Normalized defining polynomial
\( x^{21} - 5 x^{20} + 36 x^{18} - 35 x^{17} - 108 x^{16} + 155 x^{15} + 176 x^{14} - 338 x^{13} - 129 x^{12} + 413 x^{11} - 50 x^{10} - 234 x^{9} + 162 x^{8} - 66 x^{7} - 51 x^{6} + 196 x^{5} - 92 x^{4} - 98 x^{3} + 71 x^{2} - 10 x - 25 \)
Invariants
Degree: | $21$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[3, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-930871627030827422699634607\)\(\medspace = -\,151^{2}\cdot 2377^{2}\cdot 193327^{3}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $19.24$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $151, 2377, 193327$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $3$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{31611315156120845} a^{20} + \frac{3027021604709831}{6322263031224169} a^{19} - \frac{675572653912125}{6322263031224169} a^{18} - \frac{415828590046484}{31611315156120845} a^{17} - \frac{2394345754984447}{6322263031224169} a^{16} - \frac{14980437414730693}{31611315156120845} a^{15} - \frac{2501020304500627}{6322263031224169} a^{14} - \frac{10209587317887304}{31611315156120845} a^{13} - \frac{11260818860512708}{31611315156120845} a^{12} + \frac{14011863116583161}{31611315156120845} a^{11} + \frac{1765179419105108}{31611315156120845} a^{10} + \frac{3120221806173449}{6322263031224169} a^{9} - \frac{4052385843298584}{31611315156120845} a^{8} + \frac{9442402562604492}{31611315156120845} a^{7} - \frac{862564901763526}{31611315156120845} a^{6} + \frac{3533829727855264}{31611315156120845} a^{5} + \frac{8427108859970546}{31611315156120845} a^{4} - \frac{12485881512056727}{31611315156120845} a^{3} + \frac{4738508328409727}{31611315156120845} a^{2} - \frac{8455984873708459}{31611315156120845} a - \frac{2460273975443187}{6322263031224169}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 99654.8309357 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 11022480 |
The 429 conjugacy class representatives for t21n139 are not computed |
Character table for t21n139 is not computed |
Intermediate fields
7.1.193327.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $21$ | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{3}$ | $21$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | $18{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | $15{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }$ | $18{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$151$ | 151.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
151.3.2.3 | $x^{3} - 3775$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
151.6.0.1 | $x^{6} - x + 6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
151.9.0.1 | $x^{9} - x + 25$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
2377 | Data not computed | ||||||
193327 | Data not computed |