364.727i −0.691210 + 0.657166i
\(556\) −198.601 343.986i −0.357195 0.618681i
\(557\) −31.2217 + 116.521i −0.0560533 + 0.209194i −0.988273 0.152700i \(-0.951203\pi\)
0.932219 + 0.361894i \(0.117870\pi\)
\(558\) 15.4878 + 57.8014i 0.0277560 + 0.103587i
\(559\) 75.0445i 0.134248i
\(560\) −24.3049 475.489i −0.0434016 0.849087i
\(561\) 432.506 0.770956
\(562\) 1.96039 0.525284i 0.00348824 0.000934670i
\(563\) 89.6915 + 24.0328i 0.159310 + 0.0426870i 0.337592 0.941292i \(-0.390387\pi\)
−0.178283 + 0.983979i \(0.557054\pi\)
\(564\) 63.8404 36.8583i 0.113192 0.0653515i
\(565\) −12.1212 + 480.077i −0.0214535 + 0.849693i
\(566\) −164.434 −0.290520
\(567\) 20.8976 + 59.4331i 0.0368565 + 0.104820i
\(568\) 176.849 176.849i 0.311353 0.311353i
\(569\) −123.242 71.1541i −0.216595 0.125051i 0.387778 0.921753i \(-0.373243\pi\)
−0.604373 + 0.796702i \(0.706576\pi\)
\(570\) 82.2490 19.8277i 0.144297 0.0347855i
\(571\) 288.489 + 499.678i 0.505235 + 0.875092i 0.999982 + 0.00605499i \(0.00192738\pi\)
−0.494747 + 0.869037i \(0.664739\pi\)
\(572\) 277.497 74.3551i 0.485134 0.129991i
\(573\) 159.588 159.588i 0.278514 0.278514i
\(574\) 62.5388 4.78190i 0.108953 0.00833083i
\(575\) 668.576 143.420i 1.16274 0.249426i
\(576\) −67.9680 + 117.724i −0.118000 + 0.204382i
\(577\) 164.767 614.920i 0.285559 1.06572i −0.662871 0.748733i \(-0.730662\pi\)
0.948430 0.316986i \(-0.102671\pi\)
\(578\) −58.1091 15.5703i −0.100535 0.0269382i
\(579\) −509.029 293.888i −0.879152 0.507578i
\(580\) 529.283 + 156.242i 0.912557 + 0.269382i
\(581\) −168.044 + 114.943i −0.289232 + 0.197837i
\(582\) 28.2158 + 28.2158i 0.0484808 + 0.0484808i
\(583\) −167.715 625.922i −0.287676 1.07362i
\(584\) 283.670 163.777i 0.485736 0.280440i
\(585\) −29.5727 + 48.3599i −0.0505517 + 0.0826666i
\(586\) 50.7833 87.9592i 0.0866609 0.150101i
\(587\) 584.066 + 584.066i 0.995002 + 0.995002i 0.999988 0.00498534i \(-0.00158689\pi\)
−0.00498534 + 0.999988i \(0.501587\pi\)
\(588\) −320.320 35.1091i −0.544761 0.0597093i
\(589\) 959.090i 1.62834i
\(590\) −3.25967 + 129.103i −0.00552487 + 0.218819i
\(591\) 110.416 + 191.246i 0.186829 + 0.323597i
\(592\) −215.195 + 803.118i −0.363505 + 1.35662i
\(593\) −197.236 736.094i −0.332607 1.24131i −0.906440 0.422334i \(-0.861211\pi\)
0.573833 0.818972i \(-0.305456\pi\)
\(594\) 46.8961i 0.0789496i
\(595\) −134.351 415.311i −0.225800 0.698001i
\(596\) −171.190 −0.287232
\(597\) 49.4725 13.2561i 0.0828685 0.0222045i
\(598\) 45.0032 + 12.0586i 0.0752562 + 0.0201648i
\(599\) 385.326 222.468i 0.643282 0.371399i −0.142596 0.989781i \(-0.545545\pi\)
0.785878 + 0.618382i \(0.212212\pi\)
\(600\) −69.3423 135.464i −0.115571 0.225773i
\(601\) −618.650 −1.02937 −0.514684 0.857380i \(-0.672091\pi\)
−0.514684 + 0.857380i \(0.672091\pi\)
\(602\) 40.7991 47.5549i 0.0677726 0.0789949i
\(603\) −29.0527 + 29.0527i −0.0481802 + 0.0481802i
\(604\) 553.802 + 319.738i 0.916891 + 0.529367i
\(605\) 327.974 + 1360.49i 0.542105 + 2.24875i
