Properties

Label 105.3.v.a.58.2
Level 105
Weight 3
Character 105.58
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 58.2
Character \(\chi\) \(=\) 105.58
Dual form 105.3.v.a.67.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.914152 - 3.41166i) q^{2} +(-0.448288 + 1.67303i) q^{3} +(-7.33966 + 4.23756i) q^{4} +(2.17799 + 4.50071i) q^{5} +6.11763 q^{6} +(-2.92953 + 6.35750i) q^{7} +(11.1766 + 11.1766i) q^{8} +(-2.59808 - 1.50000i) q^{9} +O(q^{10})\) \(q+(-0.914152 - 3.41166i) q^{2} +(-0.448288 + 1.67303i) q^{3} +(-7.33966 + 4.23756i) q^{4} +(2.17799 + 4.50071i) q^{5} +6.11763 q^{6} +(-2.92953 + 6.35750i) q^{7} +(11.1766 + 11.1766i) q^{8} +(-2.59808 - 1.50000i) q^{9} +(13.3639 - 11.5449i) q^{10} +(8.72135 + 15.1058i) q^{11} +(-3.79929 - 14.1791i) q^{12} +(-8.72144 - 8.72144i) q^{13} +(24.3677 + 4.18286i) q^{14} +(-8.50620 + 1.62623i) q^{15} +(10.9636 - 18.9894i) q^{16} +(-11.2788 - 3.02215i) q^{17} +(-2.74246 + 10.2350i) q^{18} +(3.12903 + 1.80655i) q^{19} +(-35.0577 - 23.8044i) q^{20} +(-9.32303 - 7.75120i) q^{21} +(43.5633 - 43.5633i) q^{22} +(23.1890 - 6.21349i) q^{23} +(-23.7092 + 13.6885i) q^{24} +(-15.5128 + 19.6050i) q^{25} +(-21.7819 + 37.7273i) q^{26} +(3.67423 - 3.67423i) q^{27} +(-5.43848 - 59.0760i) q^{28} +46.5831i q^{29} +(13.3241 + 27.5337i) q^{30} +(-1.10507 - 1.91403i) q^{31} +(-13.7376 - 3.68097i) q^{32} +(-29.1822 + 7.81935i) q^{33} +41.2423i q^{34} +(-34.9937 + 0.661568i) q^{35} +25.4253 q^{36} +(7.87211 + 29.3791i) q^{37} +(3.30292 - 12.3266i) q^{38} +(18.5010 - 10.6815i) q^{39} +(-25.9602 + 74.6454i) q^{40} +29.9435 q^{41} +(-17.9218 + 38.8928i) q^{42} +(-19.6771 - 19.6771i) q^{43} +(-128.024 - 73.9145i) q^{44} +(1.09249 - 14.9602i) q^{45} +(-42.3966 - 73.4331i) q^{46} +(-21.2083 - 79.1503i) q^{47} +(26.8551 + 26.8551i) q^{48} +(-31.8357 - 37.2490i) q^{49} +(81.0665 + 35.0024i) q^{50} +(10.1123 - 17.5151i) q^{51} +(100.970 + 27.0549i) q^{52} +(-0.437265 + 1.63190i) q^{53} +(-15.8941 - 9.17644i) q^{54} +(-48.9919 + 72.1526i) q^{55} +(-103.798 + 38.3132i) q^{56} +(-4.42512 + 4.42512i) q^{57} +(158.926 - 42.5841i) q^{58} +(76.5567 - 44.2000i) q^{59} +(55.5414 - 47.9815i) q^{60} +(-23.4309 + 40.5836i) q^{61} +(-5.51984 + 5.51984i) q^{62} +(17.1474 - 12.1230i) q^{63} -37.4755i q^{64} +(20.2575 - 58.2478i) q^{65} +(53.3540 + 92.4118i) q^{66} +(-11.2647 - 3.01836i) q^{67} +(95.5894 - 25.6131i) q^{68} +41.5815i q^{69} +(34.2467 + 118.782i) q^{70} +67.1402 q^{71} +(-12.2728 - 45.8027i) q^{72} +(4.72997 - 17.6525i) q^{73} +(93.0353 - 53.7140i) q^{74} +(-25.8456 - 34.7420i) q^{75} -30.6214 q^{76} +(-121.585 + 11.1930i) q^{77} +(-53.3545 - 53.3545i) q^{78} +(-19.4021 - 11.2018i) q^{79} +(109.344 + 7.98505i) q^{80} +(4.50000 + 7.79423i) q^{81} +(-27.3729 - 102.157i) q^{82} +(52.4430 + 52.4430i) q^{83} +(101.274 + 17.3843i) q^{84} +(-10.9633 - 57.3450i) q^{85} +(-49.1438 + 85.1196i) q^{86} +(-77.9351 - 20.8826i) q^{87} +(-71.3570 + 266.308i) q^{88} +(-44.2757 - 25.5626i) q^{89} +(-52.0377 + 9.94866i) q^{90} +(80.9964 - 29.8968i) q^{91} +(-143.870 + 143.870i) q^{92} +(3.69763 - 0.990777i) q^{93} +(-250.647 + 144.711i) q^{94} +(-1.31575 + 18.0175i) q^{95} +(12.3168 - 21.3333i) q^{96} +(9.15031 - 9.15031i) q^{97} +(-97.9785 + 142.664i) q^{98} -52.3281i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.914152 3.41166i −0.457076 1.70583i −0.681912 0.731435i \(-0.738851\pi\)
0.224836 0.974397i \(-0.427815\pi\)
\(3\) −0.448288 + 1.67303i −0.149429 + 0.557678i
\(4\) −7.33966 + 4.23756i −1.83492 + 1.05939i
\(5\) 2.17799 + 4.50071i 0.435597 + 0.900142i
\(6\) 6.11763 1.01960
\(7\) −2.92953 + 6.35750i −0.418505 + 0.908215i
\(8\) 11.1766 + 11.1766i 1.39708 + 1.39708i
\(9\) −2.59808 1.50000i −0.288675 0.166667i
\(10\) 13.3639 11.5449i 1.33639 1.15449i
\(11\) 8.72135 + 15.1058i 0.792850 + 1.37326i 0.924195 + 0.381920i \(0.124737\pi\)
−0.131345 + 0.991337i \(0.541930\pi\)
\(12\) −3.79929 14.1791i −0.316608 1.18160i
\(13\) −8.72144 8.72144i −0.670880 0.670880i 0.287039 0.957919i \(-0.407329\pi\)
−0.957919 + 0.287039i \(0.907329\pi\)
\(14\) 24.3677 + 4.18286i 1.74055 + 0.298776i
\(15\) −8.50620 + 1.62623i −0.567080 + 0.108415i
\(16\) 10.9636 18.9894i 0.685222 1.18684i
\(17\) −11.2788 3.02215i −0.663461 0.177774i −0.0886535 0.996063i \(-0.528256\pi\)
−0.574807 + 0.818289i \(0.694923\pi\)
\(18\) −2.74246 + 10.2350i −0.152359 + 0.568610i
\(19\) 3.12903 + 1.80655i 0.164686 + 0.0950814i 0.580078 0.814561i \(-0.303022\pi\)
−0.415392 + 0.909643i \(0.636356\pi\)
\(20\) −35.0577 23.8044i −1.75288 1.19022i
\(21\) −9.32303 7.75120i −0.443954 0.369105i
\(22\) 43.5633 43.5633i 1.98015 1.98015i
\(23\) 23.1890 6.21349i 1.00822 0.270152i 0.283334 0.959021i \(-0.408559\pi\)
0.724885 + 0.688870i \(0.241893\pi\)
\(24\) −23.7092 + 13.6885i −0.987885 + 0.570356i
\(25\) −15.5128 + 19.6050i −0.620510 + 0.784198i
\(26\) −21.7819 + 37.7273i −0.837765 + 1.45105i
\(27\) 3.67423 3.67423i 0.136083 0.136083i
\(28\) −5.43848 59.0760i −0.194231 2.10986i
\(29\) 46.5831i 1.60631i 0.595767 + 0.803157i \(0.296848\pi\)
−0.595767 + 0.803157i \(0.703152\pi\)
\(30\) 13.3241 + 27.5337i 0.444137 + 0.917788i
\(31\) −1.10507 1.91403i −0.0356474 0.0617430i 0.847651 0.530554i \(-0.178016\pi\)
−0.883299 + 0.468811i \(0.844683\pi\)
\(32\) −13.7376 3.68097i −0.429300 0.115030i
\(33\) −29.1822 + 7.81935i −0.884310 + 0.236950i
\(34\) 41.2423i 1.21301i
\(35\) −34.9937 + 0.661568i −0.999821 + 0.0189019i
\(36\) 25.4253 0.706260
\(37\) 7.87211 + 29.3791i 0.212760 + 0.794030i 0.986943 + 0.161069i \(0.0514942\pi\)
−0.774183 + 0.632961i \(0.781839\pi\)
\(38\) 3.30292 12.3266i 0.0869188 0.324386i
\(39\) 18.5010 10.6815i 0.474384 0.273886i
\(40\) −25.9602 + 74.6454i −0.649006 + 1.86614i
\(41\) 29.9435 0.730329 0.365165 0.930943i \(-0.381013\pi\)
0.365165 + 0.930943i \(0.381013\pi\)
\(42\) −17.9218 + 38.8928i −0.426709 + 0.926019i
\(43\) −19.6771 19.6771i −0.457608 0.457608i 0.440262 0.897869i \(-0.354886\pi\)
−0.897869 + 0.440262i \(0.854886\pi\)
\(44\) −128.024 73.9145i −2.90963 1.67987i
\(45\) 1.09249 14.9602i 0.0242775 0.332448i
\(46\) −42.3966 73.4331i −0.921666 1.59637i
\(47\) −21.2083 79.1503i −0.451240 1.68405i −0.698913 0.715206i \(-0.746333\pi\)
0.247674 0.968844i \(-0.420334\pi\)
\(48\) 26.8551 + 26.8551i 0.559482 + 0.559482i
\(49\) −31.8357 37.2490i −0.649707 0.760185i
\(50\) 81.0665 + 35.0024i 1.62133 + 0.700047i
\(51\) 10.1123 17.5151i 0.198281 0.343433i
\(52\) 100.970 + 27.0549i 1.94173 + 0.520286i
\(53\) −0.437265 + 1.63190i −0.00825028 + 0.0307905i −0.969928 0.243391i \(-0.921740\pi\)
0.961678 + 0.274181i \(0.0884069\pi\)
\(54\) −15.8941 9.17644i −0.294334 0.169934i
\(55\) −48.9919 + 72.1526i −0.890763 + 1.31186i
\(56\) −103.798 + 38.3132i −1.85353 + 0.684164i
\(57\) −4.42512 + 4.42512i −0.0776336 + 0.0776336i
\(58\) 158.926 42.5841i 2.74010 0.734208i
\(59\) 76.5567 44.2000i 1.29757 0.749153i 0.317587 0.948229i \(-0.397127\pi\)
0.979984 + 0.199076i \(0.0637941\pi\)
\(60\) 55.5414 47.9815i 0.925690 0.799691i
\(61\) −23.4309 + 40.5836i −0.384114 + 0.665305i −0.991646 0.128990i \(-0.958826\pi\)
0.607532 + 0.794295i \(0.292160\pi\)
\(62\) −5.51984 + 5.51984i −0.0890296 + 0.0890296i
\(63\) 17.1474 12.1230i 0.272181 0.192428i
\(64\) 37.4755i 0.585554i
\(65\) 20.2575 58.2478i 0.311654 0.896121i
\(66\) 53.3540 + 92.4118i 0.808394 + 1.40018i
\(67\) −11.2647 3.01836i −0.168129 0.0450501i 0.173772 0.984786i \(-0.444404\pi\)
−0.341902 + 0.939736i \(0.611071\pi\)
\(68\) 95.5894 25.6131i 1.40573 0.376663i
\(69\) 41.5815i 0.602630i
\(70\) 34.2467 + 118.782i 0.489238 + 1.69689i
\(71\) 67.1402 0.945636 0.472818 0.881160i \(-0.343237\pi\)
0.472818 + 0.881160i \(0.343237\pi\)
\(72\) −12.2728 45.8027i −0.170456 0.636149i
\(73\) 4.72997 17.6525i 0.0647941 0.241815i −0.925932 0.377691i \(-0.876718\pi\)
0.990726 + 0.135876i \(0.0433848\pi\)
\(74\) 93.0353 53.7140i 1.25723 0.725865i
\(75\) −25.8456 34.7420i −0.344607 0.463227i
\(76\) −30.6214 −0.402913
\(77\) −121.585 + 11.1930i −1.57902 + 0.145363i
\(78\) −53.3545 53.3545i −0.684032 0.684032i
\(79\) −19.4021 11.2018i −0.245596 0.141795i 0.372150 0.928173i \(-0.378621\pi\)
−0.617746 + 0.786378i \(0.711954\pi\)
\(80\) 109.344 + 7.98505i 1.36680 + 0.0998131i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) −27.3729 102.157i −0.333816 1.24582i
\(83\) 52.4430 + 52.4430i 0.631844 + 0.631844i 0.948530 0.316686i \(-0.102570\pi\)
−0.316686 + 0.948530i \(0.602570\pi\)
\(84\) 101.274 + 17.3843i 1.20564 + 0.206956i
\(85\) −10.9633 57.3450i −0.128980 0.674647i
\(86\) −49.1438 + 85.1196i −0.571440 + 0.989763i
\(87\) −77.9351 20.8826i −0.895805 0.240030i
\(88\) −71.3570 + 266.308i −0.810875 + 3.02623i
\(89\) −44.2757 25.5626i −0.497480 0.287220i 0.230192 0.973145i \(-0.426065\pi\)
−0.727672 + 0.685925i \(0.759398\pi\)
\(90\) −52.0377 + 9.94866i −0.578197 + 0.110541i
\(91\) 80.9964 29.8968i 0.890070 0.328536i
\(92\) −143.870 + 143.870i −1.56380 + 1.56380i
\(93\) 3.69763 0.990777i 0.0397595 0.0106535i
\(94\) −250.647 + 144.711i −2.66645 + 1.53948i
\(95\) −1.31575 + 18.0175i −0.0138501 + 0.189658i
\(96\) 12.3168 21.3333i 0.128300 0.222222i
\(97\) 9.15031 9.15031i 0.0943331 0.0943331i −0.658365 0.752698i \(-0.728752\pi\)
0.752698 + 0.658365i \(0.228752\pi\)
\(98\) −97.9785 + 142.664i −0.999781 + 1.45575i
\(99\) 52.3281i 0.528567i
\(100\) 30.7813 209.630i 0.307813 2.09630i
\(101\) 42.1642 + 73.0305i 0.417467 + 0.723074i 0.995684 0.0928089i \(-0.0295846\pi\)
−0.578217 + 0.815883i \(0.696251\pi\)
\(102\) −68.9997 18.4884i −0.676468 0.181259i
\(103\) 113.235 30.3411i 1.09937 0.294574i 0.336859 0.941555i \(-0.390635\pi\)
0.762506 + 0.646981i \(0.223969\pi\)
\(104\) 194.953i 1.87455i
\(105\) 14.5804 58.8423i 0.138861 0.560402i
\(106\) 5.96720 0.0562944
\(107\) 36.9890 + 138.045i 0.345691 + 1.29014i 0.891802 + 0.452425i \(0.149441\pi\)
−0.546111 + 0.837713i \(0.683892\pi\)
\(108\) −11.3979 + 42.5374i −0.105536 + 0.393865i
\(109\) 140.724 81.2472i 1.29105 0.745387i 0.312208 0.950014i \(-0.398931\pi\)
0.978840 + 0.204627i \(0.0655980\pi\)
\(110\) 290.946 + 101.186i 2.64497 + 0.919869i
\(111\) −52.6812 −0.474605
\(112\) 88.6073 + 125.331i 0.791136 + 1.11903i
\(113\) −3.09464 3.09464i −0.0273862 0.0273862i 0.693281 0.720667i \(-0.256164\pi\)
−0.720667 + 0.693281i \(0.756164\pi\)
\(114\) 19.1422 + 11.0518i 0.167914 + 0.0969454i
\(115\) 78.4705 + 90.8343i 0.682352 + 0.789863i
\(116\) −197.399 341.904i −1.70171 2.94745i
\(117\) 9.57681 + 35.7411i 0.0818531 + 0.305480i
\(118\) −220.780 220.780i −1.87102 1.87102i
\(119\) 52.2551 62.8517i 0.439118 0.528166i
\(120\) −113.247 76.8950i −0.943721 0.640791i
\(121\) −91.6240 + 158.697i −0.757223 + 1.31155i
\(122\) 159.877 + 42.8389i 1.31047 + 0.351139i
\(123\) −13.4233 + 50.0965i −0.109133 + 0.407288i
\(124\) 16.2217 + 9.36558i 0.130820 + 0.0755289i
\(125\) −122.023 27.1191i −0.976182 0.216953i
\(126\) −57.0348 47.4189i −0.452657 0.376341i
\(127\) −117.674 + 117.674i −0.926571 + 0.926571i −0.997483 0.0709120i \(-0.977409\pi\)
0.0709120 + 0.997483i \(0.477409\pi\)
\(128\) −182.804 + 48.9822i −1.42816 + 0.382673i
\(129\) 41.7415 24.0995i 0.323578 0.186818i
\(130\) −217.240 15.8643i −1.67108 0.122033i
\(131\) 81.6255 141.379i 0.623095 1.07923i −0.365811 0.930689i \(-0.619208\pi\)
0.988906 0.148543i \(-0.0474584\pi\)
\(132\) 181.053 181.053i 1.37161 1.37161i
\(133\) −20.6517 + 14.6005i −0.155276 + 0.109778i
\(134\) 41.1905i 0.307392i
\(135\) 24.5391 + 8.53423i 0.181771 + 0.0632165i
\(136\) −92.2820 159.837i −0.678544 1.17527i
\(137\) 142.797 + 38.2623i 1.04231 + 0.279287i 0.739072 0.673627i \(-0.235265\pi\)
0.303241 + 0.952914i \(0.401931\pi\)
\(138\) 141.862 38.0118i 1.02798 0.275448i
\(139\) 101.553i 0.730596i 0.930891 + 0.365298i \(0.119033\pi\)
−0.930891 + 0.365298i \(0.880967\pi\)
\(140\) 254.039 153.144i 1.81456 1.09388i
\(141\) 141.929 1.00659
\(142\) −61.3763 229.060i −0.432228 1.61310i
