Properties

Label 21.3.167...056.1
Degree $21$
Signature $[3, 9]$
Discriminant $-1.673\times 10^{26}$
Root discriminant \(17.73\)
Ramified primes $2,17,31$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_3\times A_7$ (as 21T57)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 7*x^20 + 23*x^19 - 46*x^18 + 59*x^17 - 38*x^16 - 51*x^15 + 276*x^14 - 725*x^13 + 1392*x^12 - 2056*x^11 + 2397*x^10 - 2311*x^9 + 1987*x^8 - 1615*x^7 + 1208*x^6 - 783*x^5 + 436*x^4 - 201*x^3 + 66*x^2 - 12*x + 1)
 
gp: K = bnfinit(y^21 - 7*y^20 + 23*y^19 - 46*y^18 + 59*y^17 - 38*y^16 - 51*y^15 + 276*y^14 - 725*y^13 + 1392*y^12 - 2056*y^11 + 2397*y^10 - 2311*y^9 + 1987*y^8 - 1615*y^7 + 1208*y^6 - 783*y^5 + 436*y^4 - 201*y^3 + 66*y^2 - 12*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 7*x^20 + 23*x^19 - 46*x^18 + 59*x^17 - 38*x^16 - 51*x^15 + 276*x^14 - 725*x^13 + 1392*x^12 - 2056*x^11 + 2397*x^10 - 2311*x^9 + 1987*x^8 - 1615*x^7 + 1208*x^6 - 783*x^5 + 436*x^4 - 201*x^3 + 66*x^2 - 12*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 7*x^20 + 23*x^19 - 46*x^18 + 59*x^17 - 38*x^16 - 51*x^15 + 276*x^14 - 725*x^13 + 1392*x^12 - 2056*x^11 + 2397*x^10 - 2311*x^9 + 1987*x^8 - 1615*x^7 + 1208*x^6 - 783*x^5 + 436*x^4 - 201*x^3 + 66*x^2 - 12*x + 1)
 

\( x^{21} - 7 x^{20} + 23 x^{19} - 46 x^{18} + 59 x^{17} - 38 x^{16} - 51 x^{15} + 276 x^{14} - 725 x^{13} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $21$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-167297208611536987435565056\) \(\medspace = -\,2^{18}\cdot 17^{6}\cdot 31^{9}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(17.73\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{4/3}17^{2/3}31^{1/2}\approx 92.75844411611145$
Ramified primes:   \(2\), \(17\), \(31\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-31}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{10\!\cdots\!93}a^{20}-\frac{44\!\cdots\!00}{10\!\cdots\!93}a^{19}-\frac{986992814227005}{10\!\cdots\!93}a^{18}+\frac{30\!\cdots\!62}{10\!\cdots\!93}a^{17}-\frac{31\!\cdots\!10}{10\!\cdots\!93}a^{16}-\frac{30\!\cdots\!09}{10\!\cdots\!93}a^{15}+\frac{21\!\cdots\!58}{10\!\cdots\!93}a^{14}+\frac{18\!\cdots\!86}{10\!\cdots\!93}a^{13}-\frac{10\!\cdots\!69}{10\!\cdots\!93}a^{12}+\frac{28\!\cdots\!73}{10\!\cdots\!93}a^{11}+\frac{34\!\cdots\!07}{10\!\cdots\!93}a^{10}+\frac{41\!\cdots\!94}{10\!\cdots\!93}a^{9}+\frac{38\!\cdots\!35}{10\!\cdots\!93}a^{8}-\frac{200976020094346}{10\!\cdots\!93}a^{7}-\frac{14\!\cdots\!08}{10\!\cdots\!93}a^{6}-\frac{556945127368886}{10\!\cdots\!93}a^{5}-\frac{51\!\cdots\!05}{10\!\cdots\!93}a^{4}+\frac{26\!