Properties

Label 105.3.v.a.37.1
Level 105
Weight 3
Character 105.37
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.1
Character \(\chi\) \(=\) 105.37
Dual form 105.3.v.a.88.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-3.56483 + 0.955194i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(8.33154 - 4.81021i) q^{4} +(-1.05941 + 4.88648i) q^{5} +6.39228 q^{6} +(-6.28878 + 3.07429i) q^{7} +(-14.6673 + 14.6673i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-3.56483 + 0.955194i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(8.33154 - 4.81021i) q^{4} +(-1.05941 + 4.88648i) q^{5} +6.39228 q^{6} +(-6.28878 + 3.07429i) q^{7} +(-14.6673 + 14.6673i) q^{8} +(2.59808 + 1.50000i) q^{9} +(-0.890898 - 18.4314i) q^{10} +(-4.09367 - 7.09045i) q^{11} +(-16.0953 + 4.31272i) q^{12} +(14.0569 - 14.0569i) q^{13} +(19.4819 - 16.9663i) q^{14} +(3.96298 - 7.70031i) q^{15} +(19.0355 - 32.9704i) q^{16} +(1.81174 - 6.76150i) q^{17} +(-10.6945 - 2.86558i) q^{18} +(-18.2350 - 10.5280i) q^{19} +(14.6784 + 45.8079i) q^{20} +(11.8995 - 2.32421i) q^{21} +(21.3660 + 21.3660i) q^{22} +(-8.43024 - 31.4621i) q^{23} +(31.1140 - 17.9637i) q^{24} +(-22.7553 - 10.3536i) q^{25} +(-36.6833 + 63.5374i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(-37.6072 + 55.8639i) q^{28} -22.1129i q^{29} +(-6.77207 + 31.2357i) q^{30} +(13.7286 + 23.7786i) q^{31} +(-14.8907 + 55.5730i) q^{32} +(3.67029 + 13.6977i) q^{33} +25.8342i q^{34} +(-8.36003 - 33.9869i) q^{35} +28.8613 q^{36} +(14.9872 - 4.01580i) q^{37} +(75.0611 + 20.1126i) q^{38} +(-29.8191 + 17.2161i) q^{39} +(-56.1326 - 87.2101i) q^{40} +0.496183 q^{41} +(-40.1997 + 19.6517i) q^{42} +(-33.4554 + 33.4554i) q^{43} +(-68.2132 - 39.3829i) q^{44} +(-10.0822 + 11.1063i) q^{45} +(60.1048 + 104.105i) q^{46} +(24.1272 - 6.46488i) q^{47} +(-46.6272 + 46.6272i) q^{48} +(30.0975 - 38.6671i) q^{49} +(91.0085 + 15.1731i) q^{50} +(-6.06219 + 10.5000i) q^{51} +(49.4987 - 184.732i) q^{52} +(-34.3598 - 9.20667i) q^{53} +(16.6076 + 9.58843i) q^{54} +(38.9842 - 12.4919i) q^{55} +(47.1478 - 137.331i) q^{56} +(25.7882 + 25.7882i) q^{57} +(21.1222 + 78.8289i) q^{58} +(-15.5949 + 9.00371i) q^{59} +(-4.02242 - 83.2182i) q^{60} +(13.4849 - 23.3565i) q^{61} +(-71.6533 - 71.6533i) q^{62} +(-20.9502 - 1.44592i) q^{63} -60.0481i q^{64} +(53.7965 + 83.5806i) q^{65} +(-26.1679 - 45.3242i) q^{66} +(-1.44046 + 5.37586i) q^{67} +(-17.4297 - 65.0485i) q^{68} +56.4163i q^{69} +(62.2662 + 113.172i) q^{70} -105.010 q^{71} +(-60.1077 + 16.1058i) q^{72} +(-81.6625 - 21.8814i) q^{73} +(-49.5909 + 28.6313i) q^{74} +(33.4289 + 27.5228i) q^{75} -202.568 q^{76} +(47.5423 + 32.0051i) q^{77} +(89.8555 - 89.8555i) q^{78} +(-86.5708 - 49.9817i) q^{79} +(140.943 + 127.946i) q^{80} +(4.50000 + 7.79423i) q^{81} +(-1.76881 + 0.473951i) q^{82} +(95.6303 - 95.6303i) q^{83} +(87.9612 - 76.6034i) q^{84} +(31.1205 + 16.0162i) q^{85} +(87.3064 - 151.219i) q^{86} +(-9.91296 + 36.9957i) q^{87} +(164.041 + 43.9546i) q^{88} +(54.3480 + 31.3778i) q^{89} +(25.3325 - 49.2226i) q^{90} +(-45.1856 + 131.615i) q^{91} +(-221.576 - 221.576i) q^{92} +(-12.3087 - 45.9367i) q^{93} +(-79.8344 + 46.0924i) q^{94} +(70.7633 - 77.9515i) q^{95} +(49.8254 - 86.3000i) q^{96} +(59.0158 + 59.0158i) q^{97} +(-70.3578 + 166.591i) q^{98} -24.5620i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.56483 + 0.955194i −1.78242 + 0.477597i −0.991021 0.133707i \(-0.957312\pi\)
−0.791396 + 0.611304i \(0.790645\pi\)
\(3\) −1.67303 0.448288i −0.557678 0.149429i
\(4\) 8.33154 4.81021i 2.08288 1.20255i
\(5\) −1.05941 + 4.88648i −0.211883 + 0.977295i
\(6\) 6.39228 1.06538
\(7\) −6.28878 + 3.07429i −0.898397 + 0.439185i
\(8\) −14.6673 + 14.6673i −1.83341 + 1.83341i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) −0.890898 18.4314i −0.0890898 1.84314i
\(11\) −4.09367 7.09045i −0.372152 0.644586i 0.617744 0.786379i \(-0.288047\pi\)
−0.989896 + 0.141793i \(0.954713\pi\)
\(12\) −16.0953 + 4.31272i −1.34127 + 0.359393i
\(13\) 14.0569 14.0569i 1.08130 1.08130i 0.0849086 0.996389i \(-0.472940\pi\)
0.996389 0.0849086i \(-0.0270598\pi\)
\(14\) 19.4819 16.9663i 1.39156 1.21188i
\(15\) 3.96298 7.70031i 0.264199 0.513354i
\(16\) 19.0355 32.9704i 1.18972 2.06065i
\(17\) 1.81174 6.76150i 0.106573 0.397735i −0.891946 0.452142i \(-0.850660\pi\)
0.998519 + 0.0544067i \(0.0173267\pi\)
\(18\) −10.6945 2.86558i −0.594139 0.159199i
\(19\) −18.2350 10.5280i −0.959739 0.554105i −0.0636460 0.997973i \(-0.520273\pi\)
−0.896093 + 0.443867i \(0.853606\pi\)
\(20\) 14.6784 + 45.8079i 0.733922 + 2.29039i
\(21\) 11.8995 2.32421i 0.566643 0.110677i
\(22\) 21.3660 + 21.3660i 0.971183 + 0.971183i
\(23\) −8.43024 31.4621i −0.366532 1.36792i −0.865332 0.501199i \(-0.832892\pi\)
0.498800 0.866717i \(-0.333774\pi\)
\(24\) 31.1140 17.9637i 1.29642 0.748487i
\(25\) −22.7553 10.3536i −0.910211 0.414144i
\(26\) −36.6833 + 63.5374i −1.41090 + 2.44375i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) −37.6072 + 55.8639i −1.34311 + 1.99514i
\(29\) 22.1129i 0.762515i −0.924469 0.381258i \(-0.875491\pi\)
0.924469 0.381258i \(-0.124509\pi\)
\(30\) −6.77207 + 31.2357i −0.225736 + 1.04119i
\(31\) 13.7286 + 23.7786i 0.442857 + 0.767052i 0.997900 0.0647702i \(-0.0206314\pi\)
−0.555043 + 0.831822i \(0.687298\pi\)
\(32\) −14.8907 + 55.5730i −0.465335 + 1.73666i
\(33\) 3.67029 + 13.6977i 0.111221 + 0.415082i
\(34\) 25.8342i 0.759829i
\(35\) −8.36003 33.9869i −0.238858 0.971054i
\(36\) 28.8613 0.801702
\(37\) 14.9872 4.01580i 0.405058 0.108535i −0.0505367 0.998722i \(-0.516093\pi\)
0.455595 + 0.890187i \(0.349427\pi\)
\(38\) 75.0611 + 20.1126i 1.97529 + 0.529278i
\(39\) −29.8191 + 17.2161i −0.764593 + 0.441438i
\(40\) −56.1326 87.2101i −1.40332 2.18025i
\(41\) 0.496183 0.0121020 0.00605101 0.999982i \(-0.498074\pi\)
0.00605101 + 0.999982i \(0.498074\pi\)
\(42\) −40.1997 + 19.6517i −0.957135 + 0.467899i
\(43\) −33.4554 + 33.4554i −0.778032 + 0.778032i −0.979496 0.201464i \(-0.935430\pi\)