\(143\) 55.6818 207.807i 0.389383 1.45320i
\(144\) −56.9683 + 32.8907i −0.395613 + 0.228407i
\(145\) −209.657 + 101.457i −1.44591 + 0.699706i
\(146\) −64.5483 −0.442112
\(147\) 76.5904 36.5638i 0.521023 0.248733i
\(148\) −182.274 182.274i −1.23158 1.23158i
\(149\) −91.7653 52.9807i −0.615874 0.355575i 0.159387 0.987216i \(-0.449048\pi\)
−0.775261 + 0.631641i \(0.782382\pi\)
\(150\) −94.9012 + 119.936i −0.632675 + 0.799572i
\(151\) 80.5845 + 139.576i 0.533672 + 0.924347i 0.999226 + 0.0393279i \(0.0125217\pi\)
−0.465554 + 0.885019i \(0.654145\pi\)
\(152\) 14.7809 + 55.1632i 0.0972429 + 0.362916i
\(153\) 24.7700 + 24.7700i 0.161896 + 0.161896i
\(154\) 149.334 + 404.574i 0.969699 + 2.62711i
\(155\) 6.20769 9.14233i 0.0400496 0.0589828i
\(156\) −90.5273 + 156.798i −0.580303 + 1.00511i
\(157\) 132.698 + 35.5563i 0.845210 + 0.226473i 0.655338 0.755336i \(-0.272526\pi\)
0.189872 + 0.981809i \(0.439193\pi\)
\(158\) −20.4803 + 76.4335i −0.129622 + 0.483756i
\(159\) −2.53419 1.46312i −0.0159383 0.00920200i
\(160\) −13.3533 69.8460i −0.0834579 0.436537i
\(161\) −28.4309 + 165.627i −0.176589 + 1.02874i
\(162\) 22.4776 22.4776i 0.138751 0.138751i
\(163\) 182.431 48.8824i 1.11921 0.299892i 0.348647 0.937254i \(-0.386641\pi\)
0.770564 + 0.637362i \(0.219975\pi\)
\(164\) −219.775 + 126.887i −1.34009 + 0.773703i
\(165\) −98.7511 114.310i −0.598491 0.692789i
\(166\) 130.977 226.859i 0.789018 1.36662i
\(167\) −114.153 + 114.153i −0.683552 + 0.683552i −0.960799 0.277247i \(-0.910578\pi\)
0.277247 + 0.960799i \(0.410578\pi\)
\(168\) −17.5679 190.833i −0.104571 1.13591i
\(169\) 16.8729i 0.0998396i
\(170\) −185.620 + 89.8251i −1.09188 + 0.528383i
\(171\) −5.41964 9.38709i −0.0316938 0.0548952i
\(172\) 227.807 + 61.0406i 1.32446 + 0.354887i
\(173\) −201.348 + 53.9511i −1.16386 + 0.311856i −0.788508 0.615025i \(-0.789146\pi\)
−0.375355 + 0.926881i \(0.622479\pi\)
\(174\) 284.978i 1.63780i
\(175\) −79.1934 156.056i −0.452534 0.891747i
\(176\) 382.468 2.17312
\(177\) 39.6287 + 147.896i 0.223891 + 0.835572i
\(178\) −46.7362 + 174.422i −0.262563 + 0.979899i
\(179\) 102.967 59.4481i 0.575235 0.332112i −0.184002 0.982926i \(-0.558905\pi\)
0.759238 + 0.650814i \(0.225572\pi\)
\(180\) 55.3760 + 114.432i 0.307645 + 0.635734i
\(181\) −2.13381 −0.0117890 −0.00589449 0.999983i \(-0.501876\pi\)
−0.00589449 + 0.999983i \(0.501876\pi\)
\(182\) −176.041 249.002i −0.967257 1.36814i
\(183\) −57.3939 57.3939i −0.313628 0.313628i
\(184\) 328.622 + 189.730i 1.78599 + 1.03114i
\(185\) −115.082 + 99.4174i −0.622062 + 0.537391i
\(186\) −6.76039 11.7093i −0.0363462 0.0629535i
\(187\) −52.7146 196.733i −0.281896 1.05205i
\(188\) 491.066 + 491.066i 2.61205 + 2.61205i
\(189\) 12.5952 + 34.1227i 0.0666410 + 0.180544i
\(190\) 62.6724 11.9818i 0.329855 0.0630621i
\(191\) 85.4671 148.033i 0.447472 0.775044i −0.550749 0.834671i \(-0.685658\pi\)
0.998221 + 0.0596272i \(0.0189912\pi\)
\(192\) 62.6977 + 16.7998i 0.326551 + 0.0874990i
\(193\) −21.4527 + 80.0626i −0.111154 + 0.414832i −0.998970 0.0453656i \(-0.985555\pi\)
0.887817 + 0.460197i \(0.152221\pi\)
\(194\) −39.5825 22.8530i −0.204034 0.117799i
\(195\) 88.3694 + 60.0032i 0.453176 + 0.307709i
\(196\) 391.508 + 138.490i 1.99749 + 0.706582i
\(197\) 32.0391 32.0391i 0.162635 0.162635i −0.621098 0.783733i \(-0.713313\pi\)
0.783733 + 0.621098i \(0.213313\pi\)
\(198\) −178.526 + 47.8359i −0.901646 + 0.241595i
\(199\) −22.0307 + 12.7194i −0.110707 + 0.0639167i −0.554331 0.832296i \(-0.687026\pi\)
0.443624 + 0.896213i \(0.353693\pi\)
\(200\) −392.498 + 45.7371i −1.96249 + 0.228686i
\(201\) 10.0996 17.4931i 0.0502469 0.0870302i
\(202\) 210.611 210.611i 1.04263 1.04263i
\(203\) −296.152 136.467i −1.45888 0.672250i
\(204\) 171.406i 0.840227i
\(205\) 65.2165 + 134.767i 0.318129 + 0.657400i
\(206\) −207.027 358.582i −1.00499 1.74069i
\(207\) −69.5671 18.6405i −0.336073 0.0900505i
\(208\) −261.233 + 69.9973i −1.25593 + 0.336525i
\(209\) 63.0221i 0.301541i
\(210\) −214.079 + 4.04722i −1.01942 + 0.0192725i
\(211\) 139.996 0.663487 0.331744 0.943370i \(-0.392363\pi\)
0.331744 + 0.943370i \(0.392363\pi\)
\(212\) −3.70587 13.8305i −0.0174805 0.0652382i
\(213\) −30.0981 + 112.328i −0.141306 + 0.527360i
\(214\) 437.148 252.388i 2.04275 1.17938i
\(215\) 45.7045 131.418i 0.212579 0.611244i
\(216\) 82.1312 0.380237
\(217\) 15.4058 1.41824i 0.0709945 0.00653568i
\(218\) −405.831 405.831i −1.86161 1.86161i
\(219\) 27.4128 + 15.8268i 0.125173 + 0.0722685i
\(220\) 53.8339 737.182i 0.244699 3.35083i
\(221\) 72.0102 + 124.725i 0.325838 + 0.564368i
\(222\) 48.1586 + 179.730i 0.216931 + 0.809597i
\(223\) 132.643 + 132.643i 0.594809 + 0.594809i 0.938927 0.344117i \(-0.111822\pi\)
−0.344117 + 0.938927i \(0.611822\pi\)
\(224\) 63.6465 76.5532i 0.284136 0.341755i
\(225\) 69.7108 27.6660i 0.309826 0.122960i
\(226\) −7.72888 + 13.3868i −0.0341986 + 0.0592337i
\(227\) −237.143 63.5422i −1.04468 0.279922i −0.304629 0.952471i \(-0.598533\pi\)
−0.740052 + 0.672549i \(0.765199\pi\)
\(228\) 13.7272 51.2305i 0.0602069 0.224695i
\(229\) −217.561 125.609i −0.950047 0.548510i −0.0569516 0.998377i \(-0.518138\pi\)
−0.893096 + 0.449867i \(0.851471\pi\)
\(230\) 238.162 350.751i 1.03549 1.52501i
\(231\) 35.7788 208.433i 0.154886 0.902308i
\(232\) −520.643 + 520.643i −2.24415 + 2.24415i
\(233\) 285.430 76.4808i 1.22502 0.328244i 0.412383 0.911010i \(-0.364696\pi\)
0.812640 + 0.582767i \(0.198030\pi\)
\(234\) 113.182 65.3457i 0.483684 0.279255i
\(235\) 310.041 267.841i 1.31932 1.13975i
\(236\) −374.600 + 648.827i −1.58729 + 2.74927i
\(237\) 27.4387 27.4387i 0.115775 0.115775i
\(238\) −262.198 120.821i −1.10167 0.507650i
\(239\) 100.831i 0.421885i 0.977498 + 0.210943i \(0.0676533\pi\)
−0.977498 + 0.210943i \(0.932347\pi\)
\(240\) −62.3770 + 179.357i −0.259904 + 0.747321i
\(241\) −179.672 311.201i −0.745527 1.29129i −0.949948 0.312408i \(-0.898865\pi\)
0.204421 0.978883i \(-0.434469\pi\)