\cdots\!91}{10\!\cdots\!93}a^{3}+\frac{12\!\cdots\!80}{10\!\cdots\!93}a^{2}-\frac{22\!\cdots\!04}{10\!\cdots\!93}a+\frac{44\!\cdots\!19}{10\!\cdots\!93}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{14214110687511}{197530954277581}a^{20}-\frac{174019812778914}{197530954277581}a^{19}+\frac{773600421560737}{197530954277581}a^{18}-\frac{19\!\cdots\!00}{197530954277581}a^{17}+\frac{29\!\cdots\!21}{197530954277581}a^{16}-\frac{26\!\cdots\!24}{197530954277581}a^{15}-\frac{239559994210908}{197530954277581}a^{14}+\frac{83\!\cdots\!02}{197530954277581}a^{13}-\frac{26\!\cdots\!29}{197530954277581}a^{12}+\frac{57\!\cdots\!74}{197530954277581}a^{11}-\frac{93\!\cdots\!95}{197530954277581}a^{10}+\frac{11\!\cdots\!18}{197530954277581}a^{9}-\frac{12\!\cdots\!63}{197530954277581}a^{8}+\frac{10\!\cdots\!70}{197530954277581}a^{7}-\frac{86\!\cdots\!93}{197530954277581}a^{6}+\frac{67\!\cdots\!28}{197530954277581}a^{5}-\frac{44\!\cdots\!67}{197530954277581}a^{4}+\frac{25\!\cdots\!26}{197530954277581}a^{3}-\frac{12\!\cdots\!03}{197530954277581}a^{2}+\frac{41\!\cdots\!56}{197530954277581}a-\frac{574269762958658}{197530954277581}$, $\frac{15\!\cdots\!59}{10\!\cdots\!93}a^{20}-\frac{10\!\cdots\!30}{10\!\cdots\!93}a^{19}+\frac{31\!\cdots\!12}{10\!\cdots\!93}a^{18}-\frac{57\!\cdots\!82}{10\!\cdots\!93}a^{17}+\frac{66\!\cdots\!15}{10\!\cdots\!93}a^{16}-\frac{28\!\cdots\!17}{10\!\cdots\!93}a^{15}-\frac{94\!\cdots\!11}{10\!\cdots\!93}a^{14}+\frac{38\!\cdots\!59}{10\!\cdots\!93}a^{13}-\frac{95\!\cdots\!97}{10\!\cdots\!93}a^{12}+\frac{17\!\cdots\!25}{10\!\cdots\!93}a^{11}-\frac{24\!\cdots\!57}{10\!\cdots\!93}a^{10}+\frac{26\!\cdots\!24}{10\!\cdots\!93}a^{9}-\frac{23\!\cdots\!32}{10\!\cdots\!93}a^{8}+\frac{19\!\cdots\!73}{10\!\cdots\!93}a^{7}-\frac{15\!\cdots\!96}{10\!\cdots\!93}a^{6}+\frac{11\!\cdots\!59}{10\!\cdots\!93}a^{5}-\frac{66\!\cdots\!09}{10\!\cdots\!93}a^{4}+\frac{33\!\cdots\!28}{10\!\cdots\!93}a^{3}-\frac{13\!\cdots\!04}{10\!\cdots\!93}a^{2}+\frac{28\!\cdots\!55}{10\!\cdots\!93}a-\frac{18\!\cdots\!70}{10\!\cdots\!93}$, $\frac{83669028763494}{197530954277581}a^{20}-\frac{509604161449513}{197530954277581}a^{19}+\frac{14\!\cdots\!69}{197530954277581}a^{18}-\frac{23\!\cdots\!13}{197530954277581}a^{17}+\frac{23\!\cdots\!23}{197530954277581}a^{16}-\frac{313545452772371}{197530954277581}a^{15}-\frac{53\!\cdots\!09}{197530954277581}a^{14}+\frac{18\!\cdots\!24}{197530954277581}a^{13}-\frac{42\!\cdots\!19}{197530954277581}a^{12}+\frac{72\!\cdots\!06}{197530954277581}a^{11}-\frac{93\!\cdots\!41}{197530954277581}a^{10}+\frac{93\!\cdots\!34}{197530954277581}a^{9}-\frac{78\!