0.201464 + 0.979496i \(0.435430\pi\)
\(44\) −68.2132 39.3829i −1.55030 0.895066i
\(45\) −10.0822 + 11.1063i −0.224048 + 0.246807i
\(46\) 60.1048 + 104.105i 1.30663 + 2.26314i
\(47\) 24.1272 6.46488i 0.513346 0.137551i 0.00715874 0.999974i \(-0.497721\pi\)
0.506187 + 0.862424i \(0.331055\pi\)
\(48\) −46.6272 + 46.6272i −0.971400 + 0.971400i
\(49\) 30.0975 38.6671i 0.614234 0.789124i
\(50\) 91.0085 + 15.1731i 1.82017 + 0.303463i
\(51\) −6.06219 + 10.5000i −0.118867 + 0.205883i
\(52\) 49.4987 184.732i 0.951899 3.55253i
\(53\) −34.3598 9.20667i −0.648297 0.173711i −0.0803384 0.996768i \(-0.525600\pi\)
−0.567959 + 0.823057i \(0.692267\pi\)
\(54\) 16.6076 + 9.58843i 0.307549 + 0.177563i
\(55\) 38.9842 12.4919i 0.708804 0.227126i
\(56\) 47.1478 137.331i 0.841925 2.45234i
\(57\) 25.7882 + 25.7882i 0.452425 + 0.452425i
\(58\) 21.1222 + 78.8289i 0.364175 + 1.35912i
\(59\) −15.5949 + 9.00371i −0.264320 + 0.152605i −0.626304 0.779579i \(-0.715433\pi\)
0.361984 + 0.932184i \(0.382100\pi\)
\(60\) −4.02242 83.2182i −0.0670404 1.38697i
\(61\) 13.4849 23.3565i 0.221064 0.382894i −0.734067 0.679077i \(-0.762380\pi\)
0.955131 + 0.296183i \(0.0957137\pi\)
\(62\) −71.6533 71.6533i −1.15570 1.15570i
\(63\) −20.9502 1.44592i −0.332542 0.0229511i
\(64\) 60.0481i 0.938252i
\(65\) 53.7965 + 83.5806i 0.827638 + 1.28585i
\(66\) −26.1679 45.3242i −0.396484 0.686730i
\(67\) −1.44046 + 5.37586i −0.0214993 + 0.0802367i −0.975842 0.218477i \(-0.929891\pi\)
0.954343 + 0.298714i \(0.0965577\pi\)
\(68\) −17.4297 65.0485i −0.256319 0.956596i
\(69\) 56.4163i 0.817627i
\(70\) 62.2662 + 113.172i 0.889517 + 1.61675i
\(71\) −105.010 −1.47902 −0.739509 0.673146i \(-0.764942\pi\)
−0.739509 + 0.673146i \(0.764942\pi\)
\(72\) −60.1077 + 16.1058i −0.834829 + 0.223692i
\(73\) −81.6625 21.8814i −1.11866 0.299745i −0.348321 0.937375i \(-0.613248\pi\)
−0.770343 + 0.637630i \(0.779915\pi\)
\(74\) −49.5909 + 28.6313i −0.670147 + 0.386909i
\(75\) 33.4289 + 27.5228i 0.445719 + 0.366971i
\(76\) −202.568 −2.66537
\(77\) 47.5423 + 32.0051i 0.617433 + 0.415651i
\(78\) 89.8555 89.8555i 1.15199 1.15199i
\(79\) −86.5708 49.9817i −1.09583 0.632679i −0.160710 0.987002i \(-0.551378\pi\)
−0.935123 + 0.354322i \(0.884712\pi\)
\(80\) 140.943 + 127.946i 1.76178 + 1.59932i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) −1.76881 + 0.473951i −0.0215708 + 0.00577989i
\(83\) 95.6303 95.6303i 1.15217 1.15217i 0.166057 0.986116i \(-0.446897\pi\)
0.986116 0.166057i \(-0.0531035\pi\)
\(84\) 87.9612 76.6034i 1.04716 0.911945i
\(85\) 31.1205 + 16.0162i 0.366124 + 0.188426i
\(86\) 87.3064 151.219i 1.01519 1.75836i
\(87\) −9.91296 + 36.9957i −0.113942 + 0.425238i
\(88\) 164.041 + 43.9546i 1.86410 + 0.499484i
\(89\) 54.3480 + 31.3778i 0.610651 + 0.352560i 0.773220 0.634137i \(-0.218645\pi\)
−0.162569 + 0.986697i \(0.551978\pi\)
\(90\) 25.3325 49.2226i 0.281472 0.546917i
\(91\) −45.1856 + 131.615i −0.496545 + 1.44632i
\(92\) −221.576 221.576i −2.40844 2.40844i
\(93\) −12.3087 45.9367i −0.132352 0.493943i
\(94\) −79.8344 + 46.0924i −0.849302 + 0.490345i
\(95\) 70.7633 77.9515i 0.744877 0.820542i
\(96\) 49.8254 86.3000i 0.519014 0.898959i
\(97\) 59.0158 + 59.0158i 0.608410 + 0.608410i 0.942530 0.334120i \(-0.108439\pi\)
−0.334120 + 0.942530i \(0.608439\pi\)
\(98\) −70.3578 + 166.591i −0.717937 + 1.69990i
\(99\) 24.5620i 0.248101i
\(100\) −239.390 + 23.1964i −2.39390 + 0.231964i
\(101\) 19.3636 + 33.5388i 0.191719 + 0.332067i 0.945820 0.324691i \(-0.105260\pi\)
−0.754101 + 0.656758i \(0.771927\pi\)
\(102\) 11.5811 43.2214i 0.113541 0.423739i
\(103\) −8.01775 29.9227i −0.0778422 0.290511i 0.916021 0.401131i \(-0.131383\pi\)
−0.993863 + 0.110620i \(0.964716\pi\)
\(104\) 412.352i 3.96493i
\(105\) −1.24931 + 60.6089i −0.0118982 + 0.577228i
\(106\) 131.281 1.23850
\(107\) 18.7482 5.02357i 0.175217 0.0469492i −0.170144 0.985419i \(-0.554423\pi\)
0.345361 + 0.938470i \(0.387757\pi\)
\(108\) −48.2859 12.9382i −0.447091 0.119798i
\(109\) −73.5876 + 42.4858i −0.675116 + 0.389778i −0.798012 0.602641i \(-0.794115\pi\)
0.122896 + 0.992419i \(0.460782\pi\)
\(110\) −127.040 + 81.7691i −1.15491 + 0.743355i
\(111\) −26.8742 −0.242110
\(112\) −18.3492 + 265.864i −0.163832 + 2.37379i
\(113\) −94.3686 + 94.3686i −0.835120 + 0.835120i −0.988212 0.153092i \(-0.951077\pi\)
0.153092 + 0.988212i \(0.451077\pi\)
\(114\) −116.564 67.2980i −1.02249 0.590333i
\(115\) 162.670 7.86279i 1.41452 0.0683720i
\(116\) −106.368 184.235i −0.916966 1.58823i
\(117\) 57.6061 15.4355i 0.492360 0.131927i
\(118\) 46.9929 46.9929i 0.398245 0.398245i
\(119\) 9.39320 + 48.0914i 0.0789345 + 0.404129i
\(120\) 54.8165 + 171.069i 0.456804 + 1.42557i
\(121\) 26.9837 46.7371i 0.223006 0.386257i
\(122\) −25.7614 + 96.1428i −0.211159 + 0.788056i
\(123\) −0.830130 0.222433i −0.00674902 0.00180839i
\(124\) 228.760 + 132.075i 1.84484 + 1.06512i
\(125\) 74.6999 100.224i 0.597599 0.801795i
\(126\) 76.0650 14.8570i 0.603690 0.117913i
\(127\) −146.532 146.532i −1.15380 1.15380i −0.985785 0.168010i \(-0.946266\pi\)
−0.168010 0.985785i \(-0.553734\pi\)
\(128\) −2.20532 8.23036i −0.0172290 0.0642997i
\(129\) 70.9695 40.9743i 0.550151 0.317630i
\(130\) −271.611 246.565i −2.08932 1.89665i
\(131\) −57.4723 + 99.5449i −0.438720 + 0.759885i −0.997591 0.0693695i \(-0.977901\pi\)
0.558871 + 0.829254i \(0.311235\pi\)
\(132\) 96.4680 + 96.4680i 0.730818 + 0.730818i
\(133\) 147.042 + 10.1484i 1.10558 + 0.0763041i
\(134\) 20.5399i 0.153283i
\(135\) 21.8466 14.0615i 0.161827 0.104159i
\(136\) 72.5996 + 125.746i 0.533820 + 0.924604i
\(137\) −28.1594 + 105.092i −0.205543 + 0.767096i 0.783741 + 0.621088i \(0.213309\pi\)
−0.989283 + 0.146008i \(0.953357\pi\)
\(138\) −53.8885 201.115i −0.390496 1.45735i
\(139\) 188.782i 1.35814i −0.734071 0.679072i \(-0.762382\pi\)
0.734071 0.679072i \(-0.237618\pi\)
\(140\) −233.136 242.950i −1.66526 1.73535i
\(141\) −43.2638 −0.306835
