Normalized defining polynomial
\( x^{21} - 2 x^{20} - 2 x^{19} + 12 x^{18} - 25 x^{17} + x^{16} + 48 x^{15} - 91 x^{14} + 103 x^{13} - 12 x^{12} - 110 x^{11} + 272 x^{10} - 277 x^{9} - 78 x^{8} + 278 x^{7} - 46 x^{6} + 11 x^{5} - 114 x^{4} + 3 x^{3} + 93 x^{2} - 19 x - 23 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18453551447289410297167049873=71^{3}\cdot 8623^{3}\cdot 283573^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $71, 8623, 283573$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{51} a^{19} + \frac{7}{51} a^{18} - \frac{2}{17} a^{17} - \frac{1}{51} a^{16} + \frac{11}{51} a^{15} + \frac{14}{51} a^{14} - \frac{2}{51} a^{13} + \frac{8}{17} a^{12} - \frac{2}{17} a^{11} + \frac{3}{17} a^{10} + \frac{16}{51} a^{9} + \frac{1}{3} a^{8} - \frac{23}{51} a^{7} + \frac{4}{51} a^{6} + \frac{19}{51} a^{5} + \frac{10}{51} a^{4} + \frac{1}{51} a^{3} - \frac{10}{51} a^{2} - \frac{1}{51} a - \frac{11}{51}$, $\frac{1}{139346267232241623387} a^{20} + \frac{754802086132323592}{139346267232241623387} a^{19} - \frac{14079447032224139052}{46448755744080541129} a^{18} + \frac{33922591437587626823}{139346267232241623387} a^{17} + \frac{30158256707392377077}{139346267232241623387} a^{16} + \frac{56301270895884913997}{139346267232241623387} a^{15} + \frac{66632142114688291330}{139346267232241623387} a^{14} + \frac{2413258241065153432}{46448755744080541129} a^{13} + \frac{15877069354876731411}{46448755744080541129} a^{12} + \frac{22445722870264703478}{46448755744080541129} a^{11} + \frac{55201602134033343139}{139346267232241623387} a^{10} + \frac{41688886374736457891}{139346267232241623387} a^{9} - \frac{15894480275683125089}{139346267232241623387} a^{8} + \frac{23689385703015247747}{139346267232241623387} a^{7} - \frac{26544765006257416049}{139346267232241623387} a^{6} - \frac{34385885295466590329}{139346267232241623387} a^{5} + \frac{42313219106502009784}{139346267232241623387} a^{4} - \frac{6416215932829667953}{139346267232241623387} a^{3} + \frac{50459683152908369102}{139346267232241623387} a^{2} - \frac{13837709681323672367}{139346267232241623387} a - \frac{7121334751962168283}{46448755744080541129}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1614740.57391 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 11022480 |
| The 429 conjugacy class representatives for t21n139 are not computed |
| Character table for t21n139 is not computed |
Intermediate fields
| 7.3.612233.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.9.0.1}{9} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.9.0.1}{9} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.9.0.1}{9} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ | $18{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.9.0.1}{9} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | $18{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | $15{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | $15{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | $15{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 71 | Data not computed | ||||||
| 8623 | Data not computed | ||||||
| 283573 | Data not computed | ||||||