\cdots\!62}{197530954277581}a^{8}+\frac{64\!\cdots\!84}{197530954277581}a^{7}-\frac{50\!\cdots\!95}{197530954277581}a^{6}+\frac{33\!\cdots\!84}{197530954277581}a^{5}-\frac{17\!\cdots\!95}{197530954277581}a^{4}+\frac{84\!\cdots\!78}{197530954277581}a^{3}-\frac{25\!\cdots\!99}{197530954277581}a^{2}+\frac{14280416387257}{197530954277581}a+\frac{59844318513709}{197530954277581}$, $\frac{57\!\cdots\!80}{10\!\cdots\!93}a^{20}-\frac{38\!\cdots\!02}{10\!\cdots\!93}a^{19}+\frac{12\!\cdots\!30}{10\!\cdots\!93}a^{18}-\frac{23\!\cdots\!74}{10\!\cdots\!93}a^{17}+\frac{29\!\cdots\!10}{10\!\cdots\!93}a^{16}-\frac{16\!\cdots\!81}{10\!\cdots\!93}a^{15}-\frac{31\!\cdots\!24}{10\!\cdots\!93}a^{14}+\frac{14\!\cdots\!45}{10\!\cdots\!93}a^{13}-\frac{38\!\cdots\!72}{10\!\cdots\!93}a^{12}+\frac{71\!\cdots\!62}{10\!\cdots\!93}a^{11}-\frac{10\!\cdots\!43}{10\!\cdots\!93}a^{10}+\frac{11\!\cdots\!34}{10\!\cdots\!93}a^{9}-\frac{11\!\cdots\!15}{10\!\cdots\!93}a^{8}+\frac{94\!\cdots\!43}{10\!\cdots\!93}a^{7}-\frac{76\!\cdots\!15}{10\!\cdots\!93}a^{6}+\frac{56\!\cdots\!68}{10\!\cdots\!93}a^{5}-\frac{35\!\cdots\!75}{10\!\cdots\!93}a^{4}+\frac{19\!\cdots\!73}{10\!\cdots\!93}a^{3}-\frac{83\!\cdots\!94}{10\!\cdots\!93}a^{2}+\frac{25\!\cdots\!18}{10\!\cdots\!93}a-\frac{33\!\cdots\!89}{10\!\cdots\!93}$, $a-1$, $\frac{61\!\cdots\!58}{10\!\cdots\!93}a^{20}-\frac{43\!\cdots\!20}{10\!\cdots\!93}a^{19}+\frac{14\!\cdots\!21}{10\!\cdots\!93}a^{18}-\frac{28\!\cdots\!65}{10\!\cdots\!93}a^{17}+\frac{36\!\cdots\!17}{10\!\cdots\!93}a^{16}-\frac{23\!\cdots\!99}{10\!\cdots\!93}a^{15}-\frac{32\!\cdots\!25}{10\!\cdots\!93}a^{14}+\frac{17\!\cdots\!51}{10\!\cdots\!93}a^{13}-\frac{45\!\cdots\!69}{10\!\cdots\!93}a^{12}+\frac{87\!\cdots\!52}{10\!\cdots\!93}a^{11}-\frac{12\!\cdots\!02}{10\!\cdots\!93}a^{10}+\frac{14\!\cdots\!57}{10\!\cdots\!93}a^{9}-\frac{14\!\cdots\!82}{10\!\cdots\!93}a^{8}+\frac{12\!\cdots\!64}{10\!\cdots\!93}a^{7}-\frac{97\!\cdots\!39}{10\!\cdots\!93}a^{6}+\frac{72\!\cdots\!78}{10\!\cdots\!93}a^{5}-\frac{46\!\cdots\!78}{10\!\cdots\!93}a^{4}+\frac{25\!\cdots\!31}{10\!\cdots\!93}a^{3}-\frac{11\!\cdots\!10}{10\!\cdots\!93}a^{2}+\frac{33\!\cdots\!55}{10\!\cdots\!93}a-\frac{42\!\cdots\!65}{10\!\cdots\!93}$, $\frac{30\!\cdots\!55}{10\!\cdots\!93}a^{20}-\frac{22\!\cdots\!34}{10\!\cdots\!93}a^{19}+\frac{76\!\cdots\!12}{10\!\cdots\!93}a^{18}-\frac{15\!\cdots\!54}{10\!\cdots\!93}a^{17}+\frac{20\!\cdots\!19}{10\!\cdots\!93}a^{16}-\frac{12\!\cdots\!59}{10\!\cdots\!93}a^{15}-\frac{17\!\cdots\!18}{10\!\cdots\!93}a^{14}+\frac{92\!\cdots\!42}{10\!\cdots\!93}a^{13}-\frac{24\!\cdots\!20}{10\!