\(142\) 374.344 100.305i 2.63623 0.706375i
\(143\) −157.214 42.1253i −1.09940 0.294582i
\(144\) 98.9112 57.1064i 0.686883 0.396572i
\(145\) 108.054 + 23.4268i 0.745202 + 0.161564i
\(146\) 312.014 2.13708
\(147\) −67.6880 + 51.1990i −0.460463 + 0.348292i
\(148\) 105.549 105.549i 0.713170 0.713170i
\(149\) −102.211 59.0115i −0.685979 0.396050i 0.116125 0.993235i \(-0.462953\pi\)
−0.802104 + 0.597184i \(0.796286\pi\)
\(150\) −145.458 66.1832i −0.969721 0.441221i
\(151\) −89.3003 154.673i −0.591393 1.02432i −0.994045 0.108969i \(-0.965245\pi\)
0.402653 0.915353i \(-0.368088\pi\)
\(152\) 421.876 113.041i 2.77550 0.743693i
\(153\) 14.8493 14.8493i 0.0970541 0.0970541i
\(154\) −200.052 68.6808i −1.29904 0.445979i
\(155\) −130.738 + 41.8930i −0.843470 + 0.270277i
\(156\) −165.626 + 286.873i −1.06171 + 1.83893i
\(157\) −15.3559 + 57.3089i −0.0978081 + 0.365025i −0.997430 0.0716444i \(-0.977175\pi\)
0.899622 + 0.436669i \(0.143842\pi\)
\(158\) 356.353 + 95.4844i 2.25540 + 0.604332i
\(159\) 53.3578 + 30.8061i 0.335583 + 0.193749i
\(160\) −255.780 131.638i −1.59863 0.822737i
\(161\) 149.740 + 171.941i 0.930059 + 1.06796i
\(162\) −23.4867 23.4867i −0.144980 0.144980i
\(163\) 32.5532 + 121.490i 0.199713 + 0.745338i 0.990996 + 0.133889i \(0.0427466\pi\)
−0.791284 + 0.611449i \(0.790587\pi\)
\(164\) 4.13396 2.38674i 0.0252071 0.0145533i
\(165\) −70.8218 + 3.42323i −0.429223 + 0.0207469i
\(166\) −249.561 + 432.252i −1.50338 + 2.60393i
\(167\) −30.2982 30.2982i −0.181427 0.181427i 0.610551 0.791977i \(-0.290948\pi\)
−0.791977 + 0.610551i \(0.790948\pi\)
\(168\) −140.444 + 208.623i −0.835973 + 1.24180i
\(169\) 226.191i 1.33841i
\(170\) −126.238 27.3691i −0.742577 0.160995i
\(171\) −31.5840 54.7051i −0.184702 0.319913i
\(172\) −117.807 + 439.662i −0.684925 + 2.55617i
\(173\) −9.32360 34.7961i −0.0538936 0.201134i 0.933730 0.357979i \(-0.116534\pi\)
−0.987623 + 0.156846i \(0.949868\pi\)
\(174\) 141.352i 0.812369i
\(175\) 174.933 4.84489i 0.999617 0.0276851i
\(176\) −311.700 −1.77102
\(177\) 30.1270 8.07250i 0.170209 0.0456074i
\(178\) −223.713 59.9438i −1.25682 0.336763i
\(179\) 65.4777 37.8036i 0.365797 0.211193i −0.305823 0.952088i \(-0.598932\pi\)
0.671621 + 0.740895i \(0.265598\pi\)
\(180\) −30.5761 + 141.030i −0.169867 + 0.783500i
\(181\) −182.419 −1.00784 −0.503919 0.863751i \(-0.668109\pi\)
−0.503919 + 0.863751i \(0.668109\pi\)
\(182\) 35.3608 512.348i 0.194290 2.81510i
\(183\) −33.0311 + 33.0311i −0.180498 + 0.180498i
\(184\) 585.112 + 337.815i 3.17996 + 1.83595i
\(185\) 3.74549 + 77.4888i 0.0202459 + 0.418858i
\(186\) 87.7570 + 152.000i 0.471812 + 0.817202i
\(187\) −55.3587 + 14.8333i −0.296036 + 0.0793226i
\(188\) 169.920 169.920i 0.903827 0.903827i
\(189\) 34.4021 + 11.8108i 0.182022 + 0.0624909i
\(190\) −177.800 + 345.477i −0.935792 + 1.81830i
\(191\) −7.66297 + 13.2727i −0.0401203 + 0.0694904i −0.885388 0.464852i \(-0.846107\pi\)
0.845268 + 0.534343i \(0.179441\pi\)
\(192\) −26.9188 + 100.462i −0.140202 + 0.523242i
\(193\) −217.420 58.2576i −1.12653 0.301853i −0.353007 0.935621i \(-0.614841\pi\)
−0.773523 + 0.633768i \(0.781507\pi\)
\(194\) −266.753 154.010i −1.37502 0.793865i
\(195\) −52.5351 163.949i −0.269411 0.840766i
\(196\) 64.7611 466.931i 0.330414 2.38230i
\(197\) 261.191 + 261.191i 1.32584 + 1.32584i 0.908960 + 0.416883i \(0.136878\pi\)
0.416883 + 0.908960i \(0.363122\pi\)
\(198\) 23.4615 + 87.5596i 0.118493 + 0.442220i
\(199\) 57.1020 32.9678i 0.286945 0.165668i −0.349619 0.936892i \(-0.613689\pi\)
0.636563 + 0.771225i \(0.280355\pi\)
\(200\) 485.618 181.899i 2.42809 0.909495i
\(201\) 4.81986 8.34824i 0.0239794 0.0415336i
\(202\) −101.064 101.064i −0.500317 0.500317i
\(203\) 67.9816 + 139.063i 0.334885 + 0.685041i
\(204\) 116.642i 0.571774i
\(205\) −0.525663 + 2.42458i −0.00256421 + 0.0118272i
\(206\) 57.1639 + 99.0107i 0.277495 + 0.480635i
\(207\) 25.2907 94.3862i 0.122177 0.455972i
\(208\) −195.881 731.039i −0.941738 3.51461i
\(209\) 172.393i 0.824846i
\(210\) −53.4397 217.254i −0.254475 1.03454i
\(211\) 408.766 1.93728 0.968639 0.248472i \(-0.0799283\pi\)
0.968639 + 0.248472i \(0.0799283\pi\)
\(212\) −330.556 + 88.5721i −1.55922 + 0.417793i
\(213\) 175.686 + 47.0748i 0.824815 + 0.221009i
\(214\) −62.0357 + 35.8164i −0.289887 + 0.167366i
\(215\) −128.036 198.922i −0.595515 0.925218i
\(216\) 107.782 0.498991
\(217\) −159.438 107.333i −0.734739 0.494621i
\(218\) 221.745 221.745i 1.01718 1.01718i
\(219\) 126.815 + 73.2166i 0.579063 + 0.334322i
\(220\) 264.710 291.599i 1.20323 1.32545i
\(221\) −69.5781 120.513i −0.314833 0.545307i
\(222\) 95.8022 25.6701i 0.431541 0.115631i
\(223\) −180.123 + 180.123i −0.807725 + 0.807725i −0.984289 0.176564i \(-0.943502\pi\)
0.176564 + 0.984289i \(0.443502\pi\)
\(224\) −77.2030 395.264i −0.344656 1.76457i
\(225\) −43.5896 61.0324i −0.193731 0.271255i
\(226\) 246.268 426.548i 1.08968 1.88738i
\(227\) −56.8024 + 211.989i −0.250231 + 0.933874i 0.720451 + 0.693506i \(0.243935\pi\)
−0.970682 + 0.240368i \(0.922732\pi\)
\(228\) 338.903 + 90.8087i 1.48641 + 0.398284i
\(229\) 292.008 + 168.591i 1.27515 + 0.736206i 0.975952 0.217986i \(-0.0699489\pi\)
0.299194 + 0.954192i \(0.403282\pi\)
\(230\) −572.380 + 183.411i −2.48861 + 0.797438i
\(231\) −65.1923 74.8583i −0.282218 0.324062i
\(232\) 324.337 + 324.337i 1.39800 + 1.39800i
\(233\) −76.1326 284.131i −0.326749 1.21945i −0.912542 0.408984i \(-0.865883\pi\)
0.585792 0.810461i \(-0.300783\pi\)
\(234\) −190.612 + 110.050i −0.814582 + 0.470299i
\(235\) 6.02971 + 124.746i 0.0256584 + 0.530835i
\(236\) −86.6195 + 150.029i −0.367032 + 0.635718i
\(237\) 122.430 + 122.430i 0.516581 + 0.516581i
\(238\) −79.4218 162.465i −0.333705 0.682628i
\(239\) 191.663i 0.801937i 0.916092 + 0.400968i \(0.131326\pi\)
−0.916092 + 0.400968i \(0.868674\pi\)
\(240\) −178.445 277.240i −0.743521 1.15517i
\(241\) −61.5720 106.646i −0.255486 0.442514i 0.709542 0.704663i \(-0.248902\pi\)