\(242\) 625.181 + 167.517i 2.58339 + 0.692217i
\(243\) −15.0573 + 4.03459i −0.0619642 + 0.0166032i
\(244\) 397.160i 1.62770i
\(245\) 98.3095 224.411i 0.401263 0.915963i
\(246\) 183.183 0.744647
\(247\) −11.5340 43.0453i −0.0466962 0.174273i
\(248\) 9.04153 33.7434i 0.0364578 0.136062i
\(249\) −111.248 + 64.2293i −0.446781 + 0.257949i
\(250\) 19.0263 + 441.091i 0.0761051 + 1.76437i
\(251\) 17.4715 0.0696075 0.0348038 0.999394i \(-0.488919\pi\)
0.0348038 + 0.999394i \(0.488919\pi\)
\(252\) −74.4844 + 161.642i −0.295573 + 0.641435i
\(253\) 296.100 + 296.100i 1.17035 + 1.17035i
\(254\) 509.038 + 293.893i 2.00409 + 1.15706i
\(255\) 100.855 + 7.36507i 0.395509 + 0.0288826i
\(256\) 259.270 + 449.070i 1.01278 + 1.75418i
\(257\) −20.6778 77.1706i −0.0804583 0.300275i 0.913957 0.405811i \(-0.133011\pi\)
−0.994415 + 0.105536i \(0.966344\pi\)
\(258\) −120.377 120.377i −0.466579 0.466579i
\(259\) −209.839 36.0202i −0.810191 0.139074i
\(260\) 98.1454 + 513.362i 0.377482 + 1.97447i
\(261\) 69.8747 121.026i 0.267719 0.463703i
\(262\) −556.957 149.236i −2.12579 0.569604i
\(263\) −44.8686 + 167.452i −0.170603 + 0.636699i 0.826656 + 0.562708i \(0.190240\pi\)
−0.997259 + 0.0739911i \(0.976426\pi\)
\(264\) −413.553 238.765i −1.56649 0.904414i
\(265\) −8.29704 + 1.58624i −0.0313096 + 0.00598582i
\(266\) 68.6907 + 57.1096i 0.258236 + 0.214698i
\(267\) 62.6154 62.6154i 0.234514 0.234514i
\(268\) 95.4694 25.5809i 0.356229 0.0954513i
\(269\) 160.485 92.6559i 0.596597 0.344446i −0.171104 0.985253i \(-0.554734\pi\)
0.767702 + 0.640807i \(0.221400\pi\)
\(270\) 6.68344 91.5207i 0.0247535 0.338965i
\(271\) −182.223 + 315.620i −0.672410 + 1.16465i 0.304808 + 0.952414i \(0.401408\pi\)
−0.977219 + 0.212235i \(0.931926\pi\)
\(272\) −181.045 + 181.045i −0.665607 + 0.665607i
\(273\) 13.7087 + 148.912i 0.0502149 + 0.545465i
\(274\) 522.152i 1.90567i
\(275\) −431.441 63.3512i −1.56888 0.230368i
\(276\) −176.204 305.194i −0.638420 1.10578i
\(277\) −467.038 125.143i −1.68606 0.451778i −0.716691 0.697391i \(-0.754344\pi\)
−0.969368 + 0.245613i \(0.921011\pi\)
\(278\) 346.464 92.8347i 1.24627 0.333938i
\(279\) 6.63041i 0.0237649i
\(280\) −398.507 383.719i −1.42324 1.37042i
\(281\) −472.914 −1.68297 −0.841484 0.540282i \(-0.818318\pi\)
−0.841484 + 0.540282i \(0.818318\pi\)
\(282\) −129.744 484.212i −0.460086 1.71706i
\(283\) 64.2640 239.837i 0.227081 0.847479i −0.754479 0.656324i \(-0.772110\pi\)
0.981560 0.191154i \(-0.0612231\pi\)
\(284\) −492.786 + 284.510i −1.73516 + 1.00180i
\(285\) −29.5540 10.2783i −0.103698 0.0360643i
\(286\) −759.870 −2.65689
\(287\) −87.7205 + 190.366i −0.305646 + 0.663296i
\(288\) 30.1698 + 30.1698i 0.104756 + 0.104756i
\(289\) −132.203 76.3272i −0.457449 0.264108i
\(290\) 537.797 + 622.531i 1.85447 + 2.14666i
\(291\) 11.2068 + 19.4107i 0.0385113 + 0.0667036i
\(292\) 40.0871 + 149.607i 0.137284 + 0.512353i
\(293\) 61.1515 + 61.1515i 0.208708 + 0.208708i 0.803718 0.595010i \(-0.202852\pi\)
−0.595010 + 0.803718i \(0.702852\pi\)
\(294\) −194.759 227.876i −0.662444 0.775087i
\(295\) 365.671 + 248.292i 1.23956 + 0.841669i
\(296\) −240.376 + 416.344i −0.812082 + 1.40657i
\(297\) 87.5467 + 23.4581i 0.294770 + 0.0789834i
\(298\) −96.8649 + 361.505i −0.325050 + 1.21310i
\(299\) −256.433 148.051i −0.857634 0.495155i
\(300\) 336.919 + 145.473i 1.12306 + 0.484909i
\(301\) 182.742 67.4526i 0.607117 0.224095i
\(302\) 402.521 402.521i 1.33285 1.33285i
\(303\) −141.084 + 37.8034i −0.465624 + 0.124764i
\(304\) 68.6106 39.6123i 0.225693 0.130304i
\(305\) −233.687 17.0654i −0.766187 0.0559521i
\(306\) 61.8634 107.151i 0.202168 0.350165i
\(307\) −36.7448 + 36.7448i −0.119690 + 0.119690i −0.764415 0.644725i \(-0.776972\pi\)
0.644725 + 0.764415i \(0.276972\pi\)
\(308\) 844.961 597.375i 2.74338 1.93953i
\(309\) 203.047i 0.657110i
\(310\) −36.8653 12.8211i −0.118920 0.0413582i
\(311\) −44.4761 77.0348i −0.143010 0.247700i 0.785619 0.618711i \(-0.212345\pi\)
−0.928629 + 0.371010i \(0.879011\pi\)
\(312\) 326.163 + 87.3950i 1.04539 + 0.280112i
\(313\) −177.500 + 47.5609i −0.567092 + 0.151952i −0.530962 0.847395i \(-0.678169\pi\)
−0.0361293 + 0.999347i \(0.511503\pi\)
\(314\) 485.224i 1.54530i
\(315\) 91.9088 + 50.7718i 0.291774 + 0.161180i
\(316\) 189.873 0.600864
\(317\) 95.4002 + 356.038i 0.300947 + 1.12315i 0.936378 + 0.350992i \(0.114156\pi\)
−0.635431 + 0.772157i \(0.719178\pi\)
\(318\) −2.67502 + 9.98333i −0.00841203 + 0.0313941i
\(319\) −703.676 + 406.268i −2.20588 + 1.27357i
\(320\) 168.666 81.6211i 0.527082 0.255066i
\(321\) −247.535 −0.771137
\(322\) 591.054 54.4118i 1.83557 0.168981i
\(323\) −29.8321 29.8321i −0.0923596 0.0923596i
\(324\) −66.0570 38.1380i −0.203880 0.117710i
\(325\) 306.277 35.6899i 0.942391 0.109815i
\(326\) −333.540 577.709i −1.02313 1.77211i
\(327\) 72.8442 + 271.858i 0.222765 + 0.831371i
\(328\) 334.668 + 334.668i 1.02033 + 1.02033i
\(329\) 565.329 + 97.0420i 1.71832 + 0.294961i
\(330\) −299.714 + 441.402i −0.908225 + 1.33758i
\(331\) 224.992 389.697i 0.679734 1.17733i −0.295327 0.955396i \(-0.595429\pi\)
0.975061 0.221937i \(-0.0712381\pi\)
\(332\) −607.145 162.684i −1.82875 0.490012i
\(333\) 23.6163 88.1374i 0.0709199 0.264677i
\(334\) 493.805 + 285.099i 1.47846 + 0.853589i
\(335\) −10.9495 57.2729i −0.0326852 0.170964i
\(336\) −249.404 + 92.0585i −0.742275 + 0.273984i
\(337\) −9.37231 + 9.37231i −0.0278110 + 0.0278110i −0.720876 0.693065i \(-0.756260\pi\)
0.693065 + 0.720876i \(0.256260\pi\)
\(338\) −57.5646 + 15.4244i −0.170309 + 0.0456343i
\(339\) 6.56471 3.79014i 0.0193649 0.0111804i
\(340\) 323.470 + 374.435i 0.951381 + 1.10128i
\(341\) 19.2754 33.3859i 0.0565260 0.0979060i
\(342\) −27.0712 + 27.0712i −0.0791556 + 0.0791556i
\(343\) 330.074 93.2729i 0.962316 0.271933i
\(344\) 439.849i 1.27863i
\(345\) −187.146 + 90.5638i −0.542452 + 0.262504i
\(346\) 368.126 + 637.613i 1.06395 + 1.84281i
\(347\) 378.650 + 101.459i 1.09121 + 0.292389i 0.759180 0.650880i \(-0.225600\pi\)