\cdots\!93}a^{12}+\frac{46\!\cdots\!15}{10\!\cdots\!93}a^{11}-\frac{69\!\cdots\!08}{10\!\cdots\!93}a^{10}+\frac{79\!\cdots\!03}{10\!\cdots\!93}a^{9}-\frac{74\!\cdots\!19}{10\!\cdots\!93}a^{8}+\frac{61\!\cdots\!62}{10\!\cdots\!93}a^{7}-\frac{49\!\cdots\!53}{10\!\cdots\!93}a^{6}+\frac{37\!\cdots\!49}{10\!\cdots\!93}a^{5}-\frac{23\!\cdots\!28}{10\!\cdots\!93}a^{4}+\frac{12\!\cdots\!52}{10\!\cdots\!93}a^{3}-\frac{52\!\cdots\!99}{10\!\cdots\!93}a^{2}+\frac{12\!\cdots\!39}{10\!\cdots\!93}a+\frac{63\!\cdots\!02}{10\!\cdots\!93}$, $\frac{28\!\cdots\!60}{10\!\cdots\!93}a^{20}-\frac{20\!\cdots\!35}{10\!\cdots\!93}a^{19}+\frac{68\!\cdots\!03}{10\!\cdots\!93}a^{18}-\frac{14\!\cdots\!22}{10\!\cdots\!93}a^{17}+\frac{18\!\cdots\!84}{10\!\cdots\!93}a^{16}-\frac{12\!\cdots\!54}{10\!\cdots\!93}a^{15}-\frac{13\!\cdots\!80}{10\!\cdots\!93}a^{14}+\frac{81\!\cdots\!80}{10\!\cdots\!93}a^{13}-\frac{21\!\cdots\!09}{10\!\cdots\!93}a^{12}+\frac{42\!\cdots\!79}{10\!\cdots\!93}a^{11}-\frac{63\!\cdots\!42}{10\!\cdots\!93}a^{10}+\frac{75\!\cdots\!57}{10\!\cdots\!93}a^{9}-\frac{74\!\cdots\!78}{10\!\cdots\!93}a^{8}+\frac{64\!\cdots\!05}{10\!\cdots\!93}a^{7}-\frac{52\!\cdots\!18}{10\!\cdots\!93}a^{6}+\frac{39\!\cdots\!77}{10\!\cdots\!93}a^{5}-\frac{26\!\cdots\!62}{10\!\cdots\!93}a^{4}+\frac{14\!\cdots\!04}{10\!\cdots\!93}a^{3}-\frac{70\!\cdots\!31}{10\!\cdots\!93}a^{2}+\frac{23\!\cdots\!24}{10\!\cdots\!93}a-\frac{44\!\cdots\!53}{10\!\cdots\!93}$, $\frac{32\!\cdots\!88}{10\!\cdots\!93}a^{20}-\frac{23\!\cdots\!15}{10\!\cdots\!93}a^{19}+\frac{79\!\cdots\!29}{10\!\cdots\!93}a^{18}-\frac{15\!\cdots\!92}{10\!\cdots\!93}a^{17}+\frac{18\!\cdots\!35}{10\!\cdots\!93}a^{16}-\frac{98\!\cdots\!49}{10\!\cdots\!93}a^{15}-\frac{21\!\cdots\!95}{10\!\cdots\!93}a^{14}+\frac{97\!\cdots\!32}{10\!\cdots\!93}a^{13}-\frac{24\!\cdots\!93}{10\!\cdots\!93}a^{12}+\frac{46\!\cdots\!97}{10\!\cdots\!93}a^{11}-\frac{66\!\cdots\!66}{10\!\cdots\!93}a^{10}+\frac{73\!\cdots\!03}{10\!\cdots\!93}a^{9}-\frac{65\!\cdots\!65}{10\!\cdots\!93}a^{8}+\frac{53\!\cdots\!86}{10\!\cdots\!93}a^{7}-\frac{42\!\cdots\!51}{10\!\cdots\!93}a^{6}+\frac{30\!\cdots\!51}{10\!\cdots\!93}a^{5}-\frac{18\!\cdots\!26}{10\!\cdots\!93}a^{4}+\frac{86\!\cdots\!89}{10\!\cdots\!93}a^{3}-\frac{33\!\cdots\!38}{10\!\cdots\!93}a^{2}+\frac{46\!\cdots\!65}{10\!\cdots\!93}a+\frac{17\!\cdots\!63}{10\!\cdots\!93}$, $\frac{944663849116539}{10\!\cdots\!93}a^{20}-\frac{51\!\cdots\!23}{10\!\cdots\!93}a^{19}+\frac{12\!\cdots\!82}{10\!\cdots\!93}a^{18}-\frac{16\!\cdots\!25}{10\!\cdots\!93}a^{17}+\frac{80\!\cdots\!04}{10\!\cdots\!93}a^{16}+\frac{13\!\cdots\!75}{10\!