−0.965027 + 0.262149i \(0.915569\pi\)
\(242\) −51.5493 + 192.385i −0.213014 + 0.794978i
\(243\) −4.03459 15.0573i −0.0166032 0.0619642i
\(244\) 259.461i 1.06337i
\(245\) 157.060 + 188.035i 0.641062 + 0.767490i
\(246\) 3.17174 0.0128932
\(247\) −404.318 + 108.337i −1.63692 + 0.438610i
\(248\) −550.129 147.407i −2.21826 0.594381i
\(249\) −202.863 + 117.123i −0.814709 + 0.470373i
\(250\) −170.559 + 428.636i −0.682235 + 1.71454i
\(251\) −21.1349 −0.0842027 −0.0421014 0.999113i \(-0.513405\pi\)
−0.0421014 + 0.999113i \(0.513405\pi\)
\(252\) −181.502 + 88.7280i −0.720247 + 0.352095i
\(253\) −188.570 + 188.570i −0.745335 + 0.745335i
\(254\) 662.329 + 382.396i 2.60759 + 1.50549i
\(255\) −44.8858 40.7466i −0.176023 0.159791i
\(256\) 135.819 + 235.246i 0.530545 + 0.918930i
\(257\) 182.539 48.9113i 0.710270 0.190316i 0.114444 0.993430i \(-0.463491\pi\)
0.595826 + 0.803114i \(0.296825\pi\)
\(258\) −213.856 + 213.856i −0.828900 + 0.828900i
\(259\) −81.9052 + 71.3294i −0.316236 + 0.275403i
\(260\) 850.248 + 437.582i 3.27018 + 1.68301i
\(261\) 33.1694 57.4511i 0.127086 0.220119i
\(262\) 109.794 409.758i 0.419063 1.56396i
\(263\) 134.776 + 36.1131i 0.512457 + 0.137312i 0.505775 0.862665i \(-0.331207\pi\)
0.00668144 + 0.999978i \(0.497873\pi\)
\(264\) −254.741 147.075i −0.964929 0.557102i
\(265\) 81.3894 158.144i 0.307130 0.596771i
\(266\) −533.875 + 104.276i −2.00705 + 0.392016i
\(267\) −76.8596 76.8596i −0.287864 0.287864i
\(268\) 13.8578 + 51.7180i 0.0517082 + 0.192978i
\(269\) 169.522 97.8736i 0.630194 0.363842i −0.150634 0.988590i \(-0.548131\pi\)
0.780827 + 0.624747i \(0.214798\pi\)
\(270\) −64.4480 + 70.9947i −0.238696 + 0.262943i
\(271\) 123.964 214.711i 0.457430 0.792292i −0.541394 0.840769i \(-0.682103\pi\)
0.998824 + 0.0484766i \(0.0154366\pi\)
\(272\) −188.442 188.442i −0.692802 0.692802i
\(273\) 134.599 199.941i 0.493035 0.732384i
\(274\) 401.534i 1.46545i
\(275\) 19.7410 + 203.729i 0.0717855 + 0.740834i
\(276\) 271.374 + 470.034i 0.983240 + 1.70302i
\(277\) 70.6321 263.603i 0.254989 0.951634i −0.713107 0.701055i \(-0.752713\pi\)
0.968096 0.250578i \(-0.0806208\pi\)
\(278\) 180.324 + 672.977i 0.648646 + 2.42078i
\(279\) 82.3715i 0.295238i
\(280\) 621.115 + 375.877i 2.21827 + 1.34242i
\(281\) −426.012 −1.51606 −0.758028 0.652222i \(-0.773837\pi\)
−0.758028 + 0.652222i \(0.773837\pi\)
\(282\) 154.228 41.3253i 0.546908 0.146544i
\(283\) 106.533 + 28.5453i 0.376440 + 0.100867i 0.442078 0.896977i \(-0.354241\pi\)
−0.0656376 + 0.997844i \(0.520908\pi\)
\(284\) −874.897 + 505.122i −3.08062 + 1.77860i
\(285\) −153.334 + 98.6931i −0.538014 + 0.346292i
\(286\) 600.679 2.10027
\(287\) −3.12038 + 1.52541i −0.0108724 + 0.00531502i
\(288\) −122.047 + 122.047i −0.423773 + 0.423773i
\(289\) 207.846 + 120.000i 0.719190 + 0.415224i
\(290\) −407.573 + 19.7004i −1.40542 + 0.0679324i
\(291\) −72.2793 125.191i −0.248382 0.430211i
\(292\) −785.628 + 210.508i −2.69051 + 0.720919i
\(293\) 224.196 224.196i 0.765175 0.765175i −0.212078 0.977253i \(-0.568023\pi\)
0.977253 + 0.212078i \(0.0680231\pi\)
\(294\) 192.391 247.171i 0.654393 0.840717i
\(295\) −27.4750 85.7427i −0.0931355 0.290653i
\(296\) −160.920 + 278.722i −0.543649 + 0.941628i
\(297\) −11.0109 + 41.0931i −0.0370736 + 0.138361i
\(298\) 420.732 + 112.735i 1.41185 + 0.378305i
\(299\) −560.761 323.755i −1.87545 1.08279i
\(300\) 410.905 + 68.5071i 1.36968 + 0.228357i
\(301\) 107.542 313.245i 0.357282 1.04068i
\(302\) 466.083 + 466.083i 1.54332 + 1.54332i
\(303\) −17.3609 64.7919i −0.0572969 0.213835i
\(304\) −694.225 + 400.811i −2.28363 + 1.31846i
\(305\) 99.8450 + 90.6379i 0.327361 + 0.297173i
\(306\) −38.7513 + 67.1192i −0.126638 + 0.219344i
\(307\) 348.544 + 348.544i 1.13532 + 1.13532i 0.989278 + 0.146043i \(0.0466539\pi\)
0.146043 + 0.989278i \(0.453346\pi\)
\(308\) 550.052 + 37.9631i 1.78588 + 0.123257i
\(309\) 53.6558i 0.173643i
\(310\) 426.042 274.221i 1.37433 0.884585i
\(311\) −7.38338 12.7884i −0.0237408 0.0411202i 0.853911 0.520419i \(-0.174224\pi\)
−0.877652 + 0.479299i \(0.840891\pi\)
\(312\) 184.852 689.879i 0.592476 2.21115i
\(313\) 31.2853 + 116.758i 0.0999530 + 0.373030i 0.997724 0.0674334i \(-0.0214810\pi\)
−0.897771 + 0.440463i \(0.854814\pi\)
\(314\) 218.964i 0.697339i
\(315\) 29.2604 100.841i 0.0928900 0.320129i
\(316\) −961.690 −3.04332
\(317\) −300.282 + 80.4604i −0.947262 + 0.253818i −0.699200 0.714926i \(-0.746460\pi\)
−0.248062 + 0.968744i \(0.579794\pi\)
\(318\) −219.637 58.8516i −0.690683 0.185068i
\(319\) −156.791 + 90.5232i −0.491507 + 0.283772i
\(320\) 293.424 + 63.6158i 0.916949 + 0.198799i
\(321\) −33.6184 −0.104730
\(322\) −698.033 469.911i −2.16781 1.45935i
\(323\) −104.222 + 104.222i −0.322669 + 0.322669i
\(324\) 74.9838 + 43.2919i 0.231432 + 0.133617i
\(325\) −465.407 + 174.329i −1.43202 + 0.536396i
\(326\) −232.093 401.998i −0.711943 1.23312i
\(327\) 142.160 38.0918i 0.434741 0.116489i
\(328\) −7.27765 + 7.27765i −0.0221880 + 0.0221880i
\(329\) −131.856 + 114.830i −0.400778 + 0.349028i
\(330\) 249.198 79.8518i 0.755146 0.241975i
\(331\) 64.5929 111.878i 0.195145 0.338001i −0.751803 0.659388i \(-0.770816\pi\)
0.946948 + 0.321387i \(0.104149\pi\)
\(332\) 336.745 1256.75i 1.01429 3.78539i
\(333\) 44.9615 + 12.0474i 0.135019 + 0.0361784i
\(334\) 136.949 + 79.0675i 0.410027 + 0.236729i
\(335\) −24.7429 12.7340i −0.0738595 0.0380120i
\(336\) 149.882 436.574i 0.446079 1.29933i
\(337\) −51.0347 51.0347i −0.151438 0.151438i 0.627322 0.778760i \(-0.284151\pi\)
−0.778760 + 0.627322i \(0.784151\pi\)
\(338\) 216.056 + 806.333i 0.639220 + 2.38560i
\(339\) 200.186 115.577i 0.590519 0.340936i
\(340\) 336.323 16.2565i 0.989186 0.0478132i
\(341\) 112.401 194.684i 0.329621 0.570920i
\(342\) 164.846 + 164.846i 0.482005 + 0.482005i
\(343\) −70.4023 + 335.697i −0.205255 + 0.978709i
\(344\) 981.399i 2.85290i
\(345\) −275.677 59.7682i −0.799063 0.173241i
\(346\) 66.4741 + 115.137i 0.192122 + 0.332765i
