Properties

Label 105.3.v.a.58.3
Level 105
Weight 3
Character 105.58
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 58.3
Character \(\chi\) \(=\) 105.58
Dual form 105.3.v.a.67.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.773463 - 2.88660i) q^{2} +(0.448288 - 1.67303i) q^{3} +(-4.27013 + 2.46536i) q^{4} +(4.24741 - 2.63808i) q^{5} -5.17611 q^{6} +(-4.68804 - 5.19830i) q^{7} +(1.96674 + 1.96674i) q^{8} +(-2.59808 - 1.50000i) q^{9} +O(q^{10})\) \(q+(-0.773463 - 2.88660i) q^{2} +(0.448288 - 1.67303i) q^{3} +(-4.27013 + 2.46536i) q^{4} +(4.24741 - 2.63808i) q^{5} -5.17611 q^{6} +(-4.68804 - 5.19830i) q^{7} +(1.96674 + 1.96674i) q^{8} +(-2.59808 - 1.50000i) q^{9} +(-10.9003 - 10.2201i) q^{10} +(6.71313 + 11.6275i) q^{11} +(2.21038 + 8.24925i) q^{12} +(-3.94411 - 3.94411i) q^{13} +(-11.3794 + 17.5532i) q^{14} +(-2.50953 - 8.28868i) q^{15} +(-5.70544 + 9.88212i) q^{16} +(9.46609 + 2.53643i) q^{17} +(-2.32039 + 8.65981i) q^{18} +(4.57992 + 2.64422i) q^{19} +(-11.6332 + 21.7363i) q^{20} +(-10.7985 + 5.51290i) q^{21} +(28.3716 - 28.3716i) q^{22} +(7.39285 - 1.98091i) q^{23} +(4.17208 - 2.40875i) q^{24} +(11.0811 - 22.4100i) q^{25} +(-8.33445 + 14.4357i) q^{26} +(-3.67423 + 3.67423i) q^{27} +(32.8342 + 10.6397i) q^{28} -36.7188i q^{29} +(-21.9851 + 13.6550i) q^{30} +(-9.71723 - 16.8307i) q^{31} +(43.6852 + 11.7054i) q^{32} +(22.4626 - 6.01883i) q^{33} -29.2867i q^{34} +(-33.6256 - 9.71192i) q^{35} +14.7922 q^{36} +(-11.7317 - 43.7832i) q^{37} +(4.09041 - 15.2656i) q^{38} +(-8.36672 + 4.83053i) q^{39} +(13.5420 + 3.16514i) q^{40} +57.9301 q^{41} +(24.2658 + 26.9070i) q^{42} +(46.3359 + 46.3359i) q^{43} +(-57.3319 - 33.1006i) q^{44} +(-14.9922 + 0.482811i) q^{45} +(-11.4362 - 19.8080i) q^{46} +(16.4446 + 61.3721i) q^{47} +(13.9754 + 13.9754i) q^{48} +(-5.04463 + 48.7396i) q^{49} +(-73.2597 - 14.6533i) q^{50} +(8.48707 - 14.7000i) q^{51} +(26.5655 + 7.11820i) q^{52} +(10.4187 - 38.8830i) q^{53} +(13.4479 + 7.76417i) q^{54} +(59.1877 + 31.6770i) q^{55} +(1.00355 - 19.4438i) q^{56} +(6.47699 - 6.47699i) q^{57} +(-105.992 + 28.4006i) q^{58} +(60.4517 - 34.9018i) q^{59} +(31.1506 + 29.2068i) q^{60} +(-39.4523 + 68.3334i) q^{61} +(-41.0677 + 41.0677i) q^{62} +(4.38243 + 20.5376i) q^{63} -89.5118i q^{64} +(-27.1571 - 6.34739i) q^{65} +(-34.7479 - 60.1852i) q^{66} +(-107.241 - 28.7353i) q^{67} +(-46.6746 + 12.5064i) q^{68} -13.2565i q^{69} +(-2.02632 + 104.575i) q^{70} -121.479 q^{71} +(-2.15963 - 8.05985i) q^{72} +(-1.25968 + 4.70119i) q^{73} +(-117.311 + 67.7293i) q^{74} +(-32.5252 - 28.5851i) q^{75} -26.0758 q^{76} +(28.9718 - 89.4070i) q^{77} +(20.4152 + 20.4152i) q^{78} +(116.005 + 66.9753i) q^{79} +(1.83643 + 57.0249i) q^{80} +(4.50000 + 7.79423i) q^{81} +(-44.8068 - 167.221i) q^{82} +(99.6896 + 99.6896i) q^{83} +(32.5197 - 50.1630i) q^{84} +(46.8977 - 14.1990i) q^{85} +(97.9142 - 169.592i) q^{86} +(-61.4317 - 16.4606i) q^{87} +(-9.66526 + 36.0712i) q^{88} +(20.5641 + 11.8727i) q^{89} +(12.9896 + 42.9032i) q^{90} +(-2.01253 + 38.9928i) q^{91} +(-26.6847 + 26.6847i) q^{92} +(-32.5145 + 8.71223i) q^{93} +(164.438 - 94.9381i) q^{94} +(26.4285 - 0.851106i) q^{95} +(39.1670 - 67.8393i) q^{96} +(-40.9086 + 40.9086i) q^{97} +(144.594 - 23.1364i) q^{98} -40.2788i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.773463 2.88660i −0.386731 1.44330i −0.835419 0.549613i \(-0.814775\pi\)
0.448688 0.893688i \(-0.351891\pi\)
\(3\) 0.448288 1.67303i 0.149429 0.557678i
\(4\) −4.27013 + 2.46536i −1.06753 + 0.616340i
\(5\) 4.24741 2.63808i 0.849483 0.527616i
\(6\) −5.17611 −0.862686
\(7\) −4.68804 5.19830i −0.669719 0.742614i
\(8\) 1.96674 + 1.96674i 0.245842 + 0.245842i
\(9\) −2.59808 1.50000i −0.288675 0.166667i
\(10\) −10.9003 10.2201i −1.09003 1.02201i
\(11\) 6.71313 + 11.6275i 0.610285 + 1.05704i 0.991192 + 0.132431i \(0.0422784\pi\)
−0.380907 + 0.924613i \(0.624388\pi\)
\(12\) 2.21038 + 8.24925i 0.184198 + 0.687438i
\(13\) −3.94411 3.94411i −0.303393 0.303393i 0.538947 0.842340i \(-0.318822\pi\)
−0.842340 + 0.538947i \(0.818822\pi\)
\(14\) −11.3794 + 17.5532i −0.812814 + 1.25380i
\(15\) −2.50953 8.28868i −0.167302 0.552579i
\(16\) −5.70544 + 9.88212i −0.356590 + 0.617632i
\(17\) 9.46609 + 2.53643i 0.556829 + 0.149202i 0.526249 0.850330i \(-0.323598\pi\)
0.0305799 + 0.999532i \(0.490265\pi\)
\(18\) −2.32039 + 8.65981i −0.128910 + 0.481100i
\(19\) 4.57992 + 2.64422i 0.241049 + 0.139169i 0.615659 0.788013i \(-0.288890\pi\)
−0.374610 + 0.927182i \(0.622223\pi\)
\(20\) −11.6332 + 21.7363i −0.581659 + 1.08682i
\(21\) −10.7985 + 5.51290i −0.514215 + 0.262519i
\(22\) 28.3716 28.3716i 1.28962 1.28962i
\(23\) 7.39285 1.98091i 0.321428 0.0861264i −0.0944974 0.995525i \(-0.530124\pi\)
0.415925 + 0.909399i \(0.363458\pi\)
\(24\) 4.17208 2.40875i 0.173837 0.100365i
\(25\) 11.0811 22.4100i 0.443243 0.896402i
\(26\) −8.33445 + 14.4357i −0.320556 + 0.555219i
\(27\) −3.67423 + 3.67423i −0.136083 + 0.136083i
\(28\) 32.8342 + 10.6397i 1.17265 + 0.379990i
\(29\) 36.7188i 1.26616i −0.774085 0.633082i \(-0.781789\pi\)
0.774085 0.633082i \(-0.218211\pi\)
\(30\) −21.9851 + 13.6550i −0.732837 + 0.455167i
\(31\) −9.71723 16.8307i −0.313459 0.542927i 0.665650 0.746264i \(-0.268155\pi\)
−0.979109 + 0.203337i \(0.934821\pi\)
\(32\) 43.6852 + 11.7054i 1.36516 + 0.365794i
\(33\) 22.4626 6.01883i 0.680684 0.182389i
\(34\) 29.2867i 0.861373i
\(35\) −33.6256 9.71192i −0.960730 0.277483i
\(36\) 14.7922 0.410893
\(37\) −11.7317 43.7832i −0.317072 1.18333i −0.922045 0.387083i \(-0.873483\pi\)
0.604973 0.796246i \(-0.293184\pi\)
\(38\) 4.09041 15.2656i 0.107642 0.401727i
\(39\) −8.36672 + 4.83053i −0.214531 + 0.123860i
\(40\) 13.5420 + 3.16514i 0.338549 + 0.0791285i
\(41\) 57.9301 1.41293 0.706464 0.707749i \(-0.250289\pi\)
0.706464 + 0.707749i \(0.250289\pi\)
\(42\) 24.2658 + 26.9070i 0.577757 + 0.640643i
\(43\) 46.3359 + 46.3359i 1.07758 + 1.07758i 0.996726 + 0.0808525i \(0.0257643\pi\)