0.332029 + 0.943269i \(0.392267\pi\)
\(348\) 660.509 176.983i 1.89801 0.508571i
\(349\) 480.726i 1.37744i −0.725028 0.688720i \(-0.758173\pi\)
0.725028 0.688720i \(-0.241827\pi\)
\(350\) −460.015 + 412.840i −1.31433 + 1.17954i
\(351\) −64.0893 −0.182590
\(352\) −64.2062 239.621i −0.182404 0.680741i
\(353\) −143.459 + 535.395i −0.406398 + 1.51670i 0.395064 + 0.918654i \(0.370722\pi\)
−0.801462 + 0.598045i \(0.795944\pi\)
\(354\) 468.345 270.399i 1.32301 0.763840i
\(355\) 146.230 + 302.178i 0.411917 + 0.851207i
\(356\) 433.292 1.21711
\(357\) 81.7276 + 115.600i 0.228929 + 0.323810i
\(358\) −296.944 296.944i −0.829454 0.829454i
\(359\) 87.7247 + 50.6479i 0.244359 + 0.141080i 0.617178 0.786823i \(-0.288276\pi\)
−0.372820 + 0.927904i \(0.621609\pi\)
\(360\) 179.415 154.994i 0.498374 0.430539i
\(361\) −173.973 301.330i −0.481919 0.834708i
\(362\) 1.95062 + 7.27983i 0.00538846 + 0.0201100i
\(363\) −224.432 224.432i −0.618270 0.618270i
\(364\) −467.797 + 562.659i −1.28516 + 1.54577i
\(365\) 89.7506 17.1587i 0.245892 0.0470100i
\(366\) −143.342 + 248.275i −0.391644 + 0.678348i
\(367\) 294.332 + 78.8661i 0.801996 + 0.214894i 0.636460 0.771310i \(-0.280398\pi\)
0.165536 + 0.986204i \(0.447065\pi\)
\(368\) 136.244 508.469i 0.370228 1.38171i
\(369\) −77.7955 44.9153i −0.210828 0.121722i
\(370\) 444.381 + 301.737i 1.20103 + 0.815505i
\(371\) −9.09379 7.56061i −0.0245116 0.0203790i
\(372\) −22.9409 + 22.9409i −0.0616691 + 0.0616691i
\(373\) −103.576 + 27.7530i −0.277682 + 0.0744048i −0.394973 0.918693i \(-0.629246\pi\)
0.117290 + 0.993098i \(0.462579\pi\)
\(374\) −622.999 + 359.689i −1.66577 + 0.961734i
\(375\) 100.072 191.991i 0.266860 0.511976i
\(376\) 647.598 1121.67i 1.72234 2.98317i
\(377\) 406.272 406.272i 1.07764 1.07764i
\(378\) 104.901 74.1638i 0.277517 0.196201i
\(379\) 0 5.00789e-5i 0 1.32134e-7i −1.00000 6.60672e-8i \(-1.00000\pi\)
1.00000 6.60672e-8i \(-2.10298e-8\pi\)
\(380\) −66.6929 137.818i −0.175508 0.362679i
\(381\) −144.121 249.625i −0.378271 0.655184i
\(382\) −583.170 156.260i −1.52662 0.409057i
\(383\) −181.989 + 48.7638i −0.475167 + 0.127321i −0.488451 0.872591i \(-0.662438\pi\)
0.0132843 + 0.999912i \(0.495771\pi\)
\(384\) 327.795i 0.853633i
\(385\) −315.186 522.840i −0.818666 1.35803i
\(386\) 292.757 0.758439
\(387\) 21.6070 + 80.6384i 0.0558320 + 0.208368i
\(388\) −28.3852 + 105.935i −0.0731578 + 0.273029i
\(389\) −182.547 + 105.394i −0.469273 + 0.270935i −0.715935 0.698166i \(-0.754000\pi\)
0.246662 + 0.969102i \(0.420666\pi\)
\(390\) 123.928 356.339i 0.317763 0.913689i
\(391\) −280.324 −0.716940
\(392\) 60.5035 772.135i 0.154346 1.96973i
\(393\) 199.941 + 199.941i 0.508755 + 0.508755i
\(394\) −138.595 80.0181i −0.351765 0.203092i
\(395\) 8.15856 111.720i 0.0206546 0.282837i
\(396\) 221.743 + 384.071i 0.559958 + 0.969876i
\(397\) 64.9229 + 242.295i 0.163534 + 0.610316i 0.998223 + 0.0595944i \(0.0189807\pi\)
−0.834689 + 0.550722i \(0.814353\pi\)
\(398\) 63.5338 + 63.5338i 0.159633 + 0.159633i
\(399\) −15.1692 41.0962i −0.0380179 0.102998i
\(400\) 202.212 + 509.519i 0.505530 + 1.27380i
\(401\) 172.876 299.430i 0.431113 0.746709i −0.565857 0.824503i \(-0.691455\pi\)
0.996969 + 0.0777947i \(0.0247879\pi\)
\(402\) −68.9130 18.4652i −0.171425 0.0459333i
\(403\) −7.05535 + 26.3309i −0.0175071 + 0.0653373i
\(404\) −618.942 357.346i −1.53203 0.884520i
\(405\) −25.2786 + 37.2289i −0.0624163 + 0.0919232i
\(406\) −194.851 + 1135.12i −0.479928 + 2.79587i
\(407\) −375.141 + 375.141i −0.921721 + 0.921721i
\(408\) 308.782 82.7378i 0.756818 0.202789i
\(409\) 98.4923 56.8646i 0.240812 0.139033i −0.374738 0.927131i \(-0.622267\pi\)
0.615550 + 0.788098i \(0.288934\pi\)
\(410\) 400.162 345.694i 0.976004 0.843157i
\(411\) −128.028 + 221.751i −0.311504 + 0.539541i
\(412\) −702.532 + 702.532i −1.70518 + 1.70518i
\(413\) 56.7263 + 616.195i 0.137352 + 1.49200i
\(414\) 254.380i 0.614444i
\(415\) −121.811 + 350.251i −0.293520 + 0.843978i
\(416\) 87.7081 + 151.915i 0.210837 + 0.365180i
\(417\) −169.901 45.5249i −0.407437 0.109172i
\(418\) 215.010 57.6118i 0.514378 0.137827i
\(419\) 220.394i 0.526000i 0.964796 + 0.263000i \(0.0847120\pi\)
−0.964796 + 0.263000i \(0.915288\pi\)
\(420\) 142.332 + 493.668i 0.338885 + 1.17540i
\(421\) −611.981 −1.45364 −0.726818 0.686830i \(-0.759002\pi\)
−0.726818 + 0.686830i \(0.759002\pi\)
\(422\) −127.977 477.618i −0.303264 1.13180i
\(423\) −63.6248 + 237.451i −0.150413 + 0.561350i
\(424\) −23.1263 + 13.3520i −0.0545431 + 0.0314905i
\(425\) 234.215 174.239i 0.551094 0.409974i
\(426\) 410.739 0.964175
\(427\) −189.368 267.853i −0.443486 0.627291i
\(428\) −856.459 856.459i −2.00107 2.00107i
\(429\) 322.707 + 186.315i 0.752231 + 0.434301i
\(430\) −490.133 35.7928i −1.13984 0.0832390i
\(431\) 362.392 + 627.681i 0.840816 + 1.45634i 0.889206 + 0.457508i \(0.151258\pi\)
−0.0483893 + 0.998829i \(0.515409\pi\)
\(432\) −29.4890 110.054i −0.0682615 0.254755i
\(433\) −152.433 152.433i −0.352038 0.352038i 0.508829 0.860867i \(-0.330078\pi\)
−0.860867 + 0.508829i \(0.830078\pi\)
\(434\) −18.9218 51.2629i −0.0435987 0.118117i
\(435\) −75.7548 396.245i −0.174149 0.910908i
\(436\) −688.579 + 1192.65i −1.57931 + 2.73545i
\(437\) 83.7842 + 22.4499i 0.191726 + 0.0513728i
\(438\) 28.9362 107.991i 0.0660644 0.246556i
\(439\) 719.426 + 415.361i 1.63878 + 0.946152i 0.981253 + 0.192723i \(0.0617320\pi\)
0.657530 + 0.753428i \(0.271601\pi\)
\(440\) −1353.99 + 258.858i −3.07725 + 0.588313i
\(441\) 26.8379 + 144.529i 0.0608569 + 0.327731i
\(442\) 359.692 359.692i 0.813783 0.813783i
\(443\) 321.426 86.1258i 0.725566 0.194415i 0.122912 0.992418i \(-0.460777\pi\)
0.602654 + 0.798003i \(0.294110\pi\)
\(444\) 386.662 223.240i 0.870861 0.502792i
\(445\) 18.6179 254.947i 0.0418380 0.572915i
\(446\) 331.276 573.787i 0.742771 1.28652i
\(447\) 129.776 129.776i 0.290326 0.290326i
\(448\) 238.250 + 109.786i 0.531809 + 0.245057i
