Normalized defining polynomial
\( x^{21} - 8 x^{20} + 15 x^{19} + 42 x^{18} - 181 x^{17} + 43 x^{16} + 664 x^{15} - 785 x^{14} - 999 x^{13} + 2386 x^{12} - 12 x^{11} - 3337 x^{10} + 2186 x^{9} + 1818 x^{8} - 2845 x^{7} + 445 x^{6} + 1349 x^{5} - 754 x^{4} - 347 x^{3} + 279 x^{2} + 76 x + 1 \)
Invariants
Degree: | $21$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[9, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(77814973866654515283350056553\)\(\medspace = 71^{3}\cdot 157^{2}\cdot 3709^{2}\cdot 8623^{3}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $23.76$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $71, 157, 3709, 8623$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $3$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{1775590377446824533899} a^{20} - \frac{211974510898396366431}{1775590377446824533899} a^{19} - \frac{490456434135740560965}{1775590377446824533899} a^{18} + \frac{824028701172138223160}{1775590377446824533899} a^{17} + \frac{61701295359079144117}{1775590377446824533899} a^{16} - \frac{45744564815825657396}{1775590377446824533899} a^{15} - \frac{469016538954676919759}{1775590377446824533899} a^{14} - \frac{868049382799141690731}{1775590377446824533899} a^{13} - \frac{628088734052050637983}{1775590377446824533899} a^{12} + \frac{234955772633485820762}{1775590377446824533899} a^{11} - \frac{16034712928422507794}{1775590377446824533899} a^{10} - \frac{763739946191086753116}{1775590377446824533899} a^{9} - \frac{535278827496763851234}{1775590377446824533899} a^{8} + \frac{772925847448333985140}{1775590377446824533899} a^{7} - \frac{838017761702102318994}{1775590377446824533899} a^{6} - \frac{840514837927839981919}{1775590377446824533899} a^{5} + \frac{246990308494910164862}{1775590377446824533899} a^{4} + \frac{269230342963503025080}{1775590377446824533899} a^{3} + \frac{29464817841310332672}{1775590377446824533899} a^{2} + \frac{341475392339395033975}{1775590377446824533899} a - \frac{402827665367412189434}{1775590377446824533899}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $14$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 3400600.48543 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 11022480 |
The 429 conjugacy class representatives for t21n139 are not computed |
Character table for t21n139 is not computed |
Intermediate fields
7.3.612233.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $21$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.9.0.1}{9} }$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.9.0.1}{9} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | $18{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.9.0.1}{9} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | $18{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | $15{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
71 | Data not computed | ||||||
157 | Data not computed | ||||||
3709 | Data not computed | ||||||
8623 | Data not computed |