0.0808525 + 0.996726i \(0.474236\pi\)
\(44\) −57.3319 33.1006i −1.30300 0.752286i
\(45\) −14.9922 + 0.482811i −0.333161 + 0.0107291i
\(46\) −11.4362 19.8080i −0.248613 0.430610i
\(47\) 16.4446 + 61.3721i 0.349885 + 1.30579i 0.886800 + 0.462153i \(0.152923\pi\)
−0.536915 + 0.843636i \(0.680410\pi\)
\(48\) 13.9754 + 13.9754i 0.291155 + 0.291155i
\(49\) −5.04463 + 48.7396i −0.102952 + 0.994686i
\(50\) −73.2597 14.6533i −1.46519 0.293066i
\(51\) 8.48707 14.7000i 0.166413 0.288236i
\(52\) 26.5655 + 7.11820i 0.510875 + 0.136889i
\(53\) 10.4187 38.8830i 0.196578 0.733641i −0.795274 0.606250i \(-0.792673\pi\)
0.991853 0.127391i \(-0.0406602\pi\)
\(54\) 13.4479 + 7.76417i 0.249036 + 0.143781i
\(55\) 59.1877 + 31.6770i 1.07614 + 0.575945i
\(56\) 1.00355 19.4438i 0.0179206 0.347212i
\(57\) 6.47699 6.47699i 0.113631 0.113631i
\(58\) −105.992 + 28.4006i −1.82746 + 0.489666i
\(59\) 60.4517 34.9018i 1.02461 0.591556i 0.109171 0.994023i \(-0.465181\pi\)
0.915434 + 0.402467i \(0.131847\pi\)
\(60\) 31.1506 + 29.2068i 0.519177 + 0.486781i
\(61\) −39.4523 + 68.3334i −0.646759 + 1.12022i 0.337133 + 0.941457i \(0.390543\pi\)
−0.983892 + 0.178763i \(0.942790\pi\)
\(62\) −41.0677 + 41.0677i −0.662383 + 0.662383i
\(63\) 4.38243 + 20.5376i 0.0695623 + 0.325994i
\(64\) 89.5118i 1.39862i
\(65\) −27.1571 6.34739i −0.417802 0.0976522i
\(66\) −34.7479 60.1852i −0.526484 0.911897i
\(67\) −107.241 28.7353i −1.60062 0.428885i −0.655389 0.755291i \(-0.727495\pi\)
−0.945229 + 0.326407i \(0.894162\pi\)
\(68\) −46.6746 + 12.5064i −0.686392 + 0.183918i
\(69\) 13.2565i 0.192123i
\(70\) −2.02632 + 104.575i −0.0289475 + 1.49394i
\(71\) −121.479 −1.71097 −0.855486 0.517826i \(-0.826741\pi\)
−0.855486 + 0.517826i \(0.826741\pi\)
\(72\) −2.15963 8.05985i −0.0299949 0.111942i
\(73\) −1.25968 + 4.70119i −0.0172559 + 0.0643998i −0.974017 0.226475i \(-0.927280\pi\)
0.956761 + 0.290875i \(0.0939464\pi\)
\(74\) −117.311 + 67.7293i −1.58528 + 0.915261i
\(75\) −32.5252 28.5851i −0.433670 0.381135i
\(76\) −26.0758 −0.343103
\(77\) 28.9718 89.4070i 0.376257 1.16113i
\(78\) 20.4152 + 20.4152i 0.261733 + 0.261733i
\(79\) 116.005 + 66.9753i 1.46841 + 0.847788i 0.999374 0.0353889i \(-0.0112670\pi\)
0.469039 + 0.883177i \(0.344600\pi\)
\(80\) 1.83643 + 57.0249i 0.0229554 + 0.712811i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) −44.8068 167.221i −0.546424 2.03928i
\(83\) 99.6896 + 99.6896i 1.20108 + 1.20108i 0.973838 + 0.227242i \(0.0729707\pi\)
0.227242 + 0.973838i \(0.427029\pi\)
\(84\) 32.5197 50.1630i 0.387140 0.597179i
\(85\) 46.8977 14.1990i 0.551738 0.167047i
\(86\) 97.9142 169.592i 1.13854 1.97200i
\(87\) −61.4317 16.4606i −0.706112 0.189202i
\(88\) −9.66526 + 36.0712i −0.109832 + 0.409900i
\(89\) 20.5641 + 11.8727i 0.231058 + 0.133401i 0.611060 0.791584i \(-0.290743\pi\)
−0.380002 + 0.924986i \(0.624077\pi\)
\(90\) 12.9896 + 42.9032i 0.144329 + 0.476702i
\(91\) −2.01253 + 38.9928i −0.0221158 + 0.428492i
\(92\) −26.6847 + 26.6847i −0.290052 + 0.290052i
\(93\) −32.5145 + 8.71223i −0.349618 + 0.0936799i
\(94\) 164.438 94.9381i 1.74934 1.00998i
\(95\) 26.4285 0.851106i 0.278195 0.00895901i
\(96\) 39.1670 67.8393i 0.407990 0.706659i
\(97\) −40.9086 + 40.9086i −0.421738 + 0.421738i −0.885802 0.464064i \(-0.846391\pi\)
0.464064 + 0.885802i \(0.346391\pi\)
\(98\) 144.594 23.1364i 1.47545 0.236086i
\(99\) 40.2788i 0.406857i
\(100\) 7.93124 + 123.013i 0.0793124 + 1.23013i
\(101\) 34.1609 + 59.1683i 0.338226 + 0.585825i 0.984099 0.177620i \(-0.0568397\pi\)
−0.645873 + 0.763445i \(0.723506\pi\)
\(102\) −48.9976 13.1289i −0.480368 0.128714i
\(103\) −122.562 + 32.8404i −1.18992 + 0.318839i −0.798855 0.601524i \(-0.794561\pi\)
−0.391067 + 0.920362i \(0.627894\pi\)
\(104\) 15.5141i 0.149174i
\(105\) −31.3223 + 51.9029i −0.298307 + 0.494314i
\(106\) −120.298 −1.13489
\(107\) −15.7086 58.6252i −0.146809 0.547899i −0.999668 0.0257581i \(-0.991800\pi\)
0.852859 0.522141i \(-0.174867\pi\)
\(108\) 6.63114 24.7478i 0.0613995 0.229146i
\(109\) −18.6575 + 10.7719i −0.171170 + 0.0988251i −0.583137 0.812374i \(-0.698175\pi\)
0.411967 + 0.911199i \(0.364842\pi\)
\(110\) 45.6594 195.352i 0.415085 1.77593i
\(111\) −78.5098 −0.707296
\(112\) 78.1175 16.6691i 0.697478 0.148831i
\(113\) 12.3946 + 12.3946i 0.109686 + 0.109686i 0.759820 0.650134i \(-0.225287\pi\)
−0.650134 + 0.759820i \(0.725287\pi\)
\(114\) −23.7062 13.6868i −0.207949 0.120060i
\(115\) 26.1747 27.9167i 0.227606 0.242754i
\(116\) 90.5250 + 156.794i 0.780388 + 1.35167i
\(117\) 4.33093 + 16.1633i 0.0370165 + 0.138148i
\(118\) −147.505 147.505i −1.25004 1.25004i
\(119\) −31.1923 61.0985i −0.262120 0.513432i
\(120\) 11.3661 21.2373i 0.0947174 0.176977i
\(121\) −29.6323 + 51.3247i −0.244895 + 0.424171i
\(122\) 227.766 + 61.0298i 1.86694 + 0.500244i
\(123\) 25.9693 96.9189i 0.211133 0.787959i
\(124\) 82.9877 + 47.9129i 0.669255 + 0.386395i
\(125\) −12.0536 124.417i −0.0964288 0.995340i
\(126\) 55.8943 28.5354i 0.443606 0.226472i
\(127\) −21.0785 + 21.0785i −0.165973 + 0.165973i −0.785207 0.619234i \(-0.787443\pi\)
0.619234 + 0.785207i \(0.287443\pi\)
\(128\) −83.6445 + 22.4125i −0.653472 + 0.175097i
\(129\) 98.2932 56.7496i 0.761963 0.439920i
\(130\) 2.68264 + 83.3014i 0.0206357 + 0.640780i
\(131\) −62.6091 + 108.442i −0.477932 + 0.827803i −0.999680 0.0252971i \(-0.991947\pi\)
0.521748 + 0.853100i \(0.325280\pi\)
\(132\) −81.0795 + 81.0795i −0.614239 + 0.614239i
\(133\) −7.72540 36.2040i −0.0580857 0.272211i
\(134\) 331.789i 2.47604i
\(135\) −5.91307 + 25.2989i −0.0438005 + 0.187399i
\(136\) 13.6288 + 23.6058i 0.100212 + 0.173572i
\(137\) 35.3927 + 9.48345i 0.258341 + 0.0692222i 0.385665 0.922639i \(-0.373972\pi\)
−0.127324 + 0.991861i \(0.540639\pi\)
\(138\) −38.2662 + 10.2534i −0.277291 + 0.0743000i
\(139\) 84.6491i 0.608986i 0.952515 + 0.304493i \(0.0984870\pi\)
−0.952515 + 0.304493i \(0.901513\pi\)
\(140\) 167.529 41.4280i 1.19663 0.295914i
\(141\) 110.049 0.780493