\(449\) 20.5616i 0.0457943i −0.999738 0.0228971i \(-0.992711\pi\)
0.999738 0.0228971i \(-0.00728902\pi\)
\(450\) −158.113 212.539i −0.351363 0.472308i
\(451\) 261.148 + 452.321i 0.579042 + 1.00293i
\(452\) 35.8273 + 9.59989i 0.0792639 + 0.0212387i
\(453\) −269.641 + 72.2501i −0.595234 + 0.159492i
\(454\) 867.138i 1.91000i
\(455\) 310.966 + 299.426i 0.683441 + 0.658079i
\(456\) −98.9159 −0.216921
\(457\) −139.721 521.445i −0.305734 1.14102i −0.932311 0.361657i \(-0.882211\pi\)
0.626577 0.779360i \(-0.284455\pi\)
\(458\) −229.651 + 857.070i −0.501422 + 1.87133i
\(459\) −52.5452 + 30.3370i −0.114478 + 0.0660936i
\(460\) −960.863 334.170i −2.08883 0.726456i
\(461\) 650.544 1.41116 0.705579 0.708632i \(-0.250687\pi\)
0.705579 + 0.708632i \(0.250687\pi\)
\(462\) −743.811 + 68.4744i −1.60998 + 0.148213i
\(463\) 229.971 + 229.971i 0.496697 + 0.496697i 0.910408 0.413711i \(-0.135768\pi\)
−0.413711 + 0.910408i \(0.635768\pi\)
\(464\) 884.587 + 510.717i 1.90644 + 1.10068i
\(465\) 12.5126 + 14.4841i 0.0269088 + 0.0311485i
\(466\) −521.854 903.877i −1.11986 1.93965i
\(467\) −151.133 564.037i −0.323626 1.20779i −0.915686 0.401895i \(-0.868352\pi\)
0.592060 0.805894i \(-0.298315\pi\)
\(468\) −221.746 221.746i −0.473816 0.473816i
\(469\) 52.1895 62.7728i 0.111278 0.133844i
\(470\) −1197.21 812.909i −2.54725 1.72959i
\(471\) −118.974 + 206.069i −0.252598 + 0.437513i
\(472\) 1349.66 + 361.639i 2.85944 + 0.766184i
\(473\) 125.628 468.851i 0.265599 0.991228i
\(474\) −118.695 68.5284i −0.250411 0.144575i
\(475\) −83.9571 + 33.3200i −0.176752 + 0.0701473i
\(476\) −117.197 + 682.744i −0.246212 + 1.43434i
\(477\) 3.58389 3.58389i 0.00751340 0.00751340i
\(478\) 344.000 92.1745i 0.719665 0.192834i
\(479\) −255.740 + 147.651i −0.533904 + 0.308249i −0.742605 0.669730i \(-0.766410\pi\)
0.208701 + 0.977980i \(0.433076\pi\)
\(480\) 122.841 + 8.97064i 0.255918 + 0.0186888i
\(481\) 187.572 324.885i 0.389963 0.675436i
\(482\) −897.465 + 897.465i −1.86196 + 1.86196i
\(483\) −264.354 121.814i −0.547317 0.252204i
\(484\) 1553.05i 3.20878i
\(485\) 61.1121 + 21.2536i 0.126004 + 0.0438219i
\(486\) 27.5293 + 47.6822i 0.0566447 + 0.0981115i
\(487\) 31.9767 + 8.56814i 0.0656606 + 0.0175937i 0.291500 0.956571i \(-0.405846\pi\)
−0.225839 + 0.974165i \(0.572512\pi\)
\(488\) −715.468 + 191.709i −1.46612 + 0.392846i
\(489\) 327.127i 0.668972i
\(490\) −855.484 130.253i −1.74589 0.265822i
\(491\) 602.433 1.22695 0.613476 0.789713i \(-0.289771\pi\)
0.613476 + 0.789713i \(0.289771\pi\)
\(492\) −113.764 424.573i −0.231228 0.862954i
\(493\) 140.781 525.403i 0.285561 1.06573i
\(494\) −136.312 + 78.7000i −0.275936 + 0.159312i
\(495\) 235.514 113.970i 0.475785 0.230242i
\(496\) −48.4619 −0.0977055
\(497\) −196.689 + 426.844i −0.395754 + 0.858841i
\(498\) 320.827 + 320.827i 0.644231 + 0.644231i
\(499\) −712.187 411.181i −1.42723 0.824010i −0.430326 0.902673i \(-0.641602\pi\)
−0.996901 + 0.0786631i \(0.974935\pi\)
\(500\) 1010.52 318.034i 2.02105 0.636067i
\(501\) −139.808 242.155i −0.279059 0.483344i
\(502\) −15.9716 59.6068i −0.0318159 0.118739i
\(503\) −494.995 494.995i −0.984086 0.984086i 0.0157893 0.999875i \(-0.494974\pi\)
−0.999875 + 0.0157893i \(0.994974\pi\)
\(504\) 327.145 + 56.1563i 0.649097 + 0.111421i
\(505\) −236.856 + 348.828i −0.469022 + 0.690749i
\(506\) 739.512 1280.87i 1.46149 2.53137i
\(507\) 28.2289 + 7.56391i 0.0556783 + 0.0149190i
\(508\) 365.039 1362.34i 0.718580 2.68178i
\(509\) 503.114 + 290.473i 0.988437 + 0.570674i 0.904807 0.425823i \(-0.140015\pi\)
0.0836299 + 0.996497i \(0.473349\pi\)
\(510\) −67.0694 350.815i −0.131509 0.687873i
\(511\) 98.3692 + 81.7844i 0.192503 + 0.160048i
\(512\) 759.774 759.774i 1.48393 1.48393i
\(513\) 18.1345 4.85911i 0.0353498 0.00947196i
\(514\) −244.377 + 141.091i −0.475442 + 0.274497i
\(515\) 383.180 + 443.554i 0.744039 + 0.861269i
\(516\) −204.246 + 353.764i −0.395825 + 0.685589i
\(517\) 1010.67 1010.67i 1.95487 1.95487i
\(518\) 68.9365 + 748.829i 0.133082 + 1.44562i
\(519\) 361.048i 0.695660i
\(520\) 877.426 424.605i 1.68736 0.816548i
\(521\) −274.035 474.643i −0.525979 0.911023i −0.999542 0.0302629i \(-0.990366\pi\)
0.473563 0.880760i \(-0.342968\pi\)
\(522\) −476.778 127.752i −0.913367 0.244736i
\(523\) −227.240 + 60.8889i −0.434494 + 0.116422i −0.469435 0.882967i \(-0.655542\pi\)
0.0349409 + 0.999389i \(0.488876\pi\)
\(524\) 1383.57i 2.64040i
\(525\) 296.588 62.5353i 0.564929 0.119115i
\(526\) 612.306 1.16408
\(527\) 6.67937 + 24.9278i 0.0126743 + 0.0473013i
\(528\) −171.456 + 639.882i −0.324727 + 1.21190i
\(529\) 40.9971 23.6697i 0.0774992 0.0447442i
\(530\) 12.9965 + 26.8566i 0.0245217 + 0.0506729i
\(531\) −265.200 −0.499435
\(532\) 89.7064 194.675i 0.168621 0.365931i
\(533\) −261.151 261.151i −0.489964 0.489964i
\(534\) −270.862 156.382i −0.507233 0.292851i
\(535\) −540.738 + 467.136i −1.01072 + 0.873152i
\(536\) −92.1661 159.636i −0.171952 0.297829i
\(537\) 53.2997 + 198.917i 0.0992546 + 0.370423i
\(538\) −462.818 462.818i −0.860256 0.860256i
\(539\) 285.028 805.766i 0.528808 1.49493i
\(540\) −216.273 + 41.3474i −0.400506 + 0.0765693i
\(541\) 261.735 453.339i 0.483799 0.837965i −0.516028 0.856572i \(-0.672590\pi\)
0.999827 + 0.0186072i \(0.00592319\pi\)
\(542\) 1243.37 + 333.159i 2.29404 + 0.614685i
\(543\) 0.956559 3.56993i 0.00176162 0.00657445i
\(544\) 143.819 + 83.0342i 0.264374 + 0.152636i
\(545\) 672.165 + 456.404i 1.23333 + 0.837438i
\(546\) 495.505 182.898i 0.907519 0.334977i
\(547\) −201.681 + 201.681i −0.368703 + 0.368703i −0.867004 0.498301i \(-0.833958\pi\)
0.498301 + 0.867004i \(0.333958\pi\)
\(548\) −1210.22 + 324.277i −2.20843 + 0.591747i
\(549\) 121.751 70.2928i 0.221768 0.128038i
\(550\) 178.270 + 1529.84i 0.324127 + 2.78154i
\(551\) −84.1545 + 145.760i −0.152731 + 0.264537i
\(552\) −464.741 + 464.741i −0.841923 + 0.841923i
\(553\) 128.054 90.5327i 0.231563 0.163712i
\(554\) 1707.78i 3.08263i
\(555\) −114.739 237.103i −0.206737 0.427212i