\(606\) 31.3073 + 54.2258i 0.0516622 + 0.0894815i
\(607\) −203.819 + 54.6130i −0.335780 + 0.0899721i −0.422770 0.906237i \(-0.638942\pi\)
0.0869894 + 0.996209i \(0.472275\pi\)
\(608\) 309.411 309.411i 0.508900 0.508900i
\(609\) 152.442 317.779i 0.250315 0.521805i
\(610\) −21.1580 38.8814i −0.0346853 0.0637399i
\(611\) 21.1804 36.6855i 0.0346651 0.0600417i
\(612\) −36.7667 + 137.215i −0.0600763 + 0.224208i
\(613\) −238.755 63.9742i −0.389486 0.104362i 0.0587613 0.998272i \(-0.481285\pi\)
−0.448247 + 0.893910i \(0.647952\pi\)
\(614\) −94.2292 54.4032i −0.153468 0.0886046i
\(615\) −151.212 + 82.2847i −0.245872 + 0.133796i
\(616\) 444.116 + 213.047i 0.720967 + 0.345855i
\(617\) −396.280 396.280i −0.642268 0.642268i 0.308844 0.951113i \(-0.400058\pi\)
−0.951113 + 0.308844i \(0.900058\pi\)
\(618\) 6.27939 + 23.4350i 0.0101608 + 0.0379207i
\(619\) −93.8294 + 54.1724i −0.151582 + 0.0875160i −0.573873 0.818945i \(-0.694560\pi\)
0.422290 + 0.906461i \(0.361226\pi\)
\(620\) 816.689 196.879i 1.31724 0.317547i
\(621\) −71.0611 + 123.081i −0.114430 + 0.198199i
\(622\) −13.8132 13.8132i −0.0222078 0.0222078i
\(623\) −178.180 152.867i −0.286003 0.245373i
\(624\) 89.0387i 0.142690i
\(625\) −621.817 63.0008i −0.994907 0.100801i
\(626\) −43.2826 74.9676i −0.0691415 0.119757i
\(627\) 194.535 726.014i 0.310263 1.15792i
\(628\) −235.130 877.515i −0.374410 1.39732i
\(629\) 762.279i 1.21189i
\(630\) −45.0316 + 14.5675i −0.0714787 + 0.0231230i
\(631\) 185.595 0.294129 0.147064 0.989127i \(-0.453018\pi\)
0.147064 + 0.989127i \(0.453018\pi\)
\(632\) −440.044 + 117.910i −0.696273 + 0.186566i
\(633\) 194.441 + 52.1002i 0.307173 + 0.0823068i
\(634\) −6.43497 + 3.71523i −0.0101498 + 0.00585999i
\(635\) −12.8022 0.323236i −0.0201609 0.000509033i
\(636\) 212.835 0.334646
\(637\) −169.497 + 74.5627i −0.266086 + 0.117053i
\(638\) −185.516 + 185.516i −0.290777 + 0.290777i
\(639\) 184.889 + 106.746i 0.289341 + 0.167051i
\(640\) −431.609 263.934i −0.674389 0.412398i
\(641\) 253.276 + 438.688i 0.395127 + 0.684380i 0.993117 0.117123i \(-0.0373672\pi\)
−0.597990 + 0.801503i \(0.704034\pi\)
\(642\) −79.0663 + 21.1857i −0.123156 + 0.0329996i
\(643\) −521.287 + 521.287i −0.810711 + 0.810711i −0.984740 0.174030i \(-0.944321\pi\)
0.174030 + 0.984740i \(0.444321\pi\)
\(644\) −410.409 600.004i −0.637281 0.931684i
\(645\) −48.6896 + 164.940i −0.0754877 + 0.255722i
\(646\) 60.9191 105.515i 0.0943020 0.163336i
\(647\) 235.372 878.419i 0.363789 1.35768i −0.505265 0.862964i \(-0.668605\pi\)
0.869054 0.494717i \(-0.164728\pi\)
\(648\) 30.5523 + 8.18647i 0.0471486 + 0.0126334i
\(649\) 993.599 + 573.655i 1.53097 + 0.883905i
\(650\) −35.7584 23.1267i −0.0550130 0.0355795i
\(651\) −40.9050 534.966i −0.0628341 0.821760i
\(652\) 80.7648 + 80.7648i 0.123872 + 0.123872i
\(653\) 42.2998 + 157.865i 0.0647777 + 0.241754i 0.990722 0.135908i \(-0.0433951\pi\)
−0.925944 + 0.377661i \(0.876728\pi\)
\(654\) −9.35164 + 5.39917i −0.0142991 + 0.00825562i
\(655\) −154.733 641.859i −0.236233 0.979937i