\cdots\!93}a^{15}-\frac{61\!\cdots\!43}{10\!\cdots\!93}a^{14}+\frac{16\!\cdots\!02}{10\!\cdots\!93}a^{13}-\frac{33\!\cdots\!40}{10\!\cdots\!93}a^{12}+\frac{49\!\cdots\!53}{10\!\cdots\!93}a^{11}-\frac{50\!\cdots\!10}{10\!\cdots\!93}a^{10}+\frac{35\!\cdots\!36}{10\!\cdots\!93}a^{9}-\frac{20\!\cdots\!42}{10\!\cdots\!93}a^{8}+\frac{15\!\cdots\!50}{10\!\cdots\!93}a^{7}-\frac{10\!\cdots\!07}{10\!\cdots\!93}a^{6}-\frac{82\!\cdots\!86}{10\!\cdots\!93}a^{5}+\frac{57\!\cdots\!88}{10\!\cdots\!93}a^{4}-\frac{30\!\cdots\!85}{10\!\cdots\!93}a^{3}+\frac{10\!\cdots\!60}{10\!\cdots\!93}a^{2}-\frac{20\!\cdots\!91}{10\!\cdots\!93}a+\frac{51\!\cdots\!74}{10\!\cdots\!93}$, $\frac{15\!\cdots\!39}{10\!\cdots\!93}a^{20}-\frac{10\!\cdots\!05}{10\!\cdots\!93}a^{19}+\frac{36\!\cdots\!43}{10\!\cdots\!93}a^{18}-\frac{72\!\cdots\!00}{10\!\cdots\!93}a^{17}+\frac{91\!\cdots\!48}{10\!\cdots\!93}a^{16}-\frac{57\!\cdots\!99}{10\!\cdots\!93}a^{15}-\frac{83\!\cdots\!30}{10\!\cdots\!93}a^{14}+\frac{43\!\cdots\!99}{10\!\cdots\!93}a^{13}-\frac{11\!\cdots\!94}{10\!\cdots\!93}a^{12}+\frac{21\!\cdots\!92}{10\!\cdots\!93}a^{11}-\frac{31\!\cdots\!77}{10\!\cdots\!93}a^{10}+\frac{36\!\cdots\!62}{10\!\cdots\!93}a^{9}-\frac{35\!\cdots\!38}{10\!\cdots\!93}a^{8}+\frac{29\!\cdots\!71}{10\!\cdots\!93}a^{7}-\frac{24\!\cdots\!73}{10\!\cdots\!93}a^{6}+\frac{17\!\cdots\!19}{10\!\cdots\!93}a^{5}-\frac{11\!\cdots\!82}{10\!\cdots\!93}a^{4}+\frac{61\!\cdots\!47}{10\!\cdots\!93}a^{3}-\frac{27\!\cdots\!62}{10\!\cdots\!93}a^{2}+\frac{80\!\cdots\!81}{10\!\cdots\!93}a-\frac{10\!\cdots\!21}{10\!\cdots\!93}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 48967.484032 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{9}\cdot 48967.484032 \cdot 1}{2\cdot\sqrt{167297208611536987435565056}}\cr\approx \mathstrut & 0.23112251226 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^21 - 7*x^20 + 23*x^19 - 46*x^18 + 59*x^17 - 38*x^16 - 51*x^15 + 276*x^14 - 725*x^13 + 1392*x^12 - 2056*x^11 + 2397*x^10 - 2311*x^9 + 1987*x^8 - 1615*x^7 + 1208*x^6 - 783*x^5 + 436*x^4 - 201*x^3 + 66*x^2 - 12*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^21 - 7*x^20 + 23*x^19 - 46*x^18 + 59*x^17 - 38*x^16 - 51*x^15 + 276*x^14 - 725*x^13 + 1392*x^12 - 2056*x^11 + 2397*x^10 - 2311*x^9 + 1987*x^8 - 1615*x^7 + 1208*x^6 - 783*x^5 + 436*x^4 - 201*x^3 + 66*x^2 - 12*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^21 - 7*x^20 + 23*x^19 - 46*x^18 + 59*x^17 - 38*x^16 - 51*x^15 + 276*x^14 - 725*x^13 + 1392*x^12 - 2056*x^11 + 2397*x^10 - 2311*x^9 + 1987*x^8 - 1615*x^7 + 1208*x^6 - 783*x^5 + 436*x^4 - 201*x^3 + 66*x^2 - 12*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 7*x^20 + 23*x^19 - 46*x^18 + 59*x^17 - 38*x^16 - 51*x^15 + 276*x^14 - 725*x^13 + 1392*x^12 - 2056*x^11 + 2397*x^10 - 2311*x^9 + 1987*x^8 - 1615*x^7 + 1208*x^6 - 783*x^5 + 436*x^4 - 201*x^3 + 66*x^2 - 12*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3\times A_7$ (as 21T57):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 15120