\(556\) −430.336 745.364i −0.773985 1.34058i
\(557\) −666.065 178.472i −1.19581 0.320416i −0.394629 0.918841i \(-0.629127\pi\)
−0.801179 + 0.598425i \(0.795793\pi\)
\(558\) 22.6207 6.06120i 0.0405389 0.0108624i
\(559\) 343.226i 0.614000i
\(560\) −371.093 + 671.765i −0.662666 + 1.19958i
\(561\) 352.773 0.628828
\(562\) 432.315 + 1613.42i 0.769244 + 2.87086i
\(563\) 198.059 739.166i 0.351792 1.31291i −0.532682 0.846315i \(-0.678816\pi\)
0.884474 0.466590i \(-0.154517\pi\)
\(564\) −1041.71 + 601.430i −1.84700 + 1.06637i
\(565\) 7.18798 20.6681i 0.0127221 0.0365808i
\(566\) −876.988 −1.54945
\(567\) −62.7347 + 5.77530i −0.110643 + 0.0101857i
\(568\) 750.402 + 750.402i 1.32113 + 1.32113i
\(569\) 116.121 + 67.0425i 0.204079 + 0.117825i 0.598557 0.801080i \(-0.295741\pi\)
−0.394478 + 0.918906i \(0.629074\pi\)
\(570\) −8.04930 + 110.224i −0.0141216 + 0.193376i
\(571\) −286.520 496.267i −0.501786 0.869119i −0.999998 0.00206333i \(-0.999343\pi\)
0.498212 0.867055i \(-0.333990\pi\)
\(572\) 471.910 + 1761.19i 0.825017 + 3.07901i
\(573\) 209.351 + 209.351i 0.365359 + 0.365359i
\(574\) 729.654 + 125.249i 1.27117 + 0.218205i
\(575\) −237.911 + 551.009i −0.413758 + 0.958276i
\(576\) −56.2132 + 97.3642i −0.0975924 + 0.169035i
\(577\) 666.742 + 178.653i 1.15553 + 0.309624i 0.785180 0.619268i \(-0.212570\pi\)
0.370352 + 0.928891i \(0.379237\pi\)
\(578\) −139.549 + 520.805i −0.241435 + 0.901048i
\(579\) −124.330 71.7821i −0.214733 0.123976i
\(580\) 1108.88 1633.10i 1.91186 2.81568i
\(581\) −487.040 + 179.773i −0.838280 + 0.309420i
\(582\) 55.9782 55.9782i 0.0961824 0.0961824i
\(583\) −28.4647 + 7.62709i −0.0488245 + 0.0130825i
\(584\) 250.161 144.430i 0.428358 0.247312i
\(585\) −140.002 + 120.946i −0.239320 + 0.206745i
\(586\) 152.726 264.530i 0.260625 0.451416i
\(587\) 688.633 688.633i 1.17314 1.17314i 0.191682 0.981457i \(-0.438606\pi\)
0.981457 0.191682i \(-0.0613942\pi\)
\(588\) −407.207 + 592.922i −0.692528 + 1.00837i
\(589\) 7.98542i 0.0135576i
\(590\) 512.811 1474.52i 0.869171 2.49919i
\(591\) 39.2398 + 67.9653i 0.0663955 + 0.115000i
\(592\) 644.199 + 172.613i 1.08817 + 0.291576i
\(593\) 375.748 100.681i 0.633640 0.169783i 0.0723188 0.997382i \(-0.476960\pi\)
0.561321 + 0.827598i \(0.310293\pi\)
\(594\) 320.124i 0.538929i
\(595\) 396.688 + 98.2948i 0.666703 + 0.165201i
\(596\) 898.035 1.50677
\(597\) −11.4039 42.5600i −0.0191021 0.0712898i
\(598\) −270.683 + 1010.20i −0.452647 + 1.68930i
\(599\) −223.139 + 128.830i −0.372520 + 0.215074i −0.674559 0.738221i \(-0.735666\pi\)
0.302039 + 0.953296i \(0.402333\pi\)
\(600\) 99.4325 677.166i 0.165721 1.12861i
\(601\) 91.8404 0.152813 0.0764064 0.997077i \(-0.475655\pi\)
0.0764064 + 0.997077i \(0.475655\pi\)
\(602\) −397.180 561.793i −0.659767 0.933211i
\(603\) 24.7389 + 24.7389i 0.0410264 + 0.0410264i
\(604\) −1182.93 682.963i −1.95849 1.13073i
\(605\) −913.807 66.7322i −1.51042 0.110301i
\(606\) 257.945 + 446.773i 0.425651 + 0.737250i
\(607\) −203.484 759.412i −0.335229 1.25109i −0.903621 0.428333i \(-0.859101\pi\)
0.568393 0.822757i \(-0.307565\pi\)
\(608\) −36.3355 36.3355i −0.0597623 0.0597623i
\(609\) 361.075 434.296i 0.592898 0.713130i
\(610\) 155.404 + 812.862i 0.254761 + 1.33256i
\(611\) −505.338 + 875.272i −0.827068 + 1.43252i
\(612\) −286.768 76.8393i −0.468576 0.125554i
\(613\) −109.304 + 407.928i −0.178310 + 0.665461i 0.817654 + 0.575709i \(0.195274\pi\)
−0.995964 + 0.0897518i \(0.971393\pi\)
\(614\) 158.951 + 91.7706i 0.258878 + 0.149464i
\(615\) −254.705 + 48.6950i −0.414155 + 0.0791789i
\(616\) −1484.01 1233.81i −2.40911 2.00294i
\(617\) 174.640 174.640i 0.283047 0.283047i −0.551276 0.834323i \(-0.685859\pi\)
0.834323 + 0.551276i \(0.185859\pi\)
\(618\) 692.727 185.616i 1.12092 0.300349i
\(619\) −408.198 + 235.673i −0.659448 + 0.380732i −0.792066 0.610435i \(-0.790995\pi\)
0.132619 + 0.991167i \(0.457661\pi\)
\(620\) −6.82120 + 93.4071i −0.0110019 + 0.150657i
\(621\) 62.3722 108.032i 0.100438 0.173964i
\(622\) −222.159 + 222.159i −0.357169 + 0.357169i
\(623\) 292.222 206.597i 0.469056 0.331616i
\(624\) 468.431i 0.750690i
\(625\) −143.709 608.254i −0.229934 0.973206i
\(626\) 324.524 + 562.091i 0.518408 + 0.897909i
\(627\) −105.438 28.2520i −0.168163 0.0450591i
\(628\) −1124.63 + 301.344i −1.79081 + 0.479847i
\(629\) 355.153i 0.564631i
\(630\) 89.1977 359.975i 0.141584 0.571389i
\(631\) −670.413 −1.06246 −0.531230 0.847227i \(-0.678270\pi\)
−0.531230 + 0.847227i \(0.678270\pi\)
\(632\) −91.6516 342.049i −0.145018 0.541216i
\(633\) −62.7584 + 234.218i −0.0991444 + 0.370012i
\(634\) 1127.47 650.947i 1.77835 1.02673i
\(635\) −785.912 273.325i −1.23766 0.430433i
\(636\) 24.8002 0.0389940
\(637\) −47.2125 + 602.518i −0.0741170 + 0.945868i
\(638\) 2029.32 + 2029.32i 3.18075 + 3.18075i
\(639\) −174.435 100.710i −0.272982 0.157606i
\(640\) −618.599 716.065i −0.966561 1.11885i
\(641\) 617.665 + 1069.83i 0.963596 + 1.66900i 0.713341 + 0.700818i \(0.247181\pi\)
0.250256 + 0.968180i \(0.419485\pi\)
\(642\) 226.285 + 844.506i 0.352468 + 1.31543i
\(643\) −504.796 504.796i −0.785064 0.785064i 0.195617 0.980680i \(-0.437329\pi\)
−0.980680 + 0.195617i \(0.937329\pi\)
\(644\) −493.181 1336.12i −0.765809 2.07473i
\(645\) 199.377 + 135.378i 0.309112 + 0.209888i
\(646\) −74.5061 + 129.048i −0.115334 + 0.199765i
\(647\) −103.845 27.8251i −0.160502 0.0430064i 0.177673 0.984090i \(-0.443143\pi\)
−0.338175 + 0.941083i \(0.609810\pi\)
\(648\) −36.8184 + 137.408i −0.0568186 + 0.212050i
\(649\) 1335.36 + 770.968i 2.05756 + 1.18793i
\(650\) −401.746 1012.29i −0.618071 1.55737i
\(651\) −4.53347 + 26.4102i −0.00696385 + 0.0405687i
\(652\) −1131.84 + 1131.84i −1.73596 + 1.73596i
\(653\) −297.399 + 79.6877i −0.455434 + 0.122033i −0.479241 0.877683i \(-0.659088\pi\)
0.0238067 + 0.999717i \(0.492421\pi\)
\(654\) 860.898 497.040i 1.31636 0.760000i
\(655\) 814.087 + 59.4500i 1.24288 + 0.0907633i
\(656\) 328.287 568.610i 0.500438 0.866784i
