Group action invariants
| Degree $n$ : | $21$ | |
| Transitive number $t$ : | $20$ | |
| Group : | $SO(3,7)$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,16,5,9,3,10,4,17)(2,19,6,8)(7,13,21,11,12,14,20,18), (1,17,2,18,13,11,19)(3,12,15,20,9,10,5)(4,8,14,6,16,7,21) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 7: None
Low degree siblings
8T43, 14T16, 16T713, 24T707, 28T42, 28T46, 42T81, 42T82, 42T83Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $28$ | $2$ | $( 3,14)( 4, 7)( 6,10)( 8,20)( 9,11)(12,13)(15,16)(17,21)(18,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1 $ | $21$ | $2$ | $( 2, 4)( 5, 6)( 7, 9)(10,11)(12,16)(14,20)(15,19)(17,18)$ |
| $ 8, 8, 4, 1 $ | $42$ | $8$ | $( 2, 4, 9,10, 5, 6,11, 7)( 3,20, 8,14)(12,13,16,19,17,21,18,15)$ |
| $ 8, 8, 4, 1 $ | $42$ | $8$ | $( 2, 6, 9, 7, 5, 4,11,10)( 3,20, 8,14)(12,21,16,15,17,13,18,19)$ |
| $ 4, 4, 4, 4, 2, 2, 1 $ | $42$ | $4$ | $( 2, 9, 5,11)( 3, 8)( 4,10, 6, 7)(12,16,17,18)(13,19,21,15)(14,20)$ |
| $ 6, 6, 6, 3 $ | $56$ | $6$ | $( 1, 2, 3,16, 8,10)( 4,12,17, 9, 7, 5)( 6,13,18,19,11,14)(15,21,20)$ |
| $ 3, 3, 3, 3, 3, 3, 3 $ | $56$ | $3$ | $( 1, 2, 4)( 3, 6, 5)( 7,13, 9)( 8,15,19)(10,12,20)(11,14,16)(17,18,21)$ |
| $ 7, 7, 7 $ | $48$ | $7$ | $( 1, 2,12,18,21,19, 9)( 3,15,17,20,10, 4, 7)( 5,13, 8, 6,14,16,11)$ |
Group invariants
| Order: | $336=2^{4} \cdot 3 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [336, 208] |
| Character table: |
2 4 2 4 3 3 3 1 1 .
3 1 1 . . . . 1 1 .
7 1 . . . . . . . 1
1a 2a 2b 8a 8b 4a 6a 3a 7a
2P 1a 1a 1a 4a 4a 2b 3a 3a 7a
3P 1a 2a 2b 8b 8a 4a 2a 1a 7a
5P 1a 2a 2b 8b 8a 4a 6a 3a 7a
7P 1a 2a 2b 8a 8b 4a 6a 3a 1a
X.1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 -1 1 -1 1 1
X.3 6 . -2 . . 2 . . -1
X.4 6 . 2 A -A . . . -1
X.5 6 . 2 -A A . . . -1
X.6 7 -1 -1 1 1 -1 -1 1 .
X.7 7 1 -1 -1 -1 -1 1 1 .
X.8 8 -2 . . . . 1 -1 1
X.9 8 2 . . . . -1 -1 1
A = -E(8)+E(8)^3
= -Sqrt(2) = -r2
|