Learn more

Refine search


Results (1-50 of 1217 matches)

Next   displayed columns for results
Label Polynomial Discriminant Galois group Class group Regulator
21.1.238...101.1 $x^{21} - 6 x^{18} - 6 x^{16} + 8 x^{15} - 8 x^{14} + 17 x^{13} - 3 x^{12} + 23 x^{11} - 28 x^{10} - 11 x^{9} - 45 x^{8} - 14 x^{7} - 44 x^{6} - 17 x^{5} - 21 x^{4} - 4 x^{3} - 8 x^{2} - 1$ $23^{7}\cdot 41227^{3}$ $D_7\wr S_3$ (as 21T62) trivial $952.218112417$
21.3.321...607.1 $x^{21} - 5 x^{14} - 8 x^{7} - 1$ $-\,7^{29}$ $C_3\times D_7$ (as 21T3) trivial $6020.25035863$
21.3.396...527.1 $x^{21} - 5 x^{20} + 11 x^{19} - 20 x^{18} + 37 x^{17} - 68 x^{16} + 120 x^{15} - 168 x^{14} + 237 x^{13} - 331 x^{12} + 362 x^{11} - 431 x^{10} + 452 x^{9} - 381 x^{8} + 350 x^{7} - 238 x^{6} + 169 x^{5} - 90 x^{4} + 43 x^{3} + 6 x^{2} + 27$ $-\,13^{2}\cdot 1801^{2}\cdot 193327^{3}$ $C_3^7.S_7$ (as 21T139) trivial $6158.71427835$
21.3.682...552.1 $x^{21} - 2 x^{20} - x^{19} - 3 x^{18} + 10 x^{17} + 13 x^{16} + x^{15} - 27 x^{14} - 16 x^{13} - 20 x^{12} + 55 x^{11} - 4 x^{10} + 8 x^{9} - 32 x^{8} - x^{7} + 70 x^{6} - 52 x^{5} - 4 x^{4} + 6 x^{3} + 2 x^{2} - 6 x + 1$ $-\,2^{21}\cdot 71^{10}$ $S_3\times D_7$ (as 21T8) trivial $7666.61577427$
21.3.717...392.1 $x^{21} - 7 x^{20} + 21 x^{19} - 42 x^{18} + 77 x^{17} - 126 x^{16} + 168 x^{15} - 213 x^{14} + 266 x^{13} - 280 x^{12} + 259 x^{11} - 217 x^{10} + 133 x^{9} - 42 x^{8} - 53 x^{7} + 126 x^{6} - 112 x^{5} + 7 x^{4} + 63 x^{3} - 49 x^{2} + 14 x - 1$ $-\,2^{18}\cdot 7^{23}$ $F_7$ (as 21T4) trivial $10096.3106241$
21.3.928...699.1 $x^{21} - 5 x^{20} + 11 x^{19} - 13 x^{18} + 7 x^{17} + 4 x^{16} - 16 x^{15} + 13 x^{14} - 6 x^{13} + 2 x^{12} - 2 x^{11} + 21 x^{10} - 28 x^{8} + 29 x^{7} - 16 x^{6} - 18 x^{5} + 17 x^{4} - 9 x^{3} - 2 x^{2} + 3 x - 1$ $-\,11^{9}\cdot 13^{14}$ $F_7$ (as 21T4) trivial $10371.33223$
21.3.109...167.1 $x^{21} + x^{19} - 2 x^{18} - 2 x^{17} - 3 x^{16} - x^{15} + 4 x^{14} + 15 x^{13} + 3 x^{12} - 4 x^{11} - 29 x^{10} - 4 x^{9} + 12 x^{8} + 23 x^{7} + 16 x^{6} - 4 x^{5} - 7 x^{4} - 8 x^{3} - x^{2} + 1$ $-\,31^{8}\cdot 67^{3}\cdot 349^{3}$ $S_3\times S_7$ (as 21T74) trivial $10492.3673171$