\(347\) 157.007 585.959i 0.452470 1.68864i −0.242950 0.970039i \(-0.578115\pi\)
0.695420 0.718603i \(-0.255218\pi\)
\(348\) 95.3669 + 355.914i 0.274043 + 1.02274i
\(349\) 82.1983i 0.235525i −0.993042 0.117763i \(-0.962428\pi\)
0.993042 0.117763i \(-0.0375722\pi\)
\(350\) −618.979 + 184.366i −1.76851 + 0.526760i
\(351\) −103.296 −0.294292
\(352\) 454.995 121.916i 1.29260 0.346351i
\(353\) −141.830 38.0031i −0.401783 0.107658i 0.0522678 0.998633i \(-0.483355\pi\)
−0.454051 + 0.890976i \(0.650022\pi\)
\(354\) −99.6869 + 57.5543i −0.281601 + 0.162583i
\(355\) 111.249 513.130i 0.313379 1.44544i
\(356\) 603.736 1.69589
\(357\) 5.84364 84.6693i 0.0163687 0.237169i
\(358\) −197.307 + 197.307i −0.551138 + 0.551138i
\(359\) 175.063 + 101.073i 0.487641 + 0.281539i 0.723595 0.690225i \(-0.242488\pi\)
−0.235955 + 0.971764i \(0.575822\pi\)
\(360\) −15.0217 310.777i −0.0417269 0.863270i
\(361\) 41.1776 + 71.3218i 0.114065 + 0.197567i
\(362\) 650.292 174.245i 1.79639 0.481340i
\(363\) −66.0962 + 66.0962i −0.182083 + 0.182083i
\(364\) 256.633 + 1313.91i 0.705036 + 3.60965i
\(365\) 193.437 375.860i 0.529965 1.02975i
\(366\) 86.1993 149.302i 0.235517 0.407928i
\(367\) −130.259 + 486.132i −0.354928 + 1.32461i 0.525647 + 0.850703i \(0.323823\pi\)
−0.880575 + 0.473907i \(0.842843\pi\)
\(368\) −1197.79 320.947i −3.25487 0.872139i
\(369\) 1.28912 + 0.744274i 0.00349355 + 0.00201700i
\(370\) −87.3689 272.657i −0.236132 0.736911i
\(371\) 244.385 47.7332i 0.658719 0.128661i
\(372\) −323.516 323.516i −0.869667 0.869667i
\(373\) −47.8471 178.568i −0.128277 0.478735i 0.871659 0.490113i \(-0.163045\pi\)
−0.999935 + 0.0113788i \(0.996378\pi\)
\(374\) 183.176 105.757i 0.489775 0.282772i
\(375\) −169.905 + 134.192i −0.453079 + 0.357844i
\(376\) −259.059 + 448.703i −0.688987 + 1.19336i
\(377\) −310.839 310.839i −0.824506 0.824506i
\(378\) −133.919 9.24274i −0.354284 0.0244517i
\(379\) 348.414i 0.919299i −0.888100 0.459649i \(-0.847975\pi\)
0.888100 0.459649i \(-0.152025\pi\)
\(380\) 214.603 989.842i 0.564745 2.60485i
\(381\) 179.464 + 310.841i 0.471035 + 0.815857i
\(382\) 14.6393 54.6344i 0.0383226 0.143022i
\(383\) −117.020 436.725i −0.305536 1.14028i −0.932483 0.361214i \(-0.882362\pi\)
0.626947 0.779062i \(-0.284304\pi\)
\(384\) 14.7583i 0.0384330i
\(385\) −206.759 + 198.408i −0.537037 + 0.515345i
\(386\) 830.714 2.15211
\(387\) −137.103 + 36.7365i −0.354270 + 0.0949265i
\(388\) 775.571 + 207.814i 1.99889 + 0.535602i
\(389\) 565.646 326.576i 1.45410 0.839527i 0.455393 0.890290i \(-0.349499\pi\)
0.998711 + 0.0507630i \(0.0161653\pi\)
\(390\) 343.882 + 534.271i 0.881750 + 1.36992i
\(391\) −228.004 −0.583131
\(392\) 125.693 + 1008.59i 0.320646 + 2.57293i
\(393\) 140.778 140.778i 0.358213 0.358213i
\(394\) −1180.59 681.614i −2.99642 1.72999i
\(395\) 335.949 370.075i 0.850503 0.936898i
\(396\) −118.149 204.640i −0.298355 0.516766i
\(397\) −63.7193 + 17.0735i −0.160502 + 0.0430064i −0.338175 0.941083i \(-0.609810\pi\)
0.177673 + 0.984090i \(0.443143\pi\)
\(398\) −172.068 + 172.068i −0.432333 + 0.432333i
\(399\) −241.457 82.8959i −0.605155 0.207759i
\(400\) −774.520 + 553.165i −1.93630 + 1.38291i
\(401\) 54.6685 94.6886i 0.136330 0.236131i −0.789775 0.613397i \(-0.789802\pi\)
0.926105 + 0.377266i \(0.123136\pi\)
\(402\) −9.20780 + 34.3640i −0.0229050 + 0.0854826i
\(403\) 527.233 + 141.272i 1.30827 + 0.350550i
\(404\) 322.657 + 186.286i 0.798657 + 0.461105i
\(405\) −42.8537 + 13.7318i −0.105812 + 0.0339057i
\(406\) −375.176 430.802i −0.924078 1.06109i
\(407\) −89.8264 89.8264i −0.220704 0.220704i
\(408\) −65.0910 242.923i −0.159537 0.595399i
\(409\) 254.528 146.952i 0.622318 0.359295i −0.155453 0.987843i \(-0.549684\pi\)
0.777771 + 0.628548i \(0.216350\pi\)
\(410\) −0.442048 9.14535i −0.00107817 0.0223057i
\(411\) 94.2231 163.199i 0.229253 0.397078i
\(412\) −210.735 210.735i −0.511492 0.511492i
\(413\) 70.3927 104.566i 0.170442 0.253185i
\(414\) 360.629i 0.871084i
\(415\) 365.983 + 568.607i 0.881887 + 1.37014i
\(416\) 571.865 + 990.499i 1.37467 + 2.38101i
\(417\) −84.6287 + 315.839i −0.202947 + 0.757407i
\(418\) −164.669 614.552i −0.393944 1.47022i
\(419\) 234.794i 0.560368i −0.959946 0.280184i \(-0.909605\pi\)
0.959946 0.280184i \(-0.0903955\pi\)
\(420\) 281.133 + 510.975i 0.669365 + 1.21661i
\(421\) −124.297 −0.295242 −0.147621 0.989044i \(-0.547162\pi\)
−0.147621 + 0.989044i \(0.547162\pi\)
\(422\) −1457.18 + 390.451i −3.45304 + 0.925238i
\(423\) 72.3817 + 19.3946i 0.171115 + 0.0458502i
\(424\) 639.001 368.928i 1.50708 0.870112i
\(425\) −111.232 + 135.102i −0.261723 + 0.317887i
\(426\) −671.256 −1.57572
\(427\) −12.9987 + 188.341i −0.0304420 + 0.441079i
\(428\) 132.037 132.037i 0.308498 0.308498i
\(429\) 244.139 + 140.954i 0.569090 + 0.328564i
\(430\) 646.435 + 586.824i 1.50334 + 1.36471i
\(431\) 105.297 + 182.380i 0.244309 + 0.423155i 0.961937 0.273271i \(-0.0881056\pi\)
−0.717628 + 0.696426i \(0.754772\pi\)
\(432\) −191.082 + 51.2002i −0.442319 + 0.118519i
\(433\) −549.109 + 549.109i −1.26815 + 1.26815i −0.321109 + 0.947042i \(0.604056\pi\)
−0.947042 + 0.321109i \(0.895944\pi\)
\(434\) 670.895 + 230.328i 1.54584 + 0.530711i
\(435\) −170.277 87.6332i −0.391440 0.201456i
\(436\) −408.732 + 707.944i −0.937459 + 1.62373i
\(437\) −177.507 + 662.466i −0.406195 + 1.51594i
\(438\) −522.010 139.872i −1.19180 0.319343i
\(439\) −83.0573 47.9532i −0.189197 0.109233i 0.402410 0.915460i \(-0.368173\pi\)
−0.591606 + 0.806227i \(0.701506\pi\)
\(440\) −388.570 + 755.015i −0.883114 + 1.71594i
\(441\) 136.196 55.3138i 0.308835 0.125428i
\(442\) 363.148 + 363.148i 0.821601 + 0.821601i
\(443\) 25.9009 + 96.6633i 0.0584670 + 0.218202i 0.988978 0.148062i \(-0.0473035\pi\)
−0.930511 + 0.366264i \(0.880637\pi\)
\(444\) −223.904 + 129.271i −0.504288 + 0.291151i
\(445\) −210.904 + 232.328i −0.473941 + 0.522085i
\(446\) 470.055 814.159i 1.05394 1.82547i
\(447\) 144.548 + 144.548i 0.323374 + 0.323374i