\(657\) −38.7676 + 38.7676i −0.0590070 + 0.0590070i
\(658\) −185.722 2017.42i −0.282252 3.06599i
\(659\) 590.013i 0.895315i −0.894205 0.447658i \(-0.852258\pi\)
0.894205 0.447658i \(-0.147742\pi\)
\(660\) 1209.20 + 420.535i 1.83212 + 0.637175i
\(661\) −1.19346 2.06714i −0.00180554 0.00312729i 0.865121 0.501563i \(-0.167241\pi\)
−0.866927 + 0.498436i \(0.833908\pi\)
\(662\) −1535.19 411.354i −2.31902 0.621380i
\(663\) −240.951 + 64.5625i −0.363425 + 0.0973794i
\(664\) 1172.27i 1.76547i
\(665\) −110.692 61.1477i −0.166454 0.0919515i
\(666\) −322.284 −0.483910
\(667\) 289.444 + 1080.22i 0.433948 + 1.61952i
\(668\) 354.115 1321.58i 0.530113 1.97841i
\(669\) −281.377 + 162.453i −0.420594 + 0.242830i
\(670\) −185.386 + 89.7123i −0.276696 + 0.133899i
\(671\) −817.398 −1.21818
\(672\) 99.5440 + 140.801i 0.148131 + 0.209525i
\(673\) −50.3354 50.3354i −0.0747925 0.0747925i 0.668721 0.743513i \(-0.266842\pi\)
−0.743513 + 0.668721i \(0.766842\pi\)
\(674\) 40.5429 + 23.4075i 0.0601527 + 0.0347292i
\(675\) 15.0357 + 129.031i 0.0222751 + 0.191157i
\(676\) 71.4998 + 123.841i 0.105769 + 0.183197i
\(677\) 134.189 + 500.800i 0.198211 + 0.739734i 0.991412 + 0.130774i \(0.0417463\pi\)
−0.793201 + 0.608960i \(0.791587\pi\)
\(678\) −18.9318 18.9318i −0.0279230 0.0279230i
\(679\) 31.3670 + 84.9793i 0.0461958 + 0.125154i
\(680\) 518.391 763.457i 0.762340 1.12273i
\(681\) 212.616 368.262i 0.312212 0.540767i
\(682\) −131.522 35.2413i −0.192848 0.0516734i
\(683\) 26.0143 97.0866i 0.0380883 0.142147i −0.944263 0.329191i \(-0.893224\pi\)
0.982352 + 0.187044i \(0.0598906\pi\)
\(684\) 79.5566 + 45.9321i 0.116311 + 0.0671521i
\(685\) 138.802 + 726.022i 0.202631 + 1.05989i
\(686\) −619.954 1040.84i −0.903723 1.51726i
\(687\) 307.677 307.677i 0.447857 0.447857i
\(688\) −589.389 + 157.926i −0.856670 + 0.229544i
\(689\) 18.0461 10.4189i 0.0261917 0.0151218i
\(690\) 480.053 + 555.690i 0.695729 + 0.805348i
\(691\) 0.723424 1.25301i 0.00104692 0.00181332i −0.865501 0.500906i \(-0.833000\pi\)
0.866548 + 0.499093i \(0.166333\pi\)
\(692\) 1249.21 1249.21i 1.80521 1.80521i
\(693\) 332.676 + 153.297i 0.480052 + 0.221208i
\(694\) 1384.57i 1.99506i
\(695\) −457.060 + 221.181i −0.657640 + 0.318245i
\(696\) −637.655 1104.45i −0.916171 1.58685i
\(697\) −337.728 90.4939i −0.484545 0.129833i
\(698\) −1640.08 + 439.457i −2.34968 + 0.629595i
\(699\) 511.820i 0.732217i
\(700\) 1242.55 + 809.810i 1.77507 + 1.15687i
\(701\) −230.081 −0.328218 −0.164109 0.986442i \(-0.552475\pi\)
−0.164109 + 0.986442i \(0.552475\pi\)
\(702\) 58.5873 + 218.651i 0.0834577 + 0.311469i
\(703\) −28.4427 + 106.149i −0.0404590 + 0.150995i
\(704\) 566.098 326.837i 0.804117 0.464257i
\(705\) 309.118 + 638.779i 0.438466 + 0.906069i
\(706\) 1957.73 2.77299
\(707\) −587.813 + 54.1135i −0.831419 + 0.0765396i
\(708\) −917.580 917.580i −1.29602 1.29602i
\(709\) −383.431 221.374i −0.540805 0.312234i 0.204600 0.978846i \(-0.434411\pi\)
−0.745405 + 0.666612i \(0.767744\pi\)
\(710\) 897.254 775.126i 1.26374 1.09173i
\(711\) 33.6054 + 58.2062i 0.0472649 + 0.0818653i
\(712\) −209.150 780.559i −0.293750 1.09629i
\(713\) −37.5183 37.5183i −0.0526203 0.0526203i
\(714\) 319.677 384.503i 0.447727 0.538520i
\(715\) 1056.55 201.994i 1.47770 0.282509i
\(716\) −503.829 + 872.658i −0.703672 + 1.21880i
\(717\) −168.693 45.2011i −0.235276 0.0630420i
\(718\) 92.5998 345.587i 0.128969 0.481319i
\(719\) 446.525 + 257.801i 0.621036 + 0.358555i 0.777272 0.629164i \(-0.216603\pi\)
−0.156236 + 0.987720i \(0.549936\pi\)
\(720\) −272.108 184.762i −0.377927 0.256614i
\(721\) −138.831 + 808.775i −0.192553 + 1.12174i
\(722\) −868.998 + 868.998i −1.20360 + 1.20360i
\(723\) 601.194 161.090i 0.831527 0.222807i
\(724\) 15.6614 9.04213i 0.0216318 0.0124891i
\(725\) −913.260 722.632i −1.25967 0.996734i
\(726\) −560.522 + 970.852i −0.772068 + 1.33726i
\(727\) −829.146 + 829.146i −1.14050 + 1.14050i −0.152145 + 0.988358i \(0.548618\pi\)
−0.988358 + 0.152145i \(0.951382\pi\)
\(728\) 1239.41 + 571.121i 1.70249 + 0.784507i
\(729\) 27.0000i 0.0370370i
\(730\) −140.585 290.513i −0.192583 0.397963i
\(731\) 162.468 + 281.402i 0.222254 + 0.384956i
\(732\) 664.462 + 178.042i 0.907734 + 0.243227i
\(733\) −996.034 + 266.886i −1.35885 + 0.364102i −0.863392 0.504533i \(-0.831665\pi\)
−0.495453 + 0.868635i \(0.664998\pi\)
\(734\) 1076.26i 1.46629i
\(735\) 331.376 + 265.076i 0.450851 + 0.360647i
\(736\) −341.433 −0.463904
\(737\) −52.6484 196.486i −0.0714360 0.266603i
\(738\) −82.1188 + 306.471i −0.111272 + 0.415273i
\(739\) 287.660 166.081i 0.389256 0.224737i −0.292582 0.956241i \(-0.594514\pi\)
0.681838 + 0.731503i \(0.261181\pi\)
\(740\) 423.373 1217.36i 0.572126 1.64507i
\(741\) 77.1868 0.104166
\(742\) −17.4811 + 37.9365i −0.0235595 + 0.0511274i
\(743\) −764.980 764.980i −1.02958 1.02958i −0.999549 0.0300340i \(-0.990438\pi\)
−0.0300340 0.999549i \(-0.509562\pi\)
\(744\) 52.4007 + 30.2535i 0.0704310 + 0.0406634i
\(745\) 38.5873 528.400i 0.0517950 0.709262i
\(746\) 189.368 + 327.994i 0.253844 + 0.439671i
\(747\) −57.5865 214.916i −0.0770903 0.287705i
\(748\) 1220.58 + 1220.58i 1.63179 + 1.63179i
\(749\) −985.980 169.249i −1.31640 0.225967i
\(750\) −746.490 165.904i −0.995320 0.221206i
\(751\) −66.3561 + 114.932i −0.0883570 + 0.153039i −0.906817 0.421525i \(-0.861495\pi\)
0.818460 + 0.574564i \(0.194828\pi\)
\(752\) −1735.54 465.036i −2.30790 0.618399i
\(753\) −7.83225 + 29.2304i −0.0104014 + 0.0388185i
\(754\) −1757.46 1014.67i −2.33084 1.34571i
\(755\) −452.681 + 666.683i −0.599577 + 0.883024i
\(756\) −237.041 197.077i −0.313547 0.260684i
\(757\) 705.876 705.876i 0.932465 0.932465i −0.0653945 0.997859i \(-0.520831\pi\)
0.997859 + 0.0653945i \(0.0208306\pi\)
\(758\) −0.000170852 0 4.57797e-5i −2.25399e−7 0 6.03954e-8i
\(759\) −628.122 + 362.647i −0.827566 + 0.477795i
\(760\) −216.081 + 186.669i −0.284317 + 0.245617i
\(761\) −21.9538 + 38.0250i −0.0288486 +