Normalized defining polynomial
\( x^{21} - 3 x^{20} - 2 x^{19} + 25 x^{18} - 40 x^{17} - 24 x^{16} + 156 x^{15} - 215 x^{14} + 131 x^{13} - 57 x^{12} + 294 x^{11} - 907 x^{10} + 1374 x^{9} - 1171 x^{8} + 439 x^{7} + 387 x^{6} - 847 x^{5} + 669 x^{4} - 179 x^{3} - 142 x^{2} + 156 x - 38 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9900725472657912423302447104=2^{14}\cdot 11^{10}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{10} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{14} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{14} + \frac{1}{3} a^{12} - \frac{1}{3} a^{8} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{39} a^{19} - \frac{2}{13} a^{17} - \frac{2}{13} a^{16} + \frac{5}{39} a^{15} - \frac{11}{39} a^{14} - \frac{1}{39} a^{13} - \frac{6}{13} a^{12} + \frac{1}{13} a^{11} + \frac{11}{39} a^{10} - \frac{10}{39} a^{9} - \frac{2}{13} a^{8} - \frac{8}{39} a^{7} - \frac{14}{39} a^{6} + \frac{1}{3} a^{5} + \frac{14}{39} a^{4} - \frac{4}{13} a^{3} - \frac{8}{39} a^{2} + \frac{14}{39} a - \frac{16}{39}$, $\frac{1}{5442110603004520264209} a^{20} - \frac{4762453487204400137}{1814036867668173421403} a^{19} + \frac{638787401185645951519}{5442110603004520264209} a^{18} - \frac{364237959278012756518}{5442110603004520264209} a^{17} - \frac{482498897405706721136}{5442110603004520264209} a^{16} + \frac{35476560329394141057}{1814036867668173421403} a^{15} + \frac{815886668501008054291}{1814036867668173421403} a^{14} - \frac{255618197087729759087}{1814036867668173421403} a^{13} + \frac{1046546015764076383040}{5442110603004520264209} a^{12} - \frac{138637131097717499896}{418623892538809251093} a^{11} + \frac{2633540085011196877691}{5442110603004520264209} a^{10} + \frac{2645087005385414060090}{5442110603004520264209} a^{9} - \frac{1637310832000467617395}{5442110603004520264209} a^{8} - \frac{1240883583523062976577}{5442110603004520264209} a^{7} + \frac{2514235604772958766045}{5442110603004520264209} a^{6} - \frac{2154369761976319252754}{5442110603004520264209} a^{5} - \frac{396827414586703850410}{1814036867668173421403} a^{4} + \frac{1960958511140047154551}{5442110603004520264209} a^{3} - \frac{169333224107209204462}{418623892538809251093} a^{2} - \frac{26538827258590311052}{5442110603004520264209} a - \frac{2122737236820434828284}{5442110603004520264209}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 637026.16318 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_{21}:C_3$ (as 21T10):
| A solvable group of order 126 |
| The 12 conjugacy class representatives for $D_{21}:C_3$ |
| Character table for $D_{21}:C_3$ |
Intermediate fields
| 3.1.44.1, 7.1.38014691.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{7}$ | $21$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |