Properties

Label 2.1.0.1
Base \(\Q_{2}\)
Degree \(1\)
e \(1\)
f \(1\)
c \(0\)
Galois group Trivial (as 1T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x + 1\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $1$
Ramification exponent $e$: $1$
Residue field degree $f$: $1$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\card{ \Gal(K/\Q_{ 2 }) }$: $1$
This field is Galois and abelian over $\Q_{2}.$
Visible slopes:None

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 2 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x - 2 \) Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois group: $C_1$ (as 1T1)
Inertia group: $C_1$ (as 1T1)
Wild inertia group: $C_1$
Unramified degree: $1$
Tame degree: $1$
Wild slopes: None
Galois mean slope: $0$
Galois splitting model: $x + 1$ Copy content Toggle raw display