Normalized defining polynomial
\( x^{21} - x^{20} + 3 x^{19} + 4 x^{18} + 8 x^{17} - 12 x^{16} + 9 x^{15} + 113 x^{14} - 287 x^{13} + 404 x^{12} - 526 x^{11} + 1106 x^{10} - 2438 x^{9} + 2381 x^{8} - 2385 x^{7} + 3637 x^{6} - 6756 x^{5} + 4734 x^{4} - 3615 x^{3} + 1513 x^{2} - 2017 x - 1319 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8971378199137136745057872231=-\,7^{2}\cdot 13^{2}\cdot 71^{9}\cdot 4861^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13, 71, 4861$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{7} a^{19} - \frac{2}{7} a^{18} - \frac{3}{7} a^{17} + \frac{2}{7} a^{16} + \frac{2}{7} a^{15} - \frac{2}{7} a^{14} + \frac{2}{7} a^{13} + \frac{1}{7} a^{12} - \frac{3}{7} a^{11} + \frac{2}{7} a^{9} - \frac{2}{7} a^{8} - \frac{2}{7} a^{7} - \frac{2}{7} a^{6} - \frac{1}{7} a^{5} + \frac{2}{7} a^{2} + \frac{2}{7} a - \frac{3}{7}$, $\frac{1}{384290762386048968671667731114860714436011} a^{20} - \frac{22617583830598648396932839679546878699014}{384290762386048968671667731114860714436011} a^{19} - \frac{129678888765286002113910407008681526787840}{384290762386048968671667731114860714436011} a^{18} + \frac{147500689843294970184234115422759325365586}{384290762386048968671667731114860714436011} a^{17} + \frac{77911878433598334752036002086198998876194}{384290762386048968671667731114860714436011} a^{16} + \frac{5383301160869429725919204371916925884128}{384290762386048968671667731114860714436011} a^{15} + \frac{35823798236308652340640491678716123146005}{384290762386048968671667731114860714436011} a^{14} + \frac{136190554869794794693117350606759521865580}{384290762386048968671667731114860714436011} a^{13} + \frac{134100492022049247375679169612806857579270}{384290762386048968671667731114860714436011} a^{12} - \frac{190765421233210239088250468153279967125271}{384290762386048968671667731114860714436011} a^{11} - \frac{73104631919984092566865270727193454675873}{384290762386048968671667731114860714436011} a^{10} - \frac{64545794536521271195967352298839251194659}{384290762386048968671667731114860714436011} a^{9} + \frac{73223513695476560468160152245377415341855}{384290762386048968671667731114860714436011} a^{8} + \frac{14707996218566899759614257757079783542513}{384290762386048968671667731114860714436011} a^{7} - \frac{42177195109428905341822319531997958960692}{384290762386048968671667731114860714436011} a^{6} + \frac{167587216472737304884790720641603455127411}{384290762386048968671667731114860714436011} a^{5} - \frac{25640458649687149994165478749316935314292}{54898680340864138381666818730694387776573} a^{4} + \frac{47711006926170922272737129681952222758279}{384290762386048968671667731114860714436011} a^{3} + \frac{190421527417676085370193968321809258241003}{384290762386048968671667731114860714436011} a^{2} + \frac{91329214905691514844878812940417947542342}{384290762386048968671667731114860714436011} a - \frac{153397599226656721727255103259359462161723}{384290762386048968671667731114860714436011}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 277898.768894 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 30618 |
| The 288 conjugacy class representatives for t21n76 are not computed |
| Character table for t21n76 is not computed |
Intermediate fields
| 7.1.357911.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | $21$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | $21$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | $21$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $71$ | 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 71.6.3.2 | $x^{6} - 5041 x^{2} + 715822$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 4861 | Data not computed | ||||||