\(656\) −135.203 + 234.178i −0.206102 + 0.356979i
\(657\) 197.711 + 197.711i 0.300930 + 0.300930i
\(658\) 33.3664 11.7322i 0.0507089 0.0178301i
\(659\) 242.026i 0.367262i 0.982995 + 0.183631i \(0.0587852\pi\)
−0.982995 + 0.183631i \(0.941215\pi\)
\(660\) −658.153 16.6174i −0.997201 0.0251779i
\(661\) 9.69682 + 16.7954i 0.0146699 + 0.0254090i 0.873267 0.487242i \(-0.161997\pi\)
−0.858597 + 0.512651i \(0.828664\pi\)
\(662\) 63.2064 235.890i 0.0954780 0.356329i
\(663\) 21.1278 + 78.8499i 0.0318669 + 0.118929i
\(664\) 102.218i 0.153942i
\(665\) −757.578 + 38.7241i −1.13922 + 0.0582318i
\(666\) 82.6529 0.124103
\(667\) 768.006 205.787i 1.15143 0.308526i
\(668\) −1066.21 285.689i −1.59612 0.427678i
\(669\) 570.027 329.105i 0.852058 0.491936i
\(670\) −21.2682 22.3700i −0.0317436 0.0333880i
\(671\) −393.250 −0.586065
\(672\) −159.389 + 185.781i −0.237185 + 0.276460i
\(673\) 520.888 520.888i 0.773980 0.773980i −0.204820 0.978800i \(-0.565661\pi\)
0.978800 + 0.204820i \(0.0656608\pi\)
\(674\) −100.828 58.2132i −0.149597 0.0863697i
\(675\) 96.3743 87.1033i 0.142777 0.129042i
\(676\) −293.720 508.738i −0.434497 0.752571i
\(677\) 1141.49 305.862i 1.68610 0.451790i 0.716723 0.697358i \(-0.245641\pi\)
0.969379 + 0.245568i \(0.0789746\pi\)
\(678\) 53.0230 53.0230i 0.0782051 0.0782051i
\(679\) −201.987 295.299i −0.297477 0.434902i
\(680\) −210.185 62.0456i −0.309096 0.0912435i
\(681\) −161.757 + 280.171i −0.237528 + 0.411411i
\(682\) −103.367 + 385.773i −0.151565 + 0.565649i
\(683\) 546.188 + 146.351i 0.799689 + 0.214276i 0.635448 0.772144i \(-0.280816\pi\)
0.164242 + 0.986420i \(0.447482\pi\)
\(684\) 213.795 + 123.435i 0.312566 + 0.180460i
\(685\) −108.196 198.828i −0.157950 0.290260i
\(686\) −147.946 44.9000i −0.215664 0.0654519i
\(687\) 12.7155 + 12.7155i 0.0185088 + 0.0185088i
\(688\) 69.9156 + 260.929i 0.101622 + 0.379257i
\(689\) 105.919 61.1522i 0.153728 0.0887550i
\(690\) −91.0889 55.7021i −0.132013 0.0807276i
\(691\) −664.985 + 1151.79i −0.962352 + 1.66684i −0.245785 + 0.969324i \(0.579046\pi\)
−0.716567 + 0.697518i \(0.754288\pi\)
\(692\) −134.838 134.838i −0.194853 0.194853i
\(693\) −77.5442 + 413.257i −0.111896 + 0.596330i
\(694\) 191.747i 0.276293i
\(695\) 360.414 + 379.085i 0.518581 + 0.545446i
\(696\) −88.4767 153.246i −0.127122 0.220181i
\(697\) −64.1638 + 239.463i −0.0920572 + 0.343562i
\(698\) 23.9898 + 89.5311i 0.0343693 + 0.128268i
\(699\) 193.607i 0.276977i
\(700\) 188.488 + 637.148i 0.269269 + 0.910211i
\(701\) −316.598 −0.451638 −0.225819 0.974169i \(-0.572506\pi\)
−0.225819 + 0.974169i \(0.572506\pi\)
\(702\) 8.54960 2.29086i 0.0121789 0.00326333i
\(703\) 1279.58 + 342.862i 1.82017 + 0.487712i
\(704\) −785.703 + 453.626i −1.11606 + 0.644355i
\(705\) −70.3543 + 66.8891i −0.0997933 + 0.0948781i
\(706\) −141.212 −0.200017
\(707\) −186.221 529.615i −0.263396 0.749101i
\(708\) −266.460 + 266.460i −0.376356 + 0.376356i
\(709\) −233.680 134.915i −0.329591 0.190290i 0.326068 0.945346i \(-0.394276\pi\)