21.5.162...041.1 $x^{21} - x^{20} - 6 x^{19} + 8 x^{18} + 15 x^{17} - 28 x^{16} - 39 x^{15} + 74 x^{14} + 112 x^{13} - 127 x^{12} - 227 x^{11} + 89 x^{10} + 306 x^{9} + x^{8} - 244 x^{7} - 55 x^{6} + 122 x^{5} + 40 x^{4} - 41 x^{3} - 6 x^{2} + 8 x - 1$ $13^{8}\cdot 109^{8}$ $\PSL(2,7)$ (as 21T14) trivial $17240.5464964$
21.1.214...721.1 $x^{21} - x^{20} - x^{19} + 2 x^{18} + 2 x^{17} + x^{16} - 5 x^{15} - x^{14} + 13 x^{13} + 9 x^{12} - 7 x^{11} - 16 x^{10} - x^{9} + 21 x^{8} + 17 x^{7} - 3 x^{6} - 11 x^{5} - 3 x^{4} + 4 x^{3} + 3 x^{2} - 1$ $23^{7}\cdot 184607^{3}$ $S_3\times S_7$ (as 21T74) trivial $10455.3643856$
21.1.237...104.1 $x^{21} + x^{19} - 5 x^{18} + 8 x^{17} - 5 x^{16} + 11 x^{15} - 40 x^{14} + 33 x^{13} + 2 x^{12} + 62 x^{11} - 87 x^{10} - 12 x^{9} - 43 x^{8} + 76 x^{7} + 27 x^{6} - 15 x^{5} - 7 x^{4} - 10 x^{3} + 2 x^{2} + x + 1$ $2^{14}\cdot 11^{8}\cdot 41^{3}\cdot 461^{3}$ $S_3\times S_7$ (as 21T74) trivial $11721.4726991$
21.5.267...304.1 $x^{21} - 5 x^{20} + 11 x^{19} - 16 x^{18} + 25 x^{17} - 38 x^{16} + 36 x^{15} - 25 x^{14} + 18 x^{13} - 4 x^{12} - 3 x^{11} - 17 x^{10} - 23 x^{9} - 12 x^{8} + 55 x^{7} + 18 x^{6} - 46 x^{5} - 17 x^{4} + 19 x^{3} + 9 x^{2} - 2 x - 1$ $2^{18}\cdot 317^{8}$ $\PSL(2,7)$ (as 21T14) trivial $25357.2549184$
21.3.657...567.1 $x^{21} - 4 x^{20} + 12 x^{19} - 22 x^{18} + 41 x^{17} - 54 x^{16} + 79 x^{15} - 60 x^{14} + 57 x^{13} + 46 x^{12} - 70 x^{11} + 222 x^{10} - 182 x^{9} + 306 x^{8} - 168 x^{7} + 207 x^{6} - 48 x^{5} + 42 x^{4} + 5 x^{3} - 17 x^{2} - 15 x - 1$ $-\,3^{24}\cdot 7^{17}$ $C_3\times F_7$ (as 21T9) trivial $31647.6272279$
21.1.759...229.1 $x^{21} - x^{18} - 3 x^{15} + 2 x^{12} + 4 x^{9} - x^{6} - 2 x^{3} - 1$ $3^{21}\cdot 193607^{3}$ $C_3^6.(C_2\times S_7)$ (as 21T138) trivial $18363.369838$
21.5.855...849.1 $x^{21} - 4 x^{19} + 23 x^{17} - 4 x^{16} - 54 x^{15} + 19 x^{14} + 94 x^{13} - 41 x^{12} - 115 x^{11} + 59 x^{10} + 30 x^{9} - 81 x^{8} + 20 x^{7} + 46 x^{6} - 18 x^{5} - 5 x^{4} + 13 x^{3} - 3 x^{2} + 1$ $23^{8}\cdot 239^{3}\cdot 431^{3}$ $S_3\times S_7$ (as 21T74) trivial $45009.9851463$
21.3.108...223.1 $x^{21} - 9 x^{14} - 12 x^{7} + 1$ $-\,3^{28}\cdot 7^{15}$ $C_3\times F_7$ (as 21T9) trivial $51151.7616302$
21.1.156...857.1 $x^{21} - x^{20} - x^{19} + 2 x^{18} + 5 x^{17} + 2 x^{16} - 10 x^{15} - 2 x^{14} + 23 x^{13} + 19 x^{12} - 11 x^{11} - 28 x^{10} + 8 x^{9} + 47 x^{8} + 23 x^{7} - 13 x^{6} - 24 x^{5} - 7 x^{4} + 11 x^{3} + 6 x^{2} - 1$ $23^{7}\cdot 71^{9}$ $S_3\times D_7$ (as 21T8) trivial $32527.0761402$
21.3.167...056.1 $x^{21} - 7 x^{20} + 23 x^{19} - 46 x^{18} + 59 x^{17} - 38 x^{16} - 51 x^{15} + 276 x^{14} - 725 x^{13} + 1392 x^{12} - 2056 x^{11} + 2397 x^{10} - 2311 x^{9} + 1987 x^{8} - 1615 x^{7} + 1208 x^{6} - 783 x^{5} + 436 x^{4} - 201 x^{3} + 66 x^{2} - 12 x + 1$ $-\,2^{18}\cdot 17^{6}\cdot 31^{9}$ $S_3\times A_7$ (as 21T57) trivial $48967.484032$
21.3.188...059.1 $x^{21} - 3 x^{20} + 2 x^{19} - 4 x^{18} + 10 x^{17} - 9 x^{16} + 70 x^{15} - 167 x^{14} + 91 x^{13} + 110 x^{12} - 252 x^{11} + 50 x^{10} + 456 x^{9} - 519 x^{8} + x^{7} + 487 x^{6} - 548 x^{5} + 272 x^{4} - 48 x^{3} + x^{2} - 3 x + 1$ $-\,59^{8}\cdot 10859^{3}$ $S_3\times S_7$ (as 21T74) trivial $47990.3401891$
21.3.214...807.1 $x^{21} - x^{20} - x^{19} + x^{18} - x^{17} + 6 x^{16} - 7 x^{15} + 2 x^{14} - 4 x^{13} + 5 x^{12} + 9 x^{11} - 17 x^{10} + 11 x^{9} - 4 x^{8} - 3 x^{7} + 9 x^{6} - 6 x^{5} - x^{4} + 3 x^{3} - x^{2} - x + 1$ $-\,184607^{5}$ $S_7$ (as 21T38) trivial $59489.8190642$
21.3.270...407.1 $x^{21} - 4 x^{18} - x^{17} + x^{16} + 7 x^{15} + x^{14} - 6 x^{13} - 11 x^{12} + 2 x^{11} + 10 x^{10} + 14 x^{9} - 2 x^{8} - 5 x^{7} - 6 x^{6} + 2 x^{5} - 2 x^{4} - 3 x^{3} + 2 x^{2} - 1$ $-\,193327^{5}$ $S_7$ (as 21T38) trivial $75073.7253$
21.3.336...784.1 $x^{21} - 5 x^{20} + 11 x^{19} - 5 x^{18} - 29 x^{17} + 64 x^{16} - 22 x^{15} - 117 x^{14} + 218 x^{13} - 124 x^{12} - 76 x^{11} + 132 x^{10} - 38 x^{9} + 31 x^{8} - 168 x^{7} + 204 x^{6} - 47 x^{5} - 120 x^{4} + 134 x^{3} - 63 x^{2} + 13 x - 1$ $-\,2^{14}\cdot 11^{13}\cdot 29^{6}$ $S_3\times A_7$ (as 21T57) trivial $73219.6797146$
21.3.930...607.1 $x^{21} - 5 x^{20} + 36 x^{18} - 35 x^{17} - 108 x^{16} + 155 x^{15} + 176 x^{14} - 338 x^{13} - 129 x^{12} + 413 x^{11} - 50 x^{10} - 234 x^{9} + 162 x^{8} - 66 x^{7} - 51 x^{6} + 196 x^{5} - 92 x^{4} - 98 x^{3} + 71 x^{2} - 10 x - 25$ $-\,151^{2}\cdot 2377^{2}\cdot 193327^{3}$ $C_3^7.S_7$ (as 21T139) trivial $99654.8309357$
21.1.126...441.1 $x^{21} + 3 x^{19} - x^{18} + x^{17} + 8 x^{16} - 7 x^{15} + 24 x^{14} - 15 x^{13} + 7 x^{12} + 25 x^{11} - 42 x^{10} + 46 x^{9} - 39 x^{8} - 12 x^{7} + 15 x^{6} - 14 x^{5} + x^{4} + 10 x^{3} - x^{2} + 2 x + 1$ $31^{7}\cdot 71^{9}$ $S_3\times D_7$ (as 21T8) trivial $80948.9311635$
21.1.190...129.1 $x^{21} - x^{14} + 1$ $7^{21}\cdot 23^{7}$ $C_7^2:(C_6\times S_3)$ (as 21T29) trivial $141151.982984$
21.9.252...441.1 $x^{21} - 9 x^{19} + 3 x^{17} + 66 x^{15} - 75 x^{14} - 90 x^{13} + 198 x^{12} - 21 x^{11} + 63 x^{9} - 177 x^{8} + 54 x^{7} + 45 x^{6} - 51 x^{5} + 18 x^{4} - 8 x^{3} - 3 x^{2} + 3$ $3^{34}\cdot 73^{6}$ $C_3\times A_7$ (as 21T44) trivial $823613.327719$
21.9.332...609.1 $x^{21} - 6 x^{20} + 12 x^{19} - 2 x^{18} - 27 x^{17} + 36 x^{16} - 39 x^{15} + 180 x^{14} - 396 x^{13} + 183 x^{12} + 558 x^{11} - 738 x^{10} - 339 x^{9} + 1035 x^{8} + 27 x^{7} - 936 x^{6} + 27 x^{5} + 621 x^{4} + 99 x^{3} - 189 x^{2} - 81 x - 9$ $3^{36}\cdot 53^{6}$ $C_3\times A_7$ (as 21T44) trivial $967276.035305$
21.3.426...007.1 $x^{21} - x^{20} - 7 x^{19} + 6 x^{18} + 16 x^{17} - 27 x^{16} + 3 x^{15} + 119 x^{14} + 23 x^{13} - 181 x^{12} - 153 x^{11} + 154 x^{10} + 417 x^{9} - 133 x^{8} - 395 x^{7} + 153 x^{6} + 61 x^{5} - 33 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1$ $-\,7^{14}\cdot 184607^{3}$ $C_3\times S_7$ (as 21T56) trivial $201933.335135$
21.3.429...912.1 $x^{21} - x^{20} + 9 x^{19} - 7 x^{18} + 35 x^{17} - 27 x^{16} + 83 x^{15} - 61 x^{14} + 123 x^{13} - 111 x^{12} + 163 x^{11} - 225 x^{10} + 213 x^{9} - 253 x^{8} + 177 x^{7} - 167 x^{6} + 192 x^{5} - 180 x^{4} + 136 x^{3} - 76 x^{2} - 12 x + 4$ $-\,2^{38}\cdot 3^{18}\cdot 7^{9}$ $\PGL(2,7)$ (as 21T20) trivial $1790438.21987$
21.3.490...767.1 $x^{21} - x^{20} - 2 x^{19} + 9 x^{18} - 8 x^{17} - 16 x^{16} + 40 x^{15} + 25 x^{14} - 4 x^{13} - 178 x^{12} - 112 x^{11} + 286 x^{10} + 394 x^{9} - 392 x^{8} - 175 x^{7} + 201 x^{6} - 68 x^{5} - 36 x^{4} + 30 x^{3} - 4 x^{2} - 4 x + 1$ $-\,7^{14}\cdot 193327^{3}$ $C_3\times S_7$ (as 21T56) trivial $299129.54193$