\(142\) 93.9595 + 350.662i 0.661687 + 2.46945i
\(143\) 19.3828 72.3374i 0.135544 0.505856i
\(144\) 29.6464 17.1163i 0.205877 0.118863i
\(145\) −96.8671 155.960i −0.668049 1.07559i
\(146\) 14.5448 0.0996217
\(147\) 79.2815 + 30.2892i 0.539330 + 0.206049i
\(148\) 158.037 + 158.037i 1.06782 + 1.06782i
\(149\) −28.2589 16.3153i −0.189657 0.109499i 0.402165 0.915567i \(-0.368258\pi\)
−0.591822 + 0.806069i \(0.701591\pi\)
\(150\) −57.3569 + 115.997i −0.382379 + 0.773313i
\(151\) 78.0454 + 135.179i 0.516857 + 0.895223i 0.999808 + 0.0195756i \(0.00623149\pi\)
−0.482951 + 0.875647i \(0.660435\pi\)
\(152\) 3.80702 + 14.2080i 0.0250462 + 0.0934737i
\(153\) −20.7890 20.7890i −0.135876 0.135876i
\(154\) −280.491 14.4770i −1.82137 0.0940063i
\(155\) −85.6740 45.8523i −0.552735 0.295821i
\(156\) 23.8180 41.2539i 0.152679 0.264448i
\(157\) −64.2534 17.2166i −0.409257 0.109660i 0.0483159 0.998832i \(-0.484615\pi\)
−0.457573 + 0.889172i \(0.651281\pi\)
\(158\) 103.606 386.662i 0.655733 2.44723i
\(159\) −60.3819 34.8615i −0.379760 0.219255i
\(160\) 216.429 65.5272i 1.35268 0.409545i
\(161\) −44.9553 29.1437i −0.279225 0.181017i
\(162\) 19.0183 19.0183i 0.117397 0.117397i
\(163\) 56.4617 15.1289i 0.346391 0.0928152i −0.0814289 0.996679i \(-0.525948\pi\)
0.427820 + 0.903864i \(0.359282\pi\)
\(164\) −247.369 + 142.818i −1.50835 + 0.870844i
\(165\) 79.5298 84.8226i 0.481999 0.514076i
\(166\) 210.658 364.871i 1.26902 2.19802i
\(167\) −93.0212 + 93.0212i −0.557013 + 0.557013i −0.928456 0.371443i \(-0.878863\pi\)
0.371443 + 0.928456i \(0.378863\pi\)
\(168\) −32.0803 10.3954i −0.190954 0.0618775i
\(169\) 137.888i 0.815905i
\(170\) −77.2606 124.393i −0.454474 0.731722i
\(171\) −7.93266 13.7398i −0.0463898 0.0803495i
\(172\) −312.095 83.6255i −1.81450 0.486195i
\(173\) −233.906 + 62.6748i −1.35206 + 0.362282i −0.860893 0.508786i \(-0.830094\pi\)
−0.491162 + 0.871068i \(0.663428\pi\)
\(174\) 190.061i 1.09230i
\(175\) −168.443 + 47.4564i −0.962529 + 0.271179i
\(176\) −153.206 −0.870486
\(177\) −31.2921 116.784i −0.176792 0.659795i
\(178\) 18.3662 68.5435i 0.103181 0.385076i
\(179\) −228.989 + 132.207i −1.27927 + 0.738585i −0.976713 0.214548i \(-0.931172\pi\)
−0.302553 + 0.953133i \(0.597839\pi\)
\(180\) 62.8284 39.0229i 0.349047 0.216794i
\(181\) 286.020 1.58022 0.790110 0.612965i \(-0.210023\pi\)
0.790110 + 0.612965i \(0.210023\pi\)
\(182\) 114.113 24.3501i 0.626996 0.133792i
\(183\) 96.6381 + 96.6381i 0.528077 + 0.528077i
\(184\) 18.4357 + 10.6439i 0.100194 + 0.0578471i
\(185\) −165.333 155.016i −0.893690 0.837925i
\(186\) 50.2975 + 87.1178i 0.270417 + 0.468375i
\(187\) 34.0548 + 127.094i 0.182111 + 0.679649i
\(188\) −221.525 221.525i −1.17832 1.17832i
\(189\) 36.3247 + 1.87483i 0.192194 + 0.00991972i
\(190\) −22.8983 75.6303i −0.120517 0.398054i
\(191\) 38.1037 65.9976i 0.199496 0.345537i −0.748869 0.662718i \(-0.769403\pi\)
0.948365 + 0.317181i \(0.102736\pi\)
\(192\) −149.756 40.1271i −0.779980 0.208995i
\(193\) 63.3927 236.585i 0.328459 1.22583i −0.582329 0.812953i \(-0.697858\pi\)
0.910788 0.412874i \(-0.135475\pi\)
\(194\) 149.728 + 86.4456i 0.771795 + 0.445596i
\(195\) −22.7936 + 42.5893i −0.116890 + 0.218407i
\(196\) −98.6195 220.561i −0.503161 1.12531i
\(197\) 136.078 136.078i 0.690750 0.690750i −0.271647 0.962397i \(-0.587568\pi\)
0.962397 + 0.271647i \(0.0875684\pi\)
\(198\) −116.269 + 31.1542i −0.587217 + 0.157344i
\(199\) −107.888 + 62.2892i −0.542151 + 0.313011i −0.745950 0.666002i \(-0.768004\pi\)
0.203799 + 0.979013i \(0.434671\pi\)
\(200\) 65.8683 22.2811i 0.329341 0.111406i
\(201\) −96.1501 + 166.537i −0.478359 + 0.828541i
\(202\) 144.373 144.373i 0.714720 0.714720i
\(203\) −190.875 + 172.139i −0.940272 + 0.847975i
\(204\) 83.6947i 0.410268i
\(205\) 246.053 152.824i 1.20026 0.745484i
\(206\) 189.594 + 328.387i 0.920360 + 1.59411i
\(207\) −22.1785 5.94272i −0.107143 0.0287088i
\(208\) 61.4790 16.4733i 0.295572 0.0791984i
\(209\) 71.0040i 0.339732i
\(210\) 174.050 + 50.2700i 0.828808 + 0.239381i
\(211\) −25.5567 −0.121122 −0.0605610 0.998164i \(-0.519289\pi\)
−0.0605610 + 0.998164i \(0.519289\pi\)
\(212\) 51.3715 + 191.721i 0.242318 + 0.904344i
\(213\) −54.4576 + 203.238i −0.255669 + 0.954171i
\(214\) −157.078 + 90.6889i −0.734008 + 0.423780i
\(215\) 319.045 + 74.5699i 1.48393 + 0.346837i
\(216\) −14.4525 −0.0669098
\(217\) −41.9365 + 129.416i −0.193256 + 0.596388i
\(218\) 45.5252 + 45.5252i 0.208831 + 0.208831i
\(219\) 7.30054 + 4.21497i 0.0333358 + 0.0192464i
\(220\) −330.834 + 10.6542i −1.50379 + 0.0484283i
\(221\) −27.3313 47.3393i −0.123671 0.214205i
\(222\) 60.7244 + 226.627i 0.273533 + 1.02084i
\(223\) −58.9789 58.9789i −0.264479 0.264479i 0.562392 0.826871i \(-0.309881\pi\)
−0.826871 + 0.562392i \(0.809881\pi\)
\(224\) −143.949 281.964i −0.642631 1.25877i
\(225\) −62.4045 + 41.6014i −0.277353 + 0.184895i
\(226\) 26.1914 45.3649i 0.115891 0.200730i
\(227\) −397.945 106.629i −1.75306 0.469732i −0.767788 0.640704i \(-0.778642\pi\)
−0.985276 + 0.170972i \(0.945309\pi\)
\(228\) −11.6895 + 43.6257i −0.0512696 + 0.191341i
\(229\) 325.569 + 187.967i 1.42170 + 0.820818i 0.996444 0.0842553i \(-0.0268511\pi\)
0.425255 + 0.905074i \(0.360184\pi\)
\(230\) −100.829 53.9634i −0.438389 0.234624i
\(231\) −136.593 88.5507i −0.591312 0.383337i
\(232\) 72.2163 72.2163i 0.311277 0.311277i
\(233\) −23.4568 + 6.28523i −0.100673 + 0.0269752i −0.308804 0.951126i \(-0.599929\pi\)
0.208131 + 0.978101i \(0.433262\pi\)
\(234\) 43.3071 25.0034i 0.185073 0.106852i
\(235\) 231.752 + 217.291i 0.986177 + 0.924641i
\(236\) −172.091 + 298.070i −0.729199 + 1.26301i
\(237\) 164.055 164.055i 0.692216 0.692216i
\(238\) −152.241 + 137.297i −0.639668 + 0.576878i
\(239\) 50.6675i 0.211998i −0.994366 0.105999i \(-0.966196\pi\)
0.994366 0.105999i \(-0.0338040\pi\)
\(240\) 96.2277 + 22.4911i 0.400949 + 0.0937131i
\(241\) 58.3080 + 100.992i 0.241942 + 0.419055i 0.961267 0.275618i \(-0.0888824\pi\)
