Normalized defining polynomial
\(x^{21} - 3 x^{20} - 4 x^{19} + 16 x^{18} - 9 x^{17} - 33 x^{16} + 52 x^{15} + 12 x^{14} - 136 x^{13} + 96 x^{12} + 180 x^{11} - 260 x^{10} - 144 x^{9} + 312 x^{8} + 44 x^{7} - 220 x^{6} + 15 x^{5} + 59 x^{4} - 16 x^{3} + 36 x^{2} - 31 x + 1\)
Invariants
Degree: | $21$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[3, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-7146646609494406531041460224\)\(\medspace = -\,2^{64}\cdot 3^{18}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $21.20$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} + \frac{1}{4} a^{4} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} + \frac{1}{4} a^{5} - \frac{1}{4} a$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{12} + \frac{1}{8} a^{10} - \frac{1}{8} a^{8} + \frac{1}{8} a^{6} - \frac{1}{8} a^{4} + \frac{1}{8} a^{2} - \frac{1}{8}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} + \frac{1}{8} a^{11} - \frac{1}{8} a^{9} + \frac{1}{8} a^{7} - \frac{1}{8} a^{5} + \frac{1}{8} a^{3} - \frac{1}{8} a$, $\frac{1}{8} a^{16} - \frac{1}{8}$, $\frac{1}{64} a^{17} - \frac{3}{64} a^{16} + \frac{1}{32} a^{15} - \frac{1}{32} a^{14} + \frac{1}{16} a^{13} + \frac{7}{32} a^{11} + \frac{5}{32} a^{10} - \frac{1}{4} a^{9} - \frac{1}{16} a^{8} - \frac{15}{32} a^{7} - \frac{9}{32} a^{6} + \frac{3}{16} a^{5} - \frac{3}{8} a^{4} + \frac{11}{32} a^{3} + \frac{1}{32} a^{2} - \frac{1}{64} a + \frac{15}{64}$, $\frac{1}{64} a^{18} + \frac{1}{64} a^{16} - \frac{1}{16} a^{15} - \frac{1}{32} a^{14} + \frac{1}{16} a^{13} - \frac{1}{32} a^{12} + \frac{3}{16} a^{11} + \frac{7}{32} a^{10} + \frac{1}{16} a^{9} + \frac{3}{32} a^{8} + \frac{3}{16} a^{7} + \frac{11}{32} a^{6} + \frac{1}{16} a^{5} - \frac{1}{32} a^{4} + \frac{7}{16} a^{3} + \frac{5}{64} a^{2} + \frac{1}{16} a + \frac{21}{64}$, $\frac{1}{128} a^{19} - \frac{1}{128} a^{18} - \frac{1}{128} a^{17} - \frac{7}{128} a^{16} + \frac{3}{64} a^{15} + \frac{1}{64} a^{14} + \frac{5}{64} a^{13} - \frac{5}{64} a^{12} + \frac{7}{64} a^{11} - \frac{3}{64} a^{10} - \frac{3}{64} a^{9} - \frac{5}{64} a^{8} - \frac{25}{64} a^{7} - \frac{27}{64} a^{6} + \frac{29}{64} a^{5} + \frac{27}{64} a^{4} + \frac{37}{128} a^{3} + \frac{19}{128} a^{2} - \frac{21}{128} a - \frac{3}{128}$, $\frac{1}{1157298870656} a^{20} - \frac{1048673419}{1157298870656} a^{19} - \frac{779216257}{1157298870656} a^{18} + \frac{2580505063}{1157298870656} a^{17} - \frac{27905486493}{578649435328} a^{16} - \frac{9131520381}{578649435328} a^{15} + \frac{8596105857}{578649435328} a^{14} + \frac{11920676885}{578649435328} a^{13} + \frac{3984972003}{578649435328} a^{12} - \frac{50090446817}{578649435328} a^{11} + \frac{128354582921}{578649435328} a^{10} + \frac{66215511389}{578649435328} a^{9} + \frac{2597510291}{578649435328} a^{8} - \frac{59552884241}{578649435328} a^{7} + \frac{83339962201}{578649435328} a^{6} - \frac{243029498667}{578649435328} a^{5} - \frac{330362936963}{1157298870656} a^{4} - \frac{191820525839}{1157298870656} a^{3} - \frac{513957271741}{1157298870656} a^{2} - \frac{401219358285}{1157298870656} a - \frac{53116372489}{144662358832}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 3668230.07566 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 336 |
The 9 conjugacy class representatives for $SO(3,7)$ |
Character table for $SO(3,7)$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 8 sibling: | data not computed |
Degree 14 sibling: | data not computed |
Degree 16 sibling: | data not computed |
Degree 24 sibling: | data not computed |
Degree 28 siblings: | data not computed |
Degree 42 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
2.4.9.3 | $x^{4} + 6 x^{2} + 10$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ | |
2.8.28.65 | $x^{8} + 12 x^{4} + 60$ | $8$ | $1$ | $28$ | $D_{8}$ | $[2, 3, 7/2, 9/2]$ | |
2.8.27.41 | $x^{8} + 8 x^{5} + 2 x^{4} + 8 x^{2} + 2$ | $8$ | $1$ | $27$ | $D_{8}$ | $[2, 3, 7/2, 9/2]$ | |
3 | Data not computed |