\(448\) 184.605 + 377.629i 0.412066 + 0.842922i
\(449\) 344.308i 0.766832i 0.923576 + 0.383416i \(0.125252\pi\)
−0.923576 + 0.383416i \(0.874748\pi\)
\(450\) 213.687 + 175.934i 0.474861 + 0.390964i
\(451\) −2.03121 3.51816i −0.00450379 0.00780079i
\(452\) −332.302 + 1240.17i −0.735181 + 2.74373i
\(453\) 80.0644 + 298.805i 0.176743 + 0.659613i
\(454\) 809.964i 1.78406i
\(455\) −595.265 360.234i −1.30828 0.791722i
\(456\) −756.487 −1.65896
\(457\) 83.2667 22.3113i 0.182203 0.0488211i −0.166564 0.986031i \(-0.553267\pi\)
0.348767 + 0.937210i \(0.386601\pi\)
\(458\) −1202.00 322.074i −2.62445 0.703219i
\(459\) −31.5001 + 18.1866i −0.0686276 + 0.0396222i
\(460\) 1317.47 847.986i 2.86406 1.84345i
\(461\) −618.594 −1.34185 −0.670926 0.741524i \(-0.734103\pi\)
−0.670926 + 0.741524i \(0.734103\pi\)
\(462\) 303.904 + 204.586i 0.657801 + 0.442826i
\(463\) 113.717 113.717i 0.245610 0.245610i −0.573556 0.819166i \(-0.694437\pi\)
0.819166 + 0.573556i \(0.194437\pi\)
\(464\) −729.073 420.930i −1.57128 0.907177i
\(465\) 237.509 11.4802i 0.510771 0.0246886i
\(466\) 542.800 + 940.157i 1.16481 + 2.01750i
\(467\) −48.7023 + 13.0497i −0.104288 + 0.0279438i −0.310585 0.950545i \(-0.600525\pi\)
0.206298 + 0.978489i \(0.433858\pi\)
\(468\) 405.699 405.699i 0.866879 0.866879i
\(469\) −7.46824 38.2359i −0.0159238 0.0815265i
\(470\) −140.652 438.940i −0.299259 0.933914i
\(471\) 51.3817 88.9958i 0.109091 0.188951i
\(472\) 96.6746 360.795i 0.204819 0.764395i
\(473\) 374.169 + 100.258i 0.791055 + 0.211963i
\(474\) −553.385 319.497i −1.16748 0.674044i
\(475\) 305.941 + 428.366i 0.644086 + 0.901823i
\(476\) 309.590 + 355.492i 0.650398 + 0.746831i
\(477\) −75.4593 75.4593i −0.158196 0.158196i
\(478\) −183.075 683.246i −0.383003 1.42938i
\(479\) −152.207 + 87.8766i −0.317760 + 0.183459i −0.650393 0.759597i \(-0.725396\pi\)
0.332634 + 0.943056i \(0.392063\pi\)
\(480\) 368.917 + 334.898i 0.768578 + 0.697704i
\(481\) 154.223 267.122i 0.320630 0.555347i
\(482\) 321.361 + 321.361i 0.666725 + 0.666725i
\(483\) −173.440 354.789i −0.359089 0.734553i
\(484\) 519.189i 1.07270i
\(485\) −350.901 + 225.857i −0.723508 + 0.465685i
\(486\) 28.7653 + 49.8229i 0.0591878 + 0.102516i
\(487\) 65.7419 245.352i 0.134994 0.503803i −0.865004 0.501765i \(-0.832684\pi\)
0.999998 0.00203876i \(-0.000648959\pi\)
\(488\) 144.790 + 540.364i 0.296701 + 1.10730i
\(489\) 217.850i 0.445501i
\(490\) −739.503 520.290i −1.50919 1.06182i
\(491\) 275.796 0.561704 0.280852 0.959751i \(-0.409383\pi\)
0.280852 + 0.959751i \(0.409383\pi\)
\(492\) −7.98620 + 2.13990i −0.0162321 + 0.00434938i
\(493\) −149.517 40.0629i −0.303279 0.0812634i
\(494\) 1337.84 772.405i 2.70819 1.56357i
\(495\) 120.022 + 26.0214i 0.242468 + 0.0525684i
\(496\) 1045.32 2.10750
\(497\) 660.386 322.832i 1.32875 0.649562i
\(498\) 611.296 611.296i 1.22750 1.22750i
\(499\) 520.379 + 300.441i 1.04284 + 0.602086i 0.920637 0.390419i \(-0.127670\pi\)
0.122206 + 0.992505i \(0.461003\pi\)
\(500\) 140.264 1194.35i 0.280528 2.38869i
\(501\) 37.1076 + 64.2723i 0.0740671 + 0.128288i
\(502\) 75.3423 20.1879i 0.150084 0.0402150i
\(503\) −513.924 + 513.924i −1.02172 + 1.02172i −0.0219593 + 0.999759i \(0.506990\pi\)
−0.999759 + 0.0219593i \(0.993010\pi\)
\(504\) 328.490 286.074i 0.651766 0.567608i
\(505\) −184.401 + 59.0884i −0.365150 + 0.117007i
\(506\) 492.099 852.340i 0.972527 1.68447i
\(507\) −101.399 + 378.425i −0.199997 + 0.746400i
\(508\) −1925.69 515.986i −3.79072 1.01572i
\(509\) 406.687 + 234.801i 0.798993 + 0.461299i 0.843119 0.537727i \(-0.180717\pi\)
−0.0441259 + 0.999026i \(0.514050\pi\)
\(510\) 198.931 + 102.380i 0.390061 + 0.200746i
\(511\) 580.827 113.447i 1.13665 0.222010i
\(512\) −684.779 684.779i −1.33746 1.33746i
\(513\) 28.3174 + 105.682i 0.0551997 + 0.206008i
\(514\) −604.002 + 348.721i −1.17510 + 0.678446i
\(515\) 154.710 7.47806i 0.300409 0.0145205i
\(516\) 394.190 682.757i 0.763934 1.32317i
\(517\) −144.608 144.608i −0.279706 0.279706i
\(518\) 223.845 332.513i 0.432133 0.641916i
\(519\) 62.3947i 0.120221i
\(520\) −2014.95 436.852i −3.87490 0.840099i
\(521\) 72.5876 + 125.725i 0.139324 + 0.241316i 0.927241 0.374466i \(-0.122174\pi\)
−0.787917 + 0.615781i \(0.788840\pi\)
\(522\) −63.3665 + 236.487i −0.121392 + 0.453040i
\(523\) 217.012 + 809.900i 0.414937 + 1.54857i 0.784962 + 0.619543i \(0.212682\pi\)
−0.370026 + 0.929022i \(0.620651\pi\)
\(524\) 1105.82i 2.11034i
\(525\) −294.840 70.3146i −0.561601 0.133933i
\(526\) −514.949 −0.978991
\(527\) 185.652 49.7452i 0.352280 0.0943932i
\(528\) 521.484 + 139.731i 0.987659 + 0.264643i
\(529\) −460.666 + 265.966i −0.870824 + 0.502770i
\(530\) −139.081 + 641.501i −0.262417 + 1.21038i
\(531\) −54.0223 −0.101737
\(532\) 1273.90 622.753i 2.39456 1.17059i
\(533\) 6.97477 6.97477i 0.0130859 0.0130859i
\(534\) 347.408 + 200.576i 0.650576 + 0.375610i
\(535\) 4.68542 + 96.9347i 0.00875780 + 0.181186i
\(536\) −57.7216 99.9768i −0.107690 0.186524i
\(537\) −126.493 + 33.8938i −0.235555 + 0.0631169i
\(538\) −510.829 + 510.829i −0.949497 + 0.949497i
\(539\) −397.376 55.1141i −0.737247 0.102253i
\(540\) 114.377 222.241i 0.211809 0.411557i
\(541\) −225.980 + 391.408i −0.417708 + 0.723491i −0.995708 0.0925455i \(-0.970500\pi\)
0.578001 + 0.816036i \(0.303833\pi\)
\(542\) −236.819 + 883.819i −0.436935 + 1.63066i
\(543\) 305.192 + 81.7760i 0.562048 + 0.150600i
\(544\) 348.778 + 201.367i 0.641137 + 0.370160i
\(545\) −129.646 404.594i −0.237883 0.742375i
\(546\) −288.839 + 841.323i −0.529009 + 1.54088i
\(547\) 389.492 + 389.492i 0.712051 + 0.712051i 0.966964 0.254913i \(-0.0820469\pi\)
−0.254913 + 0.966964i \(0.582047\pi\)
\(548\) 270.905 + 1011.03i 0.494353 + 1.84495i
\(549\) 70.0696 40.4547i 0.127631 0.0736880i
\(550\) −264.975 707.405i −0.481772 1.28619i
\(551\) −232.805 + 403.230i −0.422514 + 0.731815i
\(552\) −827.473 827.473i −1.49905 1.49905i
\(553\) 698.083 + 48.1797i 1.26236 + 0.0871243i
\(554\) 1007.17i 1.81799i