−0.655660 + 0.755057i \(0.727609\pi\)
\(710\) −83.6738 + 136.831i −0.117850 + 0.192720i
\(711\) −194.440 336.780i −0.273474 0.473671i
\(712\) −113.853 + 30.5068i −0.159906 + 0.0428467i
\(713\) 855.851 855.851i 1.20035 1.20035i
\(714\) −29.4795 + 61.4528i −0.0412879 + 0.0860684i
\(715\) −332.309 + 180.832i −0.464767 + 0.252912i
\(716\) −220.717 + 382.293i −0.308264 + 0.533928i
\(717\) −87.9579 + 328.263i −0.122675 + 0.457829i
\(718\) 164.812 + 44.1613i 0.229543 + 0.0615060i
\(719\) −977.193 564.183i −1.35910 0.784677i −0.369598 0.929192i \(-0.620505\pi\)
−0.989503 + 0.144515i \(0.953838\pi\)
\(720\) 57.7691 195.698i 0.0802349 0.271803i
\(721\) −16.5845 216.896i −0.0230021 0.300827i
\(722\) −34.6571 34.6571i −0.0480015 0.0480015i
\(723\) −18.3919 68.6396i −0.0254383 0.0949372i
\(724\) −141.758 + 81.8440i −0.195798 + 0.113044i
\(725\) −725.817 36.6750i −1.00113 0.0505862i
\(726\) 109.261 189.245i 0.150497 0.260668i
\(727\) −704.249 704.249i −0.968705 0.968705i 0.0308196 0.999525i \(-0.490188\pi\)
−0.999525 + 0.0308196i \(0.990188\pi\)
\(728\) −17.1455 + 91.3737i −0.0235516 + 0.125513i
\(729\) 27.0000i 0.0370370i
\(730\) −152.234 + 144.736i −0.208539 + 0.198268i
\(731\) 123.830 + 214.480i 0.169398 + 0.293406i
\(732\) 33.4296 124.761i 0.0456688 0.170438i
\(733\) 248.412 + 927.085i 0.338897 + 1.26478i 0.899582 + 0.436753i \(0.143872\pi\)
−0.560684 + 0.828030i \(0.689462\pi\)
\(734\) 99.4917i 0.135547i
\(735\) 420.914 53.9103i 0.572672 0.0733474i
\(736\) −552.211 −0.750287
\(737\) −264.873 + 70.9726i −0.359394 + 0.0962993i
\(738\) 25.9646 + 6.95720i 0.0351824 + 0.00942711i
\(739\) 201.038 116.069i 0.272040 0.157063i −0.357774 0.933808i \(-0.616464\pi\)
0.629815 + 0.776746i \(0.283131\pi\)
\(740\) 29.2877 1159.97i 0.0395779 1.56753i
\(741\) 141.862 0.191447
\(742\) 100.366 + 18.8328i 0.135264 + 0.0253812i
\(743\) 678.958 678.958i 0.913806 0.913806i −0.0827629 0.996569i \(-0.526374\pi\)
0.996569 + 0.0827629i \(0.0263744\pi\)
\(744\) −233.282 134.686i −0.313552 0.181029i
\(745\) 219.161 52.8330i 0.294175 0.0709168i
\(746\) 55.2369 + 95.6731i 0.0740441 + 0.128248i
\(747\) −84.2816 + 22.5832i −0.112827 + 0.0302318i
\(748\) −670.404 + 670.404i −0.896262 + 0.896262i
\(749\) 731.777 55.9538i 0.977005 0.0747047i
\(750\) 63.5887 + 74.0306i 0.0847850 + 0.0987074i
\(751\) 617.773 1070.01i 0.822601 1.42479i −0.0811386 0.996703i \(-0.525856\pi\)
0.903739 0.428083i \(-0.140811\pi\)
\(752\) −39.4656 + 147.288i −0.0524809 + 0.195861i
\(753\) −828.686 222.046i −1.10051 0.294881i
\(754\) −42.8836 24.7589i −0.0568748 0.0328367i
\(755\) −807.665 238.418i −1.06975 0.315786i
\(756\) −124.516 59.7317i −0.164704 0.0790102i
\(757\) −256.783 256.783i −0.339212 0.339212i 0.516859 0.856071i \(-0.327101\pi\)
−0.856071 + 0.516859i \(0.827101\pi\)
\(758\) −27.8509 103.941i −0.0367426 0.137125i
\(759\) −821.459 + 474.269i −1.08229 + 0.624861i
\(760\) −198.689 + 324.914i −0.261433 + 0.427519i
\(761\) 486.625