−0.719326 + 0.694673i \(0.755549\pi\)
\(242\) 171.074 + 45.8390i 0.706916 + 0.189417i
\(243\) 15.0573 4.03459i 0.0619642 0.0166032i
\(244\) 389.057i 1.59449i
\(245\) 107.152 + 220.326i 0.437357 + 0.899288i
\(246\) −299.853 −1.21891
\(247\) −7.63463 28.4928i −0.0309094 0.115356i
\(248\) 13.9904 52.2129i 0.0564130 0.210536i
\(249\) 211.474 122.094i 0.849292 0.490339i
\(250\) −349.821 + 131.026i −1.39928 + 0.524105i
\(251\) 320.629 1.27741 0.638704 0.769452i \(-0.279471\pi\)
0.638704 + 0.769452i \(0.279471\pi\)
\(252\) −69.3462 76.8941i −0.275183 0.305135i
\(253\) 72.6621 + 72.6621i 0.287202 + 0.287202i
\(254\) 77.1488 + 44.5419i 0.303736 + 0.175362i
\(255\) −2.73177 84.8267i −0.0107128 0.332654i
\(256\) −49.6319 85.9650i −0.193875 0.335801i
\(257\) 51.4131 + 191.876i 0.200051 + 0.746600i 0.990901 + 0.134591i \(0.0429719\pi\)
−0.790850 + 0.612009i \(0.790361\pi\)
\(258\) −239.840 239.840i −0.929612 0.929612i
\(259\) −172.600 + 266.242i −0.666407 + 1.02796i
\(260\) 131.613 39.8480i 0.506204 0.153261i
\(261\) −55.0782 + 95.3982i −0.211027 + 0.365510i
\(262\) 361.455 + 96.8516i 1.37960 + 0.369663i
\(263\) 4.10646 15.3255i 0.0156139 0.0582720i −0.957679 0.287837i \(-0.907064\pi\)
0.973293 + 0.229565i \(0.0737304\pi\)
\(264\) 56.0155 + 32.3406i 0.212180 + 0.122502i
\(265\) −58.3240 192.637i −0.220091 0.726933i
\(266\) −98.5313 + 50.3026i −0.370418 + 0.189108i
\(267\) 29.0821 29.0821i 0.108922 0.108922i
\(268\) 528.778 141.686i 1.97305 0.528677i
\(269\) 89.8942 51.9004i 0.334179 0.192938i −0.323516 0.946223i \(-0.604865\pi\)
0.657695 + 0.753284i \(0.271532\pi\)
\(270\) 77.6015 2.49909i 0.287413 0.00925587i
\(271\) 78.5571 136.065i 0.289878 0.502084i −0.683902 0.729574i \(-0.739718\pi\)
0.973781 + 0.227490i \(0.0730518\pi\)
\(272\) −79.0736 + 79.0736i −0.290712 + 0.290712i
\(273\) 64.3340 + 20.8470i 0.235656 + 0.0763627i
\(274\) 109.500i 0.399634i
\(275\) 334.961 21.5966i 1.21804 0.0785332i
\(276\) 32.6820 + 56.6069i 0.118413 + 0.205097i
\(277\) −201.983 54.1211i −0.729179 0.195383i −0.124916 0.992167i \(-0.539866\pi\)
−0.604264 + 0.796784i \(0.706533\pi\)
\(278\) 244.348 65.4729i 0.878950 0.235514i
\(279\) 58.3034i 0.208973i
\(280\) −47.0319 85.2335i −0.167971 0.304405i
\(281\) 454.909 1.61889 0.809446 0.587194i \(-0.199768\pi\)
0.809446 + 0.587194i \(0.199768\pi\)
\(282\) −85.1192 317.669i −0.301841 1.12649i
\(283\) −26.5708 + 99.1636i −0.0938898 + 0.350401i −0.996849 0.0793253i \(-0.974723\pi\)
0.902959 + 0.429727i \(0.141390\pi\)
\(284\) 518.731 299.489i 1.82652 1.05454i
\(285\) 10.4236 44.5973i 0.0365742 0.156482i
\(286\) −223.801 −0.782522
\(287\) −271.578 301.138i −0.946266 1.04926i
\(288\) −95.9393 95.9393i −0.333122 0.333122i
\(289\) −167.108 96.4798i −0.578228 0.333840i
\(290\) −375.271 + 400.246i −1.29404 + 1.38016i
\(291\) 50.1026 + 86.7803i 0.172174 + 0.298214i
\(292\) −6.21112 23.1802i −0.0212710 0.0793843i
\(293\) 102.346 + 102.346i 0.349302 + 0.349302i 0.859850 0.510547i \(-0.170557\pi\)
−0.510547 + 0.859850i \(0.670557\pi\)
\(294\) 26.1116 252.282i 0.0888150 0.858102i
\(295\) 164.690 307.719i 0.558270 1.04311i
\(296\) 63.0369 109.183i 0.212963 0.368862i
\(297\) −67.3878 18.0565i −0.226895 0.0607963i
\(298\) −25.2385 + 94.1914i −0.0846930 + 0.316079i
\(299\) −36.9711 21.3453i −0.123649 0.0713889i
\(300\) 209.359 + 41.8758i 0.697865 + 0.139586i
\(301\) 23.6435 458.092i 0.0785498 1.52190i
\(302\) 329.842 329.842i 1.09219 1.09219i
\(303\) 114.304 30.6278i 0.377242 0.101082i
\(304\) −52.2610 + 30.1729i −0.171911 + 0.0992529i
\(305\) 12.6987 + 394.319i 0.0416350 + 1.29285i
\(306\) −43.9300 + 76.0890i −0.143562 + 0.248657i
\(307\) 29.1999 29.1999i 0.0951137 0.0951137i −0.657949 0.753063i \(-0.728576\pi\)
0.753063 + 0.657949i \(0.228576\pi\)
\(308\) 96.7072 + 453.205i 0.313985 + 1.47144i
\(309\) 219.772i 0.711236i
\(310\) −66.0917 + 282.772i −0.213199 + 0.912167i
\(311\) −201.089 348.297i −0.646589 1.11992i −0.983932 0.178543i \(-0.942862\pi\)
0.337343 0.941382i \(-0.390472\pi\)
\(312\) −25.9555 6.95477i −0.0831909 0.0222909i
\(313\) −277.198 + 74.2751i −0.885618 + 0.237301i −0.672829 0.739798i \(-0.734921\pi\)
−0.212788 + 0.977098i \(0.568254\pi\)
\(314\) 198.790i 0.633091i
\(315\) 72.7939 + 75.6707i 0.231092 + 0.240224i
\(316\) −660.473 −2.09010
\(317\) 90.0106 + 335.924i 0.283945 + 1.05970i 0.949607 + 0.313444i \(0.101483\pi\)
−0.665662 + 0.746254i \(0.731851\pi\)
\(318\) −53.9282 + 201.263i −0.169585 + 0.632901i
\(319\) 426.947 246.498i 1.33839 0.772721i
\(320\) −236.139 380.194i −0.737936 1.18811i
\(321\) −105.124 −0.327489
\(322\) −49.3549 + 152.310i −0.153276 + 0.473011i
\(323\) 36.6471 + 36.6471i 0.113458 + 0.113458i
\(324\) −38.4312 22.1882i −0.118615 0.0684822i
\(325\) −132.093 + 44.6827i −0.406439 + 0.137485i
\(326\) −87.3421 151.281i −0.267921 0.464052i
\(327\) 9.65785 + 36.0436i 0.0295347 + 0.110225i
\(328\) 113.933 + 113.933i 0.347358 + 0.347358i
\(329\) 241.938 373.199i 0.735373 1.13434i
\(330\) −306.362 163.964i −0.928371 0.496860i
\(331\) −36.2176 + 62.7307i −0.109419 + 0.189519i −0.915535 0.402239i \(-0.868232\pi\)
0.806116 + 0.591757i \(0.201566\pi\)
\(332\) −671.458 179.917i −2.02246 0.541918i
\(333\) −35.1950 + 131.349i −0.105691 + 0.394443i
\(334\) 340.464 + 196.567i 1.01935 + 0.588523i
\(335\) −531.305 + 160.861i −1.58598 + 0.480182i
\(336\) 7.13115 138.166i 0.0212236 0.411208i
\(337\) −255.737 + 255.737i −0.758865 + 0.758865i −0.976116 0.217251i \(-0.930291\pi\)
0.217251 + 0.976116i \(0.430291\pi\)
\(338\) −398.028 + 106.651i −1.17760 + 0.315536i
\(339\) 26.2928 15.1802i 0.0775600 0.0447793i
\(340\) −165.254 + 176.251i −0.486040 + 0.518387i
\(341\) 130.466 225.974i 0.382599 0.662680i
\(342\) −33.5256 + 33.5256i −0.0980282 + 0.0980282i
\(343\) 277.013 202.270i 0.807617 0.589707i
\(344\) 182.261i 0.529829i
\(345\) −34.9717 56.3058i −0.101367 0.163205i
\(346\) 361.835 + 626.716i 1.04576 + 1.81132i
\(347\) 278.775 + 74.6974i 0.803385 + 0.215266i 0.637070 0.770806i \(-0.280146\pi\)
0.166315 + 0.986073i \(0.446813\pi\)
\(348\) 302.902 81.1625i 0.870409 0.233225i
\(349\) 480.492i 1.37677i −0.725347 0.688384i \(-0.758320\pi\)
0.725347 0.688384i \(-0.241680\pi\)
\(350\) 267.272 + 449.521i 0.763634 + 1.28435i
\(351\) 28.9832 0.0825731
\(352\) 157.160 + 586.529i 0.446477 + 1.66627i
\(353\) 24.9800 93.2268i 0.0707650 0.264098i −0.921475 0.388438i \(-0.873015\pi\)
0.992240 + 0.124340i \(0.0396813\pi\)
\(354\) −312.905 + 180.656i −0.883912 + 0.510327i
\(355\) −515.972 + 320.471i −1.45344 + 0.902736i
\(356\) −117.082 −0.328882
\(357\) −116.203 + 24.7960i −0.325498 + 0.0694565i
\(358\) 558.742 + 558.742i 1.56073 + 1.56073i
\(359\) −280.865 162.157i −0.782353 0.451692i 0.0549104 0.998491i \(-0.482513\pi\)
−0.837264 + 0.546799i \(0.815846\pi\)
\(360\) −30.4354 28.5362i −0.0845427 0.0792673i
\(361\) −166.516 288.415i −0.461264 0.798932i
\(362\) −221.226 825.626i −0.611121 2.28073i
\(363\) 72.5841 + 72.5841i 0.199956 + 0.199956i
\(364\) −87.5375 171.466i −0.240488 0.471060i
\(365\) 7.05173 + 23.2910i 0.0193198 + 0.0638110i
\(366\) 204.210 353.702i 0.557950 0.966398i
\(367\) 249.220 + 66.7783i 0.679074 + 0.181957i 0.581839 0.813304i \(-0.302333\pi\)
0.0972351 + 0.995261i \(0.469000\pi\)
\(368\) −22.6039 + 84.3589i −0.0614237 + 0.229236i
\(369\) −150.507 86.8951i −0.407877 0.235488i
\(370\) −319.591 + 597.149i −0.863760 + 1.61392i
\(371\) −250.968 + 128.125i −0.676464 + 0.345352i
\(372\) 117.362 117.362i 0.315490 0.315490i
\(373\) −474.026 + 127.015i −1.27085 + 0.340523i −0.830356 0.557234i \(-0.811863\pi\)
−0.440492 + 0.897756i \(0.645196\pi\)
\(374\) 340.531 196.605i 0.910510 0.525683i
\(375\) −213.558 35.6088i −0.569488 0.0949567i
\(376\) −88.3607 + 153.045i −0.235002 + 0.407035i
\(377\) −144.823 + 144.823i −0.384145 + 0.384145i
\(378\) −22.6839 106.305i −0.0600104 0.281230i
\(379\) 177.802i 0.469134i 0.972100 + 0.234567i \(0.0753672\pi\)
−0.972100 + 0.234567i \(0.924633\pi\)
\(380\) −110.755 + 68.7901i −0.291460 + 0.181027i
\(381\) 25.8158 + 44.7143i 0.0677581 + 0.117360i
\(382\) −219.981 58.9436i −0.575866 0.154303i
\(383\) 445.189 119.288i 1.16237 0.311457i 0.374460 0.927243i \(-0.377828\pi\)
0.787913 + 0.615786i \(0.211162\pi\)
\(384\) 149.987i 0.390592i
\(385\) −112.808 456.178i −0.293007 1.18488i
\(386\) −731.958 −1.89626
\(387\) −50.8803 189.888i −0.131474 0.490667i
\(388\) 73.8306 275.540i 0.190285 0.710153i
\(389\) −258.574 + 149.288i −0.664714 + 0.383773i −0.794071 0.607825i \(-0.792042\pi\)
0.129357 + 0.991598i \(0.458709\pi\)
\(390\) 140.568 + 32.8548i 0.360432 + 0.0842431i
\(391\) 75.0058 0.191831
\(392\) −105.780 + 85.9367i −0.269846 + 0.219226i
\(393\) 153.360 + 153.360i 0.390230 + 0.390230i
\(394\) −498.053 287.551i −1.26409 0.729825i
\(395\) 669.406 21.5576i 1.69470 0.0545762i
\(396\) 99.3017 + 171.996i 0.250762 + 0.434332i
\(397\) −23.2619 86.8147i −0.0585943 0.218677i 0.930420 0.366494i \(-0.119442\pi\)
−0.989015 + 0.147817i \(0.952775\pi\)
\(398\) 263.252 + 263.252i 0.661436 + 0.661436i
\(399\) −64.0337 3.30497i −0.160485 0.00828313i
\(400\) 158.236 + 237.364i 0.395591 + 0.593409i
\(401\) −48.6620 + 84.2851i −0.121352 + 0.210187i −0.920301 0.391211i \(-0.872056\pi\)
0.798949 + 0.601398i \(0.205390\pi\)
\(402\) 555.094 + 148.737i 1.38083 + 0.369993i
\(403\) −28.0565 + 104.708i −0.0696190 + 0.259822i
\(404\) −291.743 168.438i −0.722135 0.416925i
\(405\) 39.6752 + 21.2340i 0.0979634 + 0.0524295i
\(406\) 644.532 + 417.838i 1.58752 + 1.02916i
\(407\) 430.332 430.332i 1.05733 1.05733i
\(408\) 45.6030 12.2193i 0.111772 0.0299492i
\(409\) −232.510 + 134.240i −0.568485 + 0.328215i −0.756544 0.653943i \(-0.773114\pi\)
0.188059 + 0.982158i \(0.439780\pi\)
\(410\) −631.456 592.054i −1.54014 1.44403i
\(411\) 31.7322 54.9618i 0.0772074 0.133727i
\(412\) 442.392 442.392i 1.07377 1.07377i
\(413\) −464.830 150.625i −1.12550 0.364710i
\(414\) 68.6171i 0.165742i
\(415\) 686.413 + 160.434i 1.65401 + 0.386588i
\(416\) −126.132 218.466i −0.303201 0.525160i
\(417\) 141.621 + 37.9471i 0.339618 + 0.0910003i
\(418\) 204.960 54.9190i 0.490336 0.131385i
\(419\) 515.863i 1.23118i −0.788068 0.615588i \(-0.788919\pi\)
0.788068 0.615588i \(-0.211081\pi\)
\(420\) 5.79078 298.853i 0.0137876 0.711554i
\(421\) −470.236 −1.11695 −0.558475 0.829521i \(-0.688613\pi\)
−0.558475 + 0.829521i \(0.688613\pi\)
\(422\) 19.7672 + 73.7721i 0.0468417 + 0.174815i
\(423\) 49.3338 184.116i 0.116628 0.435263i
\(424\) 96.9634 55.9819i 0.228687 0.132033i
\(425\) 161.736 184.029i 0.380555 0.433010i
\(426\) 628.789 1.47603
\(427\) 540.172 115.265i 1.26504 0.269941i
\(428\) 211.610 + 211.610i 0.494416 + 0.494416i
\(429\) −112.334 64.8560i −0.261850 0.151179i
\(430\) −31.5160 978.634i −0.0732931 2.27589i
\(431\) −135.577 234.827i −0.314564 0.544841i 0.664781 0.747039i \(-0.268525\pi\)
−0.979345 + 0.202198i \(0.935192\pi\)
\(432\) −15.3461 57.2724i −0.0355233 0.132575i
\(433\) −135.694 135.694i −0.313381 0.313381i 0.532837 0.846218i \(-0.321126\pi\)
−0.846218 + 0.532837i \(0.821126\pi\)
\(434\) 406.009 + 20.9554i 0.935506 + 0.0482842i
\(435\) −304.350 + 92.1469i −0.699656 + 0.211832i
\(436\) 53.1134 91.9950i 0.121820 0.210998i
\(437\) 39.0966 + 10.4759i 0.0894660 + 0.0239723i
\(438\) 6.52024 24.3339i 0.0148864 0.0555568i
\(439\) −406.331 234.596i −0.925584 0.534386i −0.0401720 0.999193i \(-0.512791\pi\)
−0.885412 + 0.464806i \(0.846124\pi\)
\(440\) 54.1064 + 178.707i 0.122969 + 0.406153i
\(441\) 86.2158 119.062i 0.195501 0.269983i
\(442\) −115.510 + 115.510i −0.261335 + 0.261335i
\(443\) −297.069 + 79.5993i −0.670584 + 0.179682i −0.578018 0.816024i \(-0.696174\pi\)
−0.0925661 + 0.995707i \(0.529507\pi\)
\(444\) 335.247 193.555i 0.755061 0.435934i
\(445\) 118.666 3.82152i 0.266664 0.00858767i
\(446\) −124.631 + 215.867i −0.279441 + 0.484006i
\(447\) −39.9641 + 39.9641i −0.0894052 + 0.0894052i
\(448\) −465.309 + 419.635i −1.03864 + 0.936685i
