Normalized defining polynomial
\( x^{21} - x^{20} - x^{19} + 2 x^{18} + 5 x^{17} + 2 x^{16} - 10 x^{15} - 2 x^{14} + 23 x^{13} + 19 x^{12} - 11 x^{11} - 28 x^{10} + 8 x^{9} + 47 x^{8} + 23 x^{7} - 13 x^{6} - 24 x^{5} - 7 x^{4} + 11 x^{3} + 6 x^{2} - 1 \)
Invariants
Degree: | $21$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 10]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(156106141952973043121291857\)\(\medspace = 23^{7}\cdot 71^{9}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $17.67$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $23, 71$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{7} a^{17} + \frac{1}{7} a^{16} - \frac{3}{7} a^{15} - \frac{1}{7} a^{14} - \frac{3}{7} a^{13} + \frac{3}{7} a^{12} - \frac{1}{7} a^{11} + \frac{2}{7} a^{10} + \frac{1}{7} a^{9} + \frac{1}{7} a^{8} - \frac{2}{7} a^{7} - \frac{2}{7} a^{6} + \frac{1}{7} a^{5} - \frac{3}{7} a^{4} - \frac{2}{7}$, $\frac{1}{7} a^{18} + \frac{3}{7} a^{16} + \frac{2}{7} a^{15} - \frac{2}{7} a^{14} - \frac{1}{7} a^{13} + \frac{3}{7} a^{12} + \frac{3}{7} a^{11} - \frac{1}{7} a^{10} - \frac{3}{7} a^{8} + \frac{3}{7} a^{6} + \frac{3}{7} a^{5} + \frac{3}{7} a^{4} - \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{7} a^{19} - \frac{1}{7} a^{16} + \frac{2}{7} a^{14} - \frac{2}{7} a^{13} + \frac{1}{7} a^{12} + \frac{2}{7} a^{11} + \frac{1}{7} a^{10} + \frac{1}{7} a^{9} - \frac{3}{7} a^{8} + \frac{2}{7} a^{7} + \frac{2}{7} a^{6} + \frac{2}{7} a^{4} - \frac{2}{7} a^{2} + \frac{2}{7} a - \frac{1}{7}$, $\frac{1}{67050907} a^{20} + \frac{619012}{9578701} a^{19} - \frac{2430104}{67050907} a^{18} - \frac{48420}{9578701} a^{17} + \frac{1154233}{9578701} a^{16} + \frac{25935584}{67050907} a^{15} + \frac{2144834}{9578701} a^{14} - \frac{21230934}{67050907} a^{13} + \frac{21553102}{67050907} a^{12} - \frac{1793716}{67050907} a^{11} + \frac{25671549}{67050907} a^{10} - \frac{19772818}{67050907} a^{9} + \frac{31783945}{67050907} a^{8} - \frac{1214318}{9578701} a^{7} - \frac{17854070}{67050907} a^{6} + \frac{28224926}{67050907} a^{5} - \frac{23307932}{67050907} a^{4} + \frac{24879307}{67050907} a^{3} - \frac{28098866}{67050907} a^{2} + \frac{7421087}{67050907} a - \frac{6164758}{67050907}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $10$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 32527.0761402 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$S_3\times D_7$ (as 21T8):
A solvable group of order 84 |
The 15 conjugacy class representatives for $S_3\times D_7$ |
Character table for $S_3\times D_7$ |
Intermediate fields
3.1.23.1, 7.1.357911.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 42 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $21$ | $21$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | R | $21$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
$71$ | 71.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
71.6.3.2 | $x^{6} - 5041 x^{2} + 715822$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
71.6.3.2 | $x^{6} - 5041 x^{2} + 715822$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
71.6.3.2 | $x^{6} - 5041 x^{2} + 715822$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |