Normalized defining polynomial
\( x^{21} - x^{20} - 7 x^{19} + 6 x^{18} + 16 x^{17} - 27 x^{16} + 3 x^{15} + 119 x^{14} + 23 x^{13} - 181 x^{12} - 153 x^{11} + 154 x^{10} + 417 x^{9} - 133 x^{8} - 395 x^{7} + 153 x^{6} + 61 x^{5} - 33 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4266945093472415611428661007=-\,7^{14}\cdot 184607^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 184607$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{450670194838983861374947} a^{20} + \frac{56223861795849143322841}{450670194838983861374947} a^{19} + \frac{64249336049343100829494}{450670194838983861374947} a^{18} + \frac{204399107601236243042313}{450670194838983861374947} a^{17} + \frac{3642335875687647116509}{10991955971682533204267} a^{16} - \frac{21419957338147771651350}{450670194838983861374947} a^{15} + \frac{200992861462069205358110}{450670194838983861374947} a^{14} - \frac{69822989021112760143602}{450670194838983861374947} a^{13} + \frac{118966102136775017940697}{450670194838983861374947} a^{12} - \frac{123218055012213369623944}{450670194838983861374947} a^{11} - \frac{123540447366436114592452}{450670194838983861374947} a^{10} + \frac{11146526721641761557556}{450670194838983861374947} a^{9} - \frac{37421128641923606927800}{450670194838983861374947} a^{8} - \frac{71535673557524879023008}{450670194838983861374947} a^{7} - \frac{105955011820037945569376}{450670194838983861374947} a^{6} - \frac{175183607652817456057904}{450670194838983861374947} a^{5} - \frac{69323942590536381769902}{450670194838983861374947} a^{4} - \frac{103398456252914015991171}{450670194838983861374947} a^{3} - \frac{201083225688327238344797}{450670194838983861374947} a^{2} - \frac{156767888372066062009932}{450670194838983861374947} a - \frac{38107391571513227497902}{450670194838983861374947}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 201933.335135 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15120 |
| The 45 conjugacy class representatives for t21n56 |
| Character table for t21n56 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.1.184607.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | $15{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | R | $15{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | $15{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 184607 | Data not computed | ||||||