\(449\) 556.174i 1.23870i 0.785117 + 0.619348i \(0.212603\pi\)
−0.785117 + 0.619348i \(0.787397\pi\)
\(450\) 168.354 + 147.960i 0.374121 + 0.328800i
\(451\) 388.892 + 673.581i 0.862289 + 1.49353i
\(452\) −83.4834 22.3693i −0.184698 0.0494896i
\(453\) 261.145 69.9736i 0.576479 0.154467i
\(454\) 1231.18i 2.71186i
\(455\) 94.3180 + 170.928i 0.207292 + 0.375665i
\(456\) 25.4771 0.0558708
\(457\) −132.915 496.047i −0.290843 1.08544i −0.944463 0.328618i \(-0.893417\pi\)
0.653620 0.756823i \(-0.273250\pi\)
\(458\) 290.772 1085.17i 0.634872 2.36938i
\(459\) −44.1001 + 25.4612i −0.0960786 + 0.0554710i
\(460\) −42.9447 + 183.738i −0.0933580 + 0.399430i
\(461\) −140.261 −0.304254 −0.152127 0.988361i \(-0.548612\pi\)
−0.152127 + 0.988361i \(0.548612\pi\)
\(462\) −149.961 + 462.781i −0.324591 + 1.00169i
\(463\) −440.572 440.572i −0.951560 0.951560i 0.0473198 0.998880i \(-0.484932\pi\)
−0.998880 + 0.0473198i \(0.984932\pi\)
\(464\) 362.859 + 209.497i 0.782024 + 0.451502i
\(465\) −115.119 + 122.780i −0.247568 + 0.264044i
\(466\) 36.2859 + 62.8490i 0.0778667 + 0.134869i
\(467\) 114.858 + 428.655i 0.245948 + 0.917892i 0.972904 + 0.231208i \(0.0742677\pi\)
−0.726956 + 0.686684i \(0.759066\pi\)
\(468\) −58.3419 58.3419i −0.124662 0.124662i
\(469\) 353.377 + 692.185i 0.753470 + 1.47587i
\(470\) 447.980 837.041i 0.953150 1.78094i
\(471\) −57.6080 + 99.7800i −0.122310 + 0.211847i
\(472\) 187.535 + 50.2500i 0.397321 + 0.106462i
\(473\) −227.711 + 849.829i −0.481419 + 1.79668i
\(474\) −600.453 346.672i −1.26678 0.731375i
\(475\) 110.008 73.3355i 0.231595 0.154391i
\(476\) 283.825 + 183.998i 0.596270 + 0.386551i
\(477\) −85.3929 + 85.3929i −0.179021 + 0.179021i
\(478\) −146.257 + 39.1894i −0.305977 + 0.0819862i
\(479\) 190.500 109.985i 0.397703 0.229614i −0.287789 0.957694i \(-0.592920\pi\)
0.685492 + 0.728080i \(0.259587\pi\)
\(480\) −12.6069 391.467i −0.0262643 0.815557i
\(481\) −126.415 + 218.957i −0.262816 + 0.455211i
\(482\) 246.426 246.426i 0.511257 0.511257i
\(483\) −68.9112 + 62.1469i −0.142673 + 0.128669i
\(484\) 292.217i 0.603755i
\(485\) −65.8357 + 281.676i −0.135744 + 0.580776i
\(486\) −23.2925 40.3438i −0.0479270 0.0830120i
\(487\) 373.904 + 100.187i 0.767770 + 0.205723i 0.621386 0.783504i \(-0.286570\pi\)
0.146384 + 0.989228i \(0.453237\pi\)
\(488\) −211.987 + 56.8016i −0.434399 + 0.116397i
\(489\) 101.244i 0.207044i
\(490\) 553.114 479.720i 1.12880 0.979021i
\(491\) 285.045 0.580539 0.290269 0.956945i \(-0.406255\pi\)
0.290269 + 0.956945i \(0.406255\pi\)
\(492\) 128.048 + 477.880i 0.260259 + 0.971301i
\(493\) 93.1347 347.583i 0.188914 0.705037i
\(494\) −76.3423 + 44.0763i −0.154539 + 0.0892232i
\(495\) −106.259 171.081i −0.214664 0.345618i
\(496\) 221.764 0.447106
\(497\) 569.498 + 631.484i 1.14587 + 1.27059i
\(498\) −516.005 516.005i −1.03615 1.03615i
\(499\) −439.080 253.503i −0.879920 0.508022i −0.00928793 0.999957i \(-0.502956\pi\)
−0.870632 + 0.491935i \(0.836290\pi\)
\(500\) 358.204 + 501.562i 0.716409 + 1.00312i
\(501\) 113.927 + 197.328i 0.227400 + 0.393868i
\(502\) −247.995 925.530i −0.494014 1.84368i
\(503\) 261.451 + 261.451i 0.519784 + 0.519784i 0.917506 0.397722i \(-0.130199\pi\)
−0.397722 + 0.917506i \(0.630199\pi\)
\(504\) −31.7731 + 49.0113i −0.0630418 + 0.0972446i
\(505\) 301.186 + 161.193i 0.596408 + 0.319195i
\(506\) 153.545 265.948i 0.303449 0.525589i
\(507\) −230.691 61.8135i −0.455012 0.121920i
\(508\) 38.0419 141.974i 0.0748856 0.279477i
\(509\) −9.46947 5.46720i −0.0186041 0.0107411i 0.490669 0.871346i \(-0.336752\pi\)
−0.509273 + 0.860605i \(0.670086\pi\)
\(510\) −242.748 + 73.4958i −0.475976 + 0.144109i
\(511\) 30.3436 15.4911i 0.0593808 0.0303153i
\(512\) −454.686 + 454.686i −0.888059 + 0.888059i
\(513\) −26.5432 + 7.11223i −0.0517411 + 0.0138640i
\(514\) 514.104 296.818i 1.00020 0.577467i
\(515\) −433.936 + 462.815i −0.842594 + 0.898670i
\(516\) −279.816 + 484.656i −0.542280 + 0.939256i
\(517\) −603.209 + 603.209i −1.16675 + 1.16675i
\(518\) 902.033 + 292.298i 1.74138 + 0.564282i
\(519\) 419.428i 0.808146i
\(520\) −40.9274 65.8947i −0.0787065 0.126721i
\(521\) 71.2494 + 123.408i 0.136755 + 0.236867i 0.926267 0.376869i \(-0.122999\pi\)
−0.789511 + 0.613736i \(0.789666\pi\)
\(522\) 317.977 + 85.2018i 0.609152 + 0.163222i
\(523\) −30.8250 + 8.25954i −0.0589389 + 0.0157926i −0.288168 0.957580i \(-0.593046\pi\)
0.229229 + 0.973372i \(0.426379\pi\)
\(524\) 617.416i 1.17827i
\(525\) 3.88536 + 303.084i 0.00740068 + 0.577303i
\(526\) −47.4149 −0.0901424
\(527\) −49.2942 183.968i −0.0935374 0.349086i
\(528\) −68.6802 + 256.318i −0.130076 + 0.485451i
\(529\) −407.397 + 235.211i −0.770127 + 0.444633i
\(530\) −510.956 + 317.356i −0.964068 + 0.598785i
\(531\) −209.411 −0.394371
\(532\) 122.244 + 135.550i 0.229783 + 0.254793i
\(533\) −228.483 228.483i −0.428673 0.428673i
\(534\) −106.442 61.4545i −0.199330 0.115083i
\(535\) −221.379 207.565i −0.413792 0.387972i
\(536\) −154.401 267.431i −0.288062 0.498938i
\(537\) 118.533 + 442.372i 0.220732 + 0.823784i
\(538\) −219.346 219.346i −0.407706 0.407706i
\(539\) −600.585 + 268.539i −1.11426 + 0.498218i
\(540\) −37.1214 122.607i −0.0687433 0.227051i
\(541\) −86.8285 + 150.391i −0.160496 + 0.277988i −0.935047 0.354524i \(-0.884643\pi\)
0.774551 + 0.632512i \(0.217976\pi\)
\(542\) −453.526 121.522i −0.836764 0.224210i
\(543\) 128.219 478.521i 0.236131 0.881253i
\(544\) 383.838 + 221.609i 0.705584 + 0.407369i
\(545\) −50.8291 + 94.9729i −0.0932643 + 0.174262i
\(546\) 10.4171 201.831i 0.0190789 0.369654i
\(547\) 95.8716 95.8716i 0.175268 0.175268i −0.614021 0.789289i \(-0.710449\pi\)
0.789289 + 0.614021i \(0.210449\pi\)
\(548\) −174.511 + 46.7602i −0.318452 + 0.0853289i
\(549\) 205.000 118.357i 0.373407 0.215586i
\(550\) −321.421 950.196i −0.584402 1.72763i
\(551\) 97.0925 168.169i 0.176211 0.305207i
\(552\) 26.0721 26.0721i 0.0472320 0.0472320i
\(553\) −195.676 917.009i −0.353845 1.65824i