\(555\) 28.4709 131.320i 0.0512990 0.236613i
\(556\) −908.083 1572.85i −1.63324 2.82886i
\(557\) 254.761 950.780i 0.457380 1.70697i −0.223615 0.974678i \(-0.571786\pi\)
0.680995 0.732288i \(-0.261547\pi\)
\(558\) −78.6808 293.641i −0.141005 0.526238i
\(559\) 940.555i 1.68257i
\(560\) −1279.70 371.323i −2.28518 0.663077i
\(561\) 99.2666 0.176946
\(562\) 1518.66 406.924i 2.70224 0.724064i
\(563\) 831.358 + 222.762i 1.47666 + 0.395669i 0.905208 0.424968i \(-0.139715\pi\)
0.571450 + 0.820637i \(0.306381\pi\)
\(564\) −360.454 + 208.108i −0.639102 + 0.368986i
\(565\) −361.154 561.105i −0.639211 0.993106i
\(566\) −407.037 −0.719147
\(567\) −52.2612 35.1819i −0.0921715 0.0620491i
\(568\) 1540.22 1540.22i 2.71165 2.71165i
\(569\) −343.723 198.449i −0.604083 0.348768i 0.166563 0.986031i \(-0.446733\pi\)
−0.770646 + 0.637263i \(0.780066\pi\)
\(570\) 452.339 498.288i 0.793577 0.874190i
\(571\) 402.947 + 697.924i 0.705686 + 1.22228i 0.966443 + 0.256880i \(0.0826944\pi\)
−0.260757 + 0.965404i \(0.583972\pi\)
\(572\) −1512.46 + 405.263i −2.64417 + 0.708502i
\(573\) 18.7704 18.7704i 0.0327581 0.0327581i
\(574\) 9.66658 8.41840i 0.0168407 0.0146662i
\(575\) −133.913 + 803.212i −0.232893 + 1.39689i
\(576\) 90.0722 156.010i 0.156375 0.270850i
\(577\) 268.157 1000.77i 0.464743 1.73445i −0.192996 0.981200i \(-0.561820\pi\)
0.657739 0.753246i \(-0.271513\pi\)
\(578\) −855.559 229.246i −1.48021 0.396620i
\(579\) 337.635 + 194.934i 0.583135 + 0.336673i
\(580\) 1012.95 324.584i 1.74646 0.559627i
\(581\) −307.402 + 895.394i −0.529092 + 1.54113i
\(582\) 377.246 + 377.246i 0.648188 + 0.648188i
\(583\) 75.3782 + 281.315i 0.129294 + 0.482530i
\(584\) 1518.71 876.826i 2.60053 1.50141i
\(585\) 14.3965 + 297.843i 0.0246094 + 0.509134i
\(586\) −585.071 + 1013.37i −0.998415 + 1.72930i
\(587\) 541.901 + 541.901i 0.923170 + 0.923170i 0.997252 0.0740817i \(-0.0236026\pi\)
−0.0740817 + 0.997252i \(0.523603\pi\)
\(588\) −317.667 + 752.160i −0.540250 + 1.27918i
\(589\) 578.138i 0.981559i
\(590\) 179.845 + 279.414i 0.304821 + 0.473584i
\(591\) −319.892 554.070i −0.541273 0.937513i
\(592\) 152.885 570.575i 0.258252 0.963810i
\(593\) −205.761 767.912i −0.346984 1.29496i −0.890277 0.455419i \(-0.849490\pi\)
0.543293 0.839543i \(-0.317177\pi\)
\(594\) 157.008i 0.264322i
\(595\) −244.949 5.04902i −0.411678 0.00848576i
\(596\) −1135.43 −1.90509
\(597\) −110.313 + 29.5582i −0.184778 + 0.0495112i
\(598\) 2308.27 + 618.499i 3.85998 + 1.03428i
\(599\) −357.782 + 206.565i −0.597299 + 0.344850i −0.767978 0.640476i \(-0.778737\pi\)
0.170680 + 0.985327i \(0.445404\pi\)
\(600\) −893.997 + 86.6267i −1.49000 + 0.144378i
\(601\) −439.370 −0.731066 −0.365533 0.930798i \(-0.619113\pi\)
−0.365533 + 0.930798i \(0.619113\pi\)
\(602\) −84.1588 + 1219.39i −0.139799 + 2.02556i
\(603\) −11.8062 + 11.8062i −0.0195791 + 0.0195791i
\(604\) −1488.02 859.107i −2.46360 1.42236i
\(605\) 199.793 + 181.369i 0.330236 + 0.299783i
\(606\) 123.778 + 214.389i 0.204254 + 0.353778i
\(607\) −212.262 + 56.8754i −0.349690 + 0.0936991i −0.429388 0.903120i \(-0.641271\pi\)
0.0796986 + 0.996819i \(0.474604\pi\)
\(608\) 856.605 856.605i 1.40889 1.40889i
\(609\) −51.3951 263.133i −0.0843926 0.432074i
\(610\) −442.508 227.738i −0.725422 0.373340i
\(611\) 248.278 430.029i 0.406346 0.703812i
\(612\) 52.2891 195.146i 0.0854397 0.318865i
\(613\) −945.946 253.466i −1.54314 0.413484i −0.615863 0.787853i \(-0.711192\pi\)
−0.927280 + 0.374370i \(0.877859\pi\)
\(614\) −1575.43 909.573i −2.56584 1.48139i
\(615\) 1.96636 3.82076i 0.00319734 0.00621262i
\(616\) −1166.75 + 227.889i −1.89407 + 0.369949i
\(617\) −56.3252 56.3252i −0.0912887 0.0912887i 0.659988 0.751276i \(-0.270561\pi\)
−0.751276 + 0.659988i \(0.770561\pi\)
\(618\) −51.2517 191.274i −0.0829316 0.309505i
\(619\) −451.442 + 260.640i −0.729309 + 0.421067i −0.818169 0.574977i \(-0.805011\pi\)
0.0888604 + 0.996044i \(0.471677\pi\)
\(620\) −887.732 + 977.910i −1.43183 + 1.57727i
\(621\) −84.6244 + 146.574i −0.136271 + 0.236029i
\(622\) 38.5359 + 38.5359i 0.0619548 + 0.0619548i
\(623\) −438.247 30.2466i −0.703446 0.0485499i
\(624\) 1310.86i 2.10074i
\(625\) 410.606 + 471.198i 0.656969 + 0.753917i
\(626\) −223.054 386.340i −0.356316 0.617157i
\(627\) 77.2816 288.419i 0.123256 0.459998i
\(628\) 147.730 + 551.336i 0.235239 + 0.877924i
\(629\) 108.611i 0.172673i
\(630\) −7.98592 + 387.429i −0.0126761 + 0.614967i
\(631\) 606.021 0.960413 0.480207 0.877155i \(-0.340562\pi\)
0.480207 + 0.877155i \(0.340562\pi\)
\(632\) 2002.85 536.663i 3.16907 0.849151i
\(633\) −683.878 183.245i −1.08038 0.289486i
\(634\) 993.601 573.656i 1.56719 0.904819i
\(635\) 871.263 560.787i 1.37207 0.883129i
\(636\) 592.736 0.931975
\(637\) −120.462 966.614i −0.189108 1.51745i
\(638\) 472.466 472.466i 0.740542 0.740542i
\(639\) −272.825 157.515i −0.426956 0.246503i
\(640\) 42.5538 2.05687i 0.0664903 0.00321387i
\(641\) 552.914 + 957.675i 0.862580 + 1.49403i 0.869430 + 0.494056i \(0.164486\pi\)
−0.00685032 + 0.999977i \(0.502181\pi\)
\(642\) 119.844 32.1121i 0.186673 0.0500188i
\(643\) 495.423 495.423i 0.770487 0.770487i −0.207704 0.978192i \(-0.566599\pi\)
0.978192 + 0.207704i \(0.0665992\pi\)
\(644\) 2074.63 + 712.253i 3.22148 + 1.10598i
\(645\) 125.034 + 390.200i 0.193851 + 0.604961i
\(646\) 271.982 471.087i 0.421025 0.729237i
\(647\) 200.190 747.117i 0.309412 1.15474i −0.619669 0.784864i \(-0.712733\pi\)
0.929081 0.369877i \(-0.120600\pi\)
\(648\) −180.323 48.3174i −0.278276 0.0745639i
\(649\) 127.681 + 73.7165i 0.196735 + 0.113585i
\(650\) 1492.58 1066.01i 2.29628 1.64001i
\(651\) 218.630 + 251.045i 0.335837 + 0.385630i
\(652\) 855.612 + 855.612i 1.31229 + 1.31229i
\(653\) −280.108 1045.38i −0.428956 1.60089i −0.755129 0.655576i \(-0.772426\pi\)
0.326172 0.945310i \(-0.394241\pi\)
\(654\) −470.393 + 271.581i −0.719255 + 0.415262i
\(655\) −425.537 386.296i −0.649675 0.589765i
\(656\) 9.44507 16.3593i 0.0143980 0.0249380i