21.1.573...421.1 $x^{21} - x - 1$ $1137694897331\cdot 5043293621028391$ $S_{21}$ (as 21T164) trivial $169158.997908$
21.1.594...421.1 $x^{21} + x - 1$ $11\cdot 17\cdot 1033\cdot 1583\cdot 159503\cdot 121937899012999$ $S_{21}$ (as 21T164) trivial $312816.601488$
21.3.714...224.1 $x^{21} - 3 x^{20} - 4 x^{19} + 16 x^{18} - 9 x^{17} - 33 x^{16} + 52 x^{15} + 12 x^{14} - 136 x^{13} + 96 x^{12} + 180 x^{11} - 260 x^{10} - 144 x^{9} + 312 x^{8} + 44 x^{7} - 220 x^{6} + 15 x^{5} + 59 x^{4} - 16 x^{3} + 36 x^{2} - 31 x + 1$ $-\,2^{64}\cdot 3^{18}$ $\PGL(2,7)$ (as 21T20) trivial $3668230.07566$
21.1.739...928.1 $x^{21} - 2 x^{20} - x^{19} + 7 x^{18} - 3 x^{17} - 13 x^{16} + 14 x^{15} + 13 x^{14} - 28 x^{13} - 2 x^{12} + 34 x^{11} - 15 x^{10} - 25 x^{9} + 24 x^{8} + 7 x^{7} - 21 x^{6} + 6 x^{5} + 8 x^{4} - 7 x^{3} + 2 x - 1$ $2^{3}\cdot 101\cdot 1951\cdot 7481\cdot 35629381\cdot 17609300881$ $S_{21}$ (as 21T164) trivial $564425.480379$
21.3.897...231.1 $x^{21} - x^{20} + 3 x^{19} + 4 x^{18} + 8 x^{17} - 12 x^{16} + 9 x^{15} + 113 x^{14} - 287 x^{13} + 404 x^{12} - 526 x^{11} + 1106 x^{10} - 2438 x^{9} + 2381 x^{8} - 2385 x^{7} + 3637 x^{6} - 6756 x^{5} + 4734 x^{4} - 3615 x^{3} + 1513 x^{2} - 2017 x - 1319$ $-\,7^{2}\cdot 13^{2}\cdot 71^{9}\cdot 4861^{2}$ $C_3^7:D_7$ (as 21T76) trivial $277898.768894$
21.1.990...104.1 $x^{21} - 3 x^{20} - 2 x^{19} + 25 x^{18} - 40 x^{17} - 24 x^{16} + 156 x^{15} - 215 x^{14} + 131 x^{13} - 57 x^{12} + 294 x^{11} - 907 x^{10} + 1374 x^{9} - 1171 x^{8} + 439 x^{7} + 387 x^{6} - 847 x^{5} + 669 x^{4} - 179 x^{3} - 142 x^{2} + 156 x - 38$ $2^{14}\cdot 11^{10}\cdot 13^{12}$ $C_{21}:C_6$ (as 21T10) trivial $637026.16318$
21.3.103...503.1 $x^{21} - 6 x^{20} - x^{19} + 72 x^{18} - 100 x^{17} - 299 x^{16} + 733 x^{15} + 386 x^{14} - 2195 x^{13} + 634 x^{12} + 3126 x^{11} - 2357 x^{10} - 2090 x^{9} + 2868 x^{8} + 87 x^{7} - 1535 x^{6} + 673 x^{5} + 170 x^{4} - 243 x^{3} + 89 x^{2} - 15 x + 1$ $-\,11^{4}\cdot 103^{4}\cdot 184607^{3}$ $C_3^6.S_7$ (as 21T130) trivial $361691.21971$