\(554\) 624.904i 1.12799i
\(555\) −333.464 + 207.115i −0.600836 + 0.373181i
\(556\) −208.690 361.462i −0.375342 0.650112i
\(557\) −46.7512 12.5270i −0.0839340 0.0224900i 0.216608 0.976259i \(-0.430501\pi\)
−0.300542 + 0.953769i \(0.597167\pi\)
\(558\) 168.299 45.0955i 0.301611 0.0808163i
\(559\) 365.508i 0.653860i
\(560\) 287.823 276.881i 0.513970 0.494430i
\(561\) 227.899 0.406238
\(562\) −351.855 1313.14i −0.626076 2.33655i
\(563\) −72.9609 + 272.294i −0.129593 + 0.483648i −0.999962 0.00875281i \(-0.997214\pi\)
0.870369 + 0.492401i \(0.163881\pi\)
\(564\) −469.925 + 271.312i −0.833201 + 0.481049i
\(565\) 85.3427 + 19.9470i 0.151049 + 0.0353044i
\(566\) 306.797 0.542045
\(567\) 19.4206 59.9320i 0.0342514 0.105700i
\(568\) −238.918 238.918i −0.420629 0.420629i
\(569\) 466.721 + 269.461i 0.820247 + 0.473570i 0.850502 0.525972i \(-0.176298\pi\)
−0.0302544 + 0.999542i \(0.509632\pi\)
\(570\) −136.797 + 4.40542i −0.239995 + 0.00772881i
\(571\) 150.339 + 260.394i 0.263290 + 0.456032i 0.967114 0.254342i \(-0.0818590\pi\)
−0.703824 + 0.710374i \(0.748526\pi\)
\(572\) 95.5709 + 356.676i 0.167082 + 0.623559i
\(573\) −93.3347 93.3347i −0.162888 0.162888i
\(574\) −659.210 + 1016.86i −1.14845 + 1.77153i
\(575\) 37.5284 187.625i 0.0652668 0.326304i
\(576\) −134.268 + 232.559i −0.233104 + 0.403748i
\(577\) −269.861 72.3090i −0.467697 0.125319i 0.0172714 0.999851i \(-0.494502\pi\)
−0.484968 + 0.874532i \(0.661169\pi\)
\(578\) −149.247 + 556.998i −0.258213 + 0.963664i
\(579\) −367.396 212.116i −0.634535 0.366349i
\(580\) 798.132 + 427.156i 1.37609 + 0.736477i
\(581\) 50.8680 985.565i 0.0875524 1.69633i
\(582\) 211.748 211.748i 0.363828 0.363828i
\(583\) 522.053 139.884i 0.895460 0.239938i
\(584\) −11.7235 + 6.76855i −0.0200744 + 0.0115900i
\(585\) 61.0352 + 57.2267i 0.104334 + 0.0978235i
\(586\) 216.271 374.592i 0.369062 0.639235i
\(587\) −210.055 + 210.055i −0.357845 + 0.357845i −0.863018 0.505173i \(-0.831429\pi\)
0.505173 + 0.863018i \(0.331429\pi\)
\(588\) −413.216 + 66.1187i −0.702749 + 0.112447i
\(589\) 102.778i 0.174496i
\(590\) −1015.64 237.385i −1.72143 0.402347i
\(591\) −166.660 288.664i −0.281997 0.488434i
\(592\) 499.605 + 133.869i 0.843927 + 0.226129i
\(593\) 1014.23 271.762i 1.71034 0.458284i 0.734831 0.678250i \(-0.237261\pi\)
0.975508 + 0.219966i \(0.0705946\pi\)
\(594\) 208.488i 0.350989i
\(595\) −293.669 177.223i −0.493561 0.297854i
\(596\) 160.892 0.269953
\(597\) 55.8470 + 208.424i 0.0935461 + 0.349119i
\(598\) −33.0196 + 123.231i −0.0552167 + 0.206071i
\(599\) 516.500 298.201i 0.862270 0.497832i −0.00250190 0.999997i \(-0.500796\pi\)
0.864772 + 0.502165i \(0.167463\pi\)
\(600\) −7.74914 120.188i −0.0129152 0.200314i
\(601\) −480.552 −0.799588 −0.399794 0.916605i \(-0.630918\pi\)
−0.399794 + 0.916605i \(0.630918\pi\)
\(602\) −1340.62 + 286.068i −2.22694 + 0.475196i
\(603\) 235.519 + 235.519i 0.390578 + 0.390578i
\(604\) −666.528 384.820i −1.10352 0.637119i
\(605\) 9.53788 + 296.170i 0.0157651 + 0.489537i
\(606\) −176.821 306.262i −0.291783 0.505383i
\(607\) −220.289 822.130i −0.362914 1.35441i −0.870226 0.492652i \(-0.836028\pi\)
0.507312 0.861762i \(-0.330639\pi\)
\(608\) 169.123 + 169.123i 0.278163 + 0.278163i
\(609\) 202.427 + 396.508i 0.332393 + 0.651081i
\(610\) 1128.42 341.647i 1.84987 0.560077i
\(611\) 177.199 306.918i 0.290015 0.502320i
\(612\) 140.024 + 37.5193i 0.228797 + 0.0613060i
\(613\) −276.060 + 1030.27i −0.450343 + 1.68070i 0.251089 + 0.967964i \(0.419211\pi\)
−0.701431 + 0.712737i \(0.747455\pi\)
\(614\) −106.874 61.7035i −0.174061 0.100494i
\(615\) −145.377 480.164i −0.236386 0.780754i
\(616\) 232.820 118.860i 0.377955 0.192955i
\(617\) −270.729 + 270.729i −0.438783 + 0.438783i −0.891602 0.452819i \(-0.850418\pi\)
0.452819 + 0.891602i \(0.350418\pi\)
\(618\) 634.395 169.986i 1.02653 0.275057i
\(619\) −136.247 + 78.6625i −0.220109 + 0.127080i −0.606001 0.795464i \(-0.707227\pi\)
0.385892 + 0.922544i \(0.373894\pi\)
\(620\) 478.881 15.4219i 0.772389 0.0248741i
\(621\) −19.8847 + 34.4414i −0.0320205 + 0.0554611i
\(622\) −849.859 + 849.859i −1.36633 + 1.36633i
\(623\) −34.6875 162.558i −0.0556782 0.260928i
\(624\) 110.241i 0.176669i
\(625\) −379.420 496.654i −0.607072 0.794647i
\(626\) 428.805 + 742.712i 0.684992 + 1.18644i
\(627\) 118.792 + 31.8302i 0.189461 + 0.0507659i
\(628\) 316.816 84.8905i 0.504483 0.135176i
\(629\) 444.212i 0.706219i
\(630\) 162.128 268.656i 0.257346 0.426437i
\(631\) −131.406 −0.208250 −0.104125 0.994564i \(-0.533204\pi\)
−0.104125 + 0.994564i \(0.533204\pi\)
\(632\) 96.4279 + 359.874i 0.152576 + 0.569421i
\(633\) −11.4568 + 42.7572i −0.0180992 + 0.0675470i
\(634\) 900.060 519.650i 1.41965 0.819637i
\(635\) −33.9224 + 145.136i −0.0534211 + 0.228561i
\(636\) 343.785 0.540542
\(637\) 212.131 172.338i 0.333016 0.270546i
\(638\) −1041.77 1041.77i −1.63287 1.63287i
\(639\) 315.612 + 182.219i 0.493915 + 0.285162i
\(640\) −296.147 + 315.856i −0.462729 + 0.493525i
\(641\) −128.958 223.362i −0.201182 0.348458i 0.747727 0.664006i \(-0.231145\pi\)
−0.948910 + 0.315548i \(0.897812\pi\)
\(642\) 81.3094 + 303.451i 0.126650 + 0.472665i
\(643\) 778.940 + 778.940i 1.21142 + 1.21142i 0.970561 + 0.240854i \(0.0774274\pi\)
0.240854 + 0.970561i \(0.422573\pi\)
\(644\) 263.814 + 13.6162i 0.409650 + 0.0211432i
\(645\) 267.782 500.345i 0.415166 0.775728i
\(646\) 77.4404 134.131i 0.119877 0.207633i
\(647\) −368.344 98.6974i −0.569310 0.152546i −0.0373301 0.999303i \(-0.511885\pi\)
−0.531980 + 0.846757i \(0.678552\pi\)
\(648\) −6.47889 + 24.1795i −0.00999829 + 0.0373141i
\(649\) 811.641 + 468.601i 1.25060 + 0.722035i
\(650\) 231.150 + 346.738i 0.355615 + 0.533444i
\(651\) 197.718 + 128.177i 0.303714 + 0.196892i
\(652\) −203.801 + 203.801i −0.312578 + 0.312578i
\(653\) −1089.41 + 291.908i −1.66832 + 0.447026i −0.964658 0.263506i \(-0.915121\pi\)
−0.703665 + 0.710532i \(0.748454\pi\)
\(654\) 96.5735 55.7567i 0.147666 0.0852550i