\(657\) −179.343 179.343i −0.272973 0.272973i
\(658\) 360.359 535.299i 0.547658 0.813524i
\(659\) 388.022i 0.588805i −0.955682 0.294402i \(-0.904879\pi\)
0.955682 0.294402i \(-0.0951206\pi\)
\(660\) −573.588 + 369.189i −0.869073 + 0.559377i
\(661\) −309.552 536.160i −0.468308 0.811134i 0.531036 0.847350i \(-0.321803\pi\)
−0.999344 + 0.0362155i \(0.988470\pi\)
\(662\) −123.398 + 460.526i −0.186401 + 0.695658i
\(663\) 62.3820 + 232.813i 0.0940906 + 0.351151i
\(664\) 2805.28i 4.22481i
\(665\) −205.369 + 707.767i −0.308825 + 1.06431i
\(666\) −171.788 −0.257940
\(667\) −695.719 + 186.417i −1.04306 + 0.279486i
\(668\) −398.172 106.690i −0.596066 0.159715i
\(669\) 382.098 220.604i 0.571148 0.329752i
\(670\) 100.368 + 21.7603i 0.149803 + 0.0324781i
\(671\) −220.811 −0.329078
\(672\) −48.0290 + 695.899i −0.0714718 + 1.03556i
\(673\) 185.772 185.772i 0.276036 0.276036i −0.555488 0.831524i \(-0.687469\pi\)
0.831524 + 0.555488i \(0.187469\pi\)
\(674\) 230.678 + 133.182i 0.342253 + 0.197600i
\(675\) 45.5667 + 121.650i 0.0675062 + 0.180222i
\(676\) −1088.03 1884.52i −1.60951 2.78775i
\(677\) −713.136 + 191.084i −1.05338 + 0.282252i −0.743647 0.668573i \(-0.766906\pi\)
−0.309731 + 0.950824i \(0.600239\pi\)
\(678\) −603.231 + 603.231i −0.889721 + 0.889721i
\(679\) −552.569 189.705i −0.813798 0.279389i
\(680\) −691.368 + 221.539i −1.01672 + 0.325792i
\(681\) 190.064 329.201i 0.279096 0.483409i
\(682\) −214.729 + 801.379i −0.314852 + 1.17504i
\(683\) 504.707 + 135.236i 0.738957 + 0.198003i 0.608614 0.793466i \(-0.291726\pi\)
0.130342 + 0.991469i \(0.458392\pi\)
\(684\) −526.287 303.852i −0.769425 0.444228i
\(685\) −483.698 248.936i −0.706129 0.363411i
\(686\) −69.6833 1263.95i −0.101579 1.84250i
\(687\) −412.962 412.962i −0.601110 0.601110i
\(688\) 466.198 + 1739.88i 0.677614 + 2.52889i
\(689\) −612.407 + 353.574i −0.888835 + 0.513169i
\(690\) 1039.83 50.2612i 1.50700 0.0728423i
\(691\) −301.546 + 522.293i −0.436391 + 0.755851i −0.997408 0.0719534i \(-0.977077\pi\)
0.561017 + 0.827804i \(0.310410\pi\)
\(692\) −245.057 245.057i −0.354128 0.354128i
\(693\) 75.5109 + 154.465i 0.108962 + 0.222894i
\(694\) 2238.82i 3.22596i
\(695\) 922.479 + 199.998i 1.32731 + 0.287768i
\(696\) −397.230 688.023i −0.570733 0.988538i
\(697\) 0.898953 3.35494i 0.00128975 0.00481340i
\(698\) 78.5153 + 293.023i 0.112486 + 0.419804i
\(699\) 509.489i 0.728883i
\(700\) 1434.15 881.830i 2.04879 1.25976i
\(701\) 100.279 0.143052 0.0715259 0.997439i \(-0.477213\pi\)
0.0715259 + 0.997439i \(0.477213\pi\)
\(702\) 368.235 98.6682i 0.524551 0.140553i
\(703\) −315.570 84.5567i −0.448890 0.120280i
\(704\) −425.768 + 245.817i −0.604784 + 0.349172i
\(705\) 45.8343 211.407i 0.0650131 0.299869i
\(706\) 541.899 0.767562
\(707\) −224.882 151.389i −0.318079 0.214128i
\(708\) 212.174 212.174i 0.299680 0.299680i
\(709\) −339.531 196.029i −0.478888 0.276486i 0.241065 0.970509i \(-0.422503\pi\)
−0.719953 + 0.694023i \(0.755837\pi\)
\(710\) 93.5535 + 1935.49i 0.131766 + 2.72604i
\(711\) −149.945 259.712i −0.210893 0.365278i
\(712\) −1257.36 + 336.910i −1.76596 + 0.473188i
\(713\) 632.389 632.389i 0.886941 0.886941i
\(714\) 60.0440 + 307.414i 0.0840953 + 0.430551i
\(715\) 372.399 723.593i 0.520837 1.01202i
\(716\) 363.687 629.924i 0.507942 0.879782i
\(717\) 85.9201 320.658i 0.119833 0.447222i
\(718\) −720.614 193.088i −1.00364 0.268925i
\(719\) −1001.31 578.104i −1.39264 0.804039i −0.399031 0.916938i \(-0.630653\pi\)
−0.993607 + 0.112898i \(0.963987\pi\)
\(720\) 174.261 + 543.826i 0.242029 + 0.755314i
\(721\) 142.413 + 163.528i 0.197521 + 0.226807i
\(722\) −214.918 214.918i −0.297670 0.297670i
\(723\) 55.2040 + 206.024i 0.0763540 + 0.284957i
\(724\) −1519.83 + 877.472i −2.09921 + 1.21198i
\(725\) −228.949 + 503.186i −0.315791 + 0.694050i
\(726\) 172.487 298.757i 0.237586 0.411511i
\(727\) −27.8958 27.8958i −0.0383712 0.0383712i 0.687661 0.726032i \(-0.258638\pi\)
−0.726032 + 0.687661i \(0.758638\pi\)
\(728\) −1267.69 2593.19i −1.74133 3.56208i
\(729\) 27.0000i 0.0370370i
\(730\) −330.552 + 1524.65i −0.452811 + 2.08856i
\(731\) 165.596 + 286.821i 0.226534 + 0.392368i
\(732\) −116.313 + 434.087i −0.158898 + 0.593015i
\(733\) −209.185 780.690i −0.285382 1.06506i −0.948559 0.316599i \(-0.897459\pi\)
0.663177 0.748463i \(-0.269208\pi\)
\(734\) 1857.40i 2.53052i
\(735\) −178.473 384.997i −0.242820 0.523805i
\(736\) 1873.97 2.54616
\(737\) 44.0140 11.7935i 0.0597205 0.0160021i
\(738\) −5.30642 1.42185i −0.00719028 0.00192663i
\(739\) 452.698 261.365i 0.612582 0.353674i −0.161393 0.986890i \(-0.551599\pi\)
0.773975 + 0.633216i \(0.218265\pi\)
\(740\) 403.943 + 627.584i 0.545869 + 0.848086i
\(741\) 725.003 0.978412
\(742\) −825.597 + 403.596i −1.11266 + 0.543930i
\(743\) −34.1788 + 34.1788i −0.0460011 + 0.0460011i −0.729733 0.683732i \(-0.760356\pi\)
0.683732 + 0.729733i \(0.260356\pi\)
\(744\) 854.303 + 493.232i 1.14826 + 0.662946i
\(745\) 396.642 436.934i 0.532405 0.586488i
\(746\) 341.134 + 590.862i 0.457284 + 0.792040i
\(747\) 391.900 105.009i 0.524632 0.140575i
\(748\) −389.872 + 389.872i −0.521219 + 0.521219i
\(749\) −102.459 + 89.2296i −0.136795 + 0.119132i
\(750\) 477.503 640.663i 0.636670 0.854217i
\(751\) 352.812 611.088i 0.469790 0.813700i −0.529614 0.848239i \(-0.677663\pi\)
0.999403 + 0.0345394i \(0.0109964\pi\)
\(752\) 246.124 918.547i 0.327292 1.22147i
\(753\) 35.3594 + 9.47451i 0.0469580 + 0.0125823i
\(754\) 1405.00 + 811.177i 1.86339 + 1.07583i
\(755\) 850.410 272.501i 1.12637 0.360929i
\(756\) 343.435 67.0797i 0.454279 0.0887297i
\(757\) 395.694 + 395.694i 0.522713 + 0.522713i 0.918390 0.395677i \(-0.129490\pi\)
−0.395677 + 0.918390i \(0.629490\pi\)
\(758\) 332.803 + 1242.04i 0.439054 + 1.63857i
\(759\) 400.017 230.950i 0.527031 0.304282i
\(760\) 105.432 + 2181.24i 0.138727 + 2.87006i
\(761\) −692.529 + 1199.50i −0.910025 + 1.57621i −0.0959984 + 0.995381i \(0.530604\pi\)
−0.814026 + 0.580828i \(0.802729\pi\)
\(762\) −936.674