21.5.123...001.1 $x^{21} - 2 x^{19} - x^{18} - 8 x^{17} + 16 x^{15} + 16 x^{14} + 21 x^{13} - 27 x^{12} - 29 x^{11} - 63 x^{10} - 3 x^{9} + 86 x^{8} + 60 x^{7} + 11 x^{6} - 69 x^{5} - 49 x^{4} + 30 x^{3} + 16 x^{2} - 6 x - 1$ $7^{9}\cdot 12503^{5}$ $S_7$ (as 21T38) trivial $564369.598704$
21.1.153...777.1 $x^{21} + x^{7} - 1$ $7^{21}\cdot 31^{7}$ $C_7^2:(C_6\times S_3)$ (as 21T29) trivial $472261.200133$
21.9.184...873.1 $x^{21} - 2 x^{20} - 2 x^{19} + 12 x^{18} - 25 x^{17} + x^{16} + 48 x^{15} - 91 x^{14} + 103 x^{13} - 12 x^{12} - 110 x^{11} + 272 x^{10} - 277 x^{9} - 78 x^{8} + 278 x^{7} - 46 x^{6} + 11 x^{5} - 114 x^{4} + 3 x^{3} + 93 x^{2} - 19 x - 23$ $71^{3}\cdot 8623^{3}\cdot 283573^{2}$ $C_3^7.S_7$ (as 21T139) trivial $1614740.57391$
21.3.190...271.1 $x^{21} - 9 x^{20} + 23 x^{19} + 24 x^{18} - 196 x^{17} + 152 x^{16} + 587 x^{15} - 1008 x^{14} - 562 x^{13} + 2180 x^{12} - 404 x^{11} - 2259 x^{10} + 1317 x^{9} + 1079 x^{8} - 1081 x^{7} - 177 x^{6} + 477 x^{5} - 106 x^{4} - 81 x^{3} + 53 x^{2} - 12 x + 1$ $-\,67^{2}\cdot 71^{9}\cdot 9613^{2}$ $C_3^7:D_7$ (as 21T76) trivial $520928.798224$
21.3.207...824.1 $x^{21} - 4 x^{20} + 8 x^{19} - 12 x^{18} + 12 x^{17} - 16 x^{16} + 44 x^{15} - 94 x^{14} + 160 x^{13} - 200 x^{12} + 184 x^{11} - 132 x^{10} + 52 x^{9} - 8 x^{7} + 4 x^{6} + 16 x^{4} - 36 x^{3} + 32 x^{2} - 16 x + 4$ $-\,2^{20}\cdot 11^{7}\cdot 317^{6}$ $S_3\times \GL(3,2)$ (as 21T27) trivial $999740.077738$
21.3.207...824.2 $x^{21} - 2 x^{20} + 2 x^{19} - 4 x^{16} - 6 x^{15} + 8 x^{14} - 16 x^{13} + 30 x^{12} - 24 x^{11} + 22 x^{10} - 48 x^{9} - 4 x^{8} - 30 x^{7} + 8 x^{6} - 4 x^{5} - 12 x^{4} - 10 x^{3} + 12 x^{2} - 4 x + 2$ $-\,2^{20}\cdot 11^{7}\cdot 317^{6}$ $S_3\times \GL(3,2)$ (as 21T27) trivial $999740.077738$
21.5.279...288.1 $x^{21} - 2 x^{19} - 7 x^{18} - 5 x^{17} + 11 x^{16} + 17 x^{15} + 34 x^{14} - 32 x^{13} - 19 x^{12} - 120 x^{11} - 65 x^{10} - 276 x^{9} + 43 x^{8} + 539 x^{7} + 983 x^{6} + 606 x^{5} + 280 x^{4} + 121 x^{3} + 40 x^{2} - 13 x - 5$ $2^{27}\cdot 181^{9}$ $\PGL(2,7)$ (as 21T20) trivial $2296254.50823$
