Normalized defining polynomial
\( x^{21} - 7 x^{20} + 21 x^{19} - 42 x^{18} + 77 x^{17} - 126 x^{16} + 168 x^{15} - 213 x^{14} + 266 x^{13} - 280 x^{12} + 259 x^{11} - 217 x^{10} + 133 x^{9} - 42 x^{8} - 53 x^{7} + 126 x^{6} - 112 x^{5} + 7 x^{4} + 63 x^{3} - 49 x^{2} + 14 x - 1 \)
Invariants
Degree: | $21$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[3, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-7174552902718171733819392\)\(\medspace = -\,2^{18}\cdot 7^{23}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $15.26$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 7$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $3$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{13} a^{19} + \frac{3}{13} a^{18} - \frac{2}{13} a^{17} + \frac{1}{13} a^{15} + \frac{1}{13} a^{14} - \frac{5}{13} a^{13} - \frac{4}{13} a^{12} - \frac{3}{13} a^{11} + \frac{6}{13} a^{10} - \frac{3}{13} a^{9} - \frac{6}{13} a^{8} - \frac{2}{13} a^{7} - \frac{4}{13} a^{6} + \frac{5}{13} a^{3} + \frac{5}{13} a^{2} + \frac{4}{13} a - \frac{1}{13}$, $\frac{1}{17090172314496931} a^{20} + \frac{223953102682691}{17090172314496931} a^{19} + \frac{4978912529283359}{17090172314496931} a^{18} + \frac{4127589721267567}{17090172314496931} a^{17} + \frac{6900728057811901}{17090172314496931} a^{16} - \frac{7419457851442127}{17090172314496931} a^{15} + \frac{7900529489779690}{17090172314496931} a^{14} - \frac{1668847671334546}{17090172314496931} a^{13} - \frac{7902602573222316}{17090172314496931} a^{12} + \frac{267024020850163}{1314628639576687} a^{11} + \frac{4441774245188094}{17090172314496931} a^{10} + \frac{7897737024242235}{17090172314496931} a^{9} + \frac{750035580866610}{17090172314496931} a^{8} - \frac{4496074053875867}{17090172314496931} a^{7} + \frac{6870629632414592}{17090172314496931} a^{6} + \frac{137295108916514}{1314628639576687} a^{5} - \frac{3295518626855801}{17090172314496931} a^{4} + \frac{2550633533191525}{17090172314496931} a^{3} + \frac{3320182089673996}{17090172314496931} a^{2} - \frac{7056387337326788}{17090172314496931} a + \frac{7717614271082649}{17090172314496931}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 10096.3106241 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 42 |
The 7 conjugacy class representatives for $F_7$ |
Character table for $F_7$ |
Intermediate fields
\(\Q(\zeta_{7})^+\), 7.1.52706752.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | data not computed |
Degree 7 sibling: | 7.1.52706752.1 |
Degree 14 sibling: | 14.0.19446011944726528.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
7 | Data not computed |