\(655\) 20.1522 + 625.767i 0.0307668 + 0.955369i
\(656\) −330.517 + 572.472i −0.503836 + 0.872670i
\(657\) 10.3245 10.3245i 0.0157146 0.0157146i
\(658\) −1264.41 409.723i −1.92159 0.622679i
\(659\) 737.560i 1.11921i −0.828759 0.559605i \(-0.810953\pi\)
0.828759 0.559605i \(-0.189047\pi\)
\(660\) −130.484 + 558.273i −0.197703 + 0.845868i
\(661\) −166.939 289.147i −0.252555 0.437439i 0.711673 0.702511i \(-0.247938\pi\)
−0.964229 + 0.265072i \(0.914604\pi\)
\(662\) 209.092 + 56.0259i 0.315848 + 0.0846313i
\(663\) −91.4524 + 24.5046i −0.137937 + 0.0369602i
\(664\) 392.127i 0.590553i
\(665\) −128.322 133.393i −0.192966 0.200591i
\(666\) 406.376 0.610174
\(667\) −72.7365 271.456i −0.109050 0.406981i
\(668\) 167.882 626.543i 0.251320 0.937939i
\(669\) −125.113 + 72.2341i −0.187015 + 0.107973i
\(670\) 875.286 + 1409.25i 1.30640 + 2.10335i
\(671\) −1059.40 −1.57883
\(672\) −536.266 + 114.431i −0.798014 + 0.170284i
\(673\) −183.139 183.139i −0.272123 0.272123i 0.557831 0.829954i \(-0.311634\pi\)
−0.829954 + 0.557831i \(0.811634\pi\)
\(674\) 936.016 + 540.409i 1.38875 + 0.801794i
\(675\) 41.6253 + 123.054i 0.0616671 + 0.182302i
\(676\) 339.943 + 588.799i 0.502875 + 0.871005i
\(677\) 216.220 + 806.946i 0.319380 + 1.19194i 0.919842 + 0.392290i \(0.128317\pi\)
−0.600461 + 0.799654i \(0.705016\pi\)
\(678\) −64.1557 64.1557i −0.0946249 0.0946249i
\(679\) 404.436 + 20.8742i 0.595635 + 0.0307425i
\(680\) 120.161 + 64.3098i 0.176708 + 0.0945733i
\(681\) −356.788 + 617.975i −0.523918 + 0.907452i
\(682\) −753.208 201.821i −1.10441 0.295926i
\(683\) 243.613 909.178i 0.356681 1.33115i −0.521674 0.853145i \(-0.674692\pi\)
0.878355 0.478008i \(-0.158641\pi\)
\(684\) 67.7469 + 39.1137i 0.0990452 + 0.0571838i
\(685\) 175.346 53.0887i 0.255979 0.0775017i
\(686\) −798.131 643.177i −1.16346 0.937576i
\(687\) 460.424 460.424i 0.670195 0.670195i
\(688\) −722.263 + 193.530i −1.04980 + 0.281293i
\(689\) −194.451 + 112.266i −0.282222 + 0.162941i
\(690\) −135.483 + 144.500i −0.196352 + 0.209420i
\(691\) −409.191 + 708.740i −0.592172 + 1.02567i 0.401767 + 0.915742i \(0.368396\pi\)
−0.993939 + 0.109931i \(0.964937\pi\)
\(692\) 844.291 844.291i 1.22007 1.22007i
\(693\) −209.381 + 188.828i −0.302137 + 0.272480i
\(694\) 862.487i 1.24278i
\(695\) 223.311 + 359.540i 0.321311 + 0.517323i
\(696\) −88.4465 153.194i −0.127078 0.220106i
\(697\) 548.371 + 146.936i 0.786760 + 0.210812i
\(698\) −1386.99 + 371.643i −1.98709 + 0.532439i
\(699\) 42.0616i 0.0601739i
\(700\) 602.274 617.916i 0.860392 0.882738i
\(701\) 480.047 0.684803 0.342402 0.939554i \(-0.388760\pi\)
0.342402 + 0.939554i \(0.388760\pi\)
\(702\) −22.4174 83.6629i −0.0319336 0.119178i
\(703\) 62.0422 231.545i 0.0882535 0.329366i
\(704\) 1040.80 600.905i 1.47841 0.853558i
\(705\) 467.426 290.319i 0.663015 0.411800i
\(706\) −288.430 −0.408541
\(707\) 147.427 454.962i 0.208525 0.643510i
\(708\) 421.535 + 421.535i 0.595389 + 0.595389i
\(709\) 1211.17 + 699.271i 1.70828 + 0.986278i 0.936688 + 0.350166i \(0.113875\pi\)
0.771597 + 0.636112i \(0.219458\pi\)
\(710\) 1324.16 + 1241.53i 1.86501 + 1.74864i
\(711\) −200.926 348.014i −0.282596 0.489471i
\(712\) 17.0938 + 63.7948i 0.0240081 + 0.0895994i
\(713\) −105.178 105.178i −0.147515 0.147515i
\(714\) 161.455 + 316.253i 0.226127 + 0.442931i
\(715\) −108.505 358.380i −0.151756 0.501231i
\(716\) 651.874 1129.08i 0.910438 1.57693i
\(717\) −84.7684 22.7136i −0.118226 0.0316787i
\(718\) −250.845 + 936.168i −0.349367 + 1.30385i
\(719\) −742.957 428.946i −1.03332 0.596587i −0.115386 0.993321i \(-0.536810\pi\)
−0.917934 + 0.396734i \(0.870144\pi\)
\(720\) 80.7661 150.910i 0.112175 0.209597i
\(721\) 745.289 + 483.157i 1.03369 + 0.670120i
\(722\) −703.744 + 703.744i −0.974715 + 0.974715i
\(723\) 195.102 52.2775i 0.269851 0.0723063i
\(724\) −1221.34 + 705.142i −1.68694 + 0.973953i
\(725\) −822.869 406.883i −1.13499 0.561218i
\(726\) 153.380 265.663i 0.211268 0.365926i
\(727\) 8.47406 8.47406i 0.0116562 0.0116562i −0.701255 0.712911i \(-0.747376\pi\)
0.712911 + 0.701255i \(0.247376\pi\)
\(728\) −80.6468 + 72.7305i −0.110779 + 0.0999046i
\(729\) 27.0000i 0.0370370i
\(730\) 61.7777 38.3703i 0.0846270 0.0525620i
\(731\) 321.092 + 556.147i 0.439250 + 0.760804i
\(732\) −650.905 174.409i −0.889214 0.238264i
\(733\) 1076.99 288.580i 1.46930 0.393697i 0.566606 0.823989i \(-0.308256\pi\)
0.902690 + 0.430292i \(0.141589\pi\)
\(734\) 771.050i 1.05048i
\(735\) 416.647 80.5002i 0.566867 0.109524i
\(736\) 346.145 0.470306
\(737\) −385.807 1439.85i −0.523483 1.95367i
\(738\) −134.420 + 501.663i −0.182141 + 0.679761i
\(739\) 635.156 366.708i 0.859481 0.496221i −0.00435760 0.999991i \(-0.501387\pi\)
0.863838 + 0.503769i \(0.168054\pi\)
\(740\) 1088.16 + 254.334i 1.47049 + 0.343695i
\(741\) −51.0919 −0.0689500
\(742\) 563.962 + 625.345i 0.760056 + 0.842784i
\(743\) −342.256 342.256i −0.460641 0.460641i 0.438225 0.898865i \(-0.355607\pi\)
−0.898865 + 0.438225i \(0.855607\pi\)
\(744\) −81.0822 46.8128i −0.108981 0.0629205i
\(745\) −163.068 + 5.25146i −0.218884 + 0.00704895i
\(746\) 733.284 + 1270.08i 0.982954 + 1.70253i
\(747\) −109.467 408.536i −0.146542 0.546902i
\(748\) −458.752 458.752i −0.613304 0.613304i
\(749\) −231.109 + 356.495i −0.308557 + 0.475961i
\(750\) 62.3908 + 643.999i 0.0831878 + 0.858665i
\(751\) −217.704 + 377.075i −0.289886 + 0.502097i −0.973782 0.227482i \(-0.926951\pi\)
0.683897 + 0.729579i \(0.260284\pi\)
\(752\) −700.310 187.648i −0.931264 0.249531i
\(753\) 143.734 536.424i 0.190882 0.712382i
\(754\) 530.061 + 306.031i 0.702999 + 0.405877i
\(755\) 688.103 + 368.270i 0.911395 + 0.487774i
\(756\) −159.733 + 81.5477i −0.211287 + 0.107867i
\(757\) 136.675 136.675i 0.180548 0.180548i −0.611047 0.791595i \(-0.709251\pi\)
0.791595 + 0.611047i \(0.209251\pi\)
\(758\) 513.243 137.523i 0.677101 0.181429i
\(759\) 154.140 88.9926i 0.203083 0.117250i
\(760\) 53.6519 + 50.3041i 0.0705946 + 0.0661896i
\(761\) 191.516 331.716i 0.251664