21.3.310...319.1 $x^{21} - x^{20} - 7 x^{19} + 6 x^{18} + 3 x^{17} - 30 x^{16} + 72 x^{15} + 134 x^{14} - 49 x^{13} - 195 x^{12} - 375 x^{11} + 190 x^{10} + 878 x^{9} - 233 x^{8} - 491 x^{7} + 177 x^{6} + 32 x^{5} - 47 x^{4} + 21 x^{3} + 10 x^{2} - 4 x - 1$ $-\,7^{14}\cdot 71^{9}$ $C_3\times D_7$ (as 21T3) trivial $725840.889095$
21.1.341...000.1 $x^{21} - 10 x^{18} + 36 x^{15} - 76 x^{12} - 224 x^{9} - 144 x^{6} - 32 x^{3} - 16$ $2^{20}\cdot 3^{34}\cdot 5^{9}$ $S_3\times F_7$ (as 21T15) trivial $2085380.41806$
21.5.348...177.1 $x^{21} - 2 x^{20} - 5 x^{18} + 12 x^{17} - 5 x^{16} + 4 x^{15} - 27 x^{14} + 16 x^{13} - 8 x^{12} + 8 x^{11} - 22 x^{10} - 8 x^{9} - 2 x^{8} + 9 x^{7} + 15 x^{6} + 12 x^{5} + 13 x^{4} + 2 x^{3} - x^{2} - 2 x - 1$ $3^{8}\cdot 37^{5}\cdot 2381^{5}$ $S_7$ (as 21T38) trivial $1358971.01083$
21.5.417...153.1 $x^{21} - 3 x^{19} - 2 x^{18} + 15 x^{17} + 6 x^{16} - 23 x^{15} - 30 x^{14} + 23 x^{13} + 44 x^{12} + 12 x^{11} - 43 x^{10} - 61 x^{9} + 51 x^{8} + 34 x^{7} - 5 x^{6} - 30 x^{5} - 9 x^{4} + 13 x^{3} + 7 x^{2} - 1$ $23^{7}\cdot 107^{3}\cdot 21557^{3}$ $S_3\times S_7$ (as 21T74) trivial $895675.424859$
21.1.753...068.1 $x^{21} - 2 x^{20} - x^{19} + 7 x^{18} - 3 x^{17} - 13 x^{16} + 14 x^{15} + 13 x^{14} - 28 x^{13} - 2 x^{12} + 34 x^{11} - 15 x^{10} - 25 x^{9} + 25 x^{8} + 7 x^{7} - 22 x^{6} + 6 x^{5} + 8 x^{4} - 7 x^{3} + 2 x - 1$ $2^{2}\cdot 11\cdot 29\cdot 1447\cdot 2579\cdot 4423\cdot 3578836676945557$ $S_{21}$ (as 21T164) trivial $2395762.98687$
21.9.778...553.1 $x^{21} - 8 x^{20} + 15 x^{19} + 42 x^{18} - 181 x^{17} + 43 x^{16} + 664 x^{15} - 785 x^{14} - 999 x^{13} + 2386 x^{12} - 12 x^{11} - 3337 x^{10} + 2186 x^{9} + 1818 x^{8} - 2845 x^{7} + 445 x^{6} + 1349 x^{5} - 754 x^{4} - 347 x^{3} + 279 x^{2} + 76 x + 1$ $71^{3}\cdot 157^{2}\cdot 3709^{2}\cdot 8623^{3}$ $C_3^7.S_7$ (as 21T139) trivial $3400600.48543$
21.7.105...767.1 $x^{21} - x^{20} - 6 x^{19} + 11 x^{18} + 47 x^{17} - 45 x^{16} - 170 x^{15} + 162 x^{14} + 400 x^{13} - 307 x^{12} - 750 x^{11} + 395 x^{10} + 733 x^{9} - 371 x^{8} - 425 x^{7} + 197 x^{6} + 204 x^{5} - 78 x^{4} - 36 x^{3} + 17 x^{2} - 1$ $-\,17^{3}\cdot 23^{8}\cdot 64879^{3}$ $S_3\times S_7$ (as 21T74) trivial $2726200.25314$
Next   displayed columns for results