The 27 conjugacy class representatives for $S_3\times A_7$
Character table for $S_3\times A_7$

Intermediate fields

3.1.31.1, 7.3.17774656.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 42 sibling: data not computed
Degree 45 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.14.0.1}{14} }{,}\,{\href{/padicField/3.7.0.1}{7} }$ $21$ $21$ ${\href{/padicField/11.4.0.1}{4} }^{3}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.14.0.1}{14} }{,}\,{\href{/padicField/13.7.0.1}{7} }$ R $21$ ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.14.0.1}{14} }{,}\,{\href{/padicField/29.7.0.1}{7} }$ R ${\href{/padicField/37.14.0.1}{14} }{,}\,{\href{/padicField/37.7.0.1}{7} }$ $15{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}$ ${\href{/padicField/43.14.0.1}{14} }{,}\,{\href{/padicField/43.7.0.1}{7} }$ ${\href{/padicField/47.4.0.1}{4} }^{3}{,}\,{\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ $21$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.9.6.1$x^{9} + 3 x^{7} + 9 x^{6} + 3 x^{5} - 26 x^{3} + 9 x^{2} - 27 x + 29$$3$$3$$6$$S_3\times C_3$$[\ ]_{3}^{6}$
2.12.12.25$x^{12} + 12 x^{11} + 60 x^{10} + 160 x^{9} + 308 x^{8} + 736 x^{7} + 2272 x^{6} + 5632 x^{5} + 10608 x^{4} + 15040 x^{3} + 12224 x^{2} + 3584 x + 704$$2$$6$$12$$C_{12}$$[2]^{6}$
\(17\) Copy content Toggle raw display $\Q_{17}$$x + 14$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 14$$1$$1$$0$Trivial$[\ ]$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.3.2.1$x^{3} + 17$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
17.6.4.1$x^{6} + 48 x^{5} + 879 x^{4} + 7682 x^{3} + 44916 x^{2} + 265428 x + 127425$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
\(31\) Copy content Toggle raw display 31.3.0.1$x^{3} + x + 28$$1$$3$$0$$C_3$$[\ ]^{3}$
31.4.2.1$x^{4} + 58 x^{3} + 909 x^{2} + 1972 x + 26855$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
31.4.2.1$x^{4} + 58 x^{3} + 909 x^{2} + 1972 x + 26855$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
31.4.2.1$x^{4} + 58 x^{3} + 909 x^{2} + 1972 x + 26855$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
31.6.3.2$x^{6} + 95 x^{4} + 56 x^{3} + 2884 x^{2} - 5152 x + 28684$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$