Properties

Label 21.5.279...288.1
Degree $21$
Signature $[5, 8]$
Discriminant $2.798\times 10^{28}$
Root discriminant \(22.63\)
Ramified primes $2,181$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $\PGL(2,7)$ (as 21T20)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 2*x^19 - 7*x^18 - 5*x^17 + 11*x^16 + 17*x^15 + 34*x^14 - 32*x^13 - 19*x^12 - 120*x^11 - 65*x^10 - 276*x^9 + 43*x^8 + 539*x^7 + 983*x^6 + 606*x^5 + 280*x^4 + 121*x^3 + 40*x^2 - 13*x - 5)
 
gp: K = bnfinit(y^21 - 2*y^19 - 7*y^18 - 5*y^17 + 11*y^16 + 17*y^15 + 34*y^14 - 32*y^13 - 19*y^12 - 120*y^11 - 65*y^10 - 276*y^9 + 43*y^8 + 539*y^7 + 983*y^6 + 606*y^5 + 280*y^4 + 121*y^3 + 40*y^2 - 13*y - 5, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 2*x^19 - 7*x^18 - 5*x^17 + 11*x^16 + 17*x^15 + 34*x^14 - 32*x^13 - 19*x^12 - 120*x^11 - 65*x^10 - 276*x^9 + 43*x^8 + 539*x^7 + 983*x^6 + 606*x^5 + 280*x^4 + 121*x^3 + 40*x^2 - 13*x - 5);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 2*x^19 - 7*x^18 - 5*x^17 + 11*x^16 + 17*x^15 + 34*x^14 - 32*x^13 - 19*x^12 - 120*x^11 - 65*x^10 - 276*x^9 + 43*x^8 + 539*x^7 + 983*x^6 + 606*x^5 + 280*x^4 + 121*x^3 + 40*x^2 - 13*x - 5)
 

\( x^{21} - 2 x^{19} - 7 x^{18} - 5 x^{17} + 11 x^{16} + 17 x^{15} + 34 x^{14} - 32 x^{13} - 19 x^{12} + \cdots - 5 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $21$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[5, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(27984468103350046268523020288\) \(\medspace = 2^{27}\cdot 181^{9}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(22.63\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}181^{1/2}\approx 38.05259518088089$
Ramified primes:   \(2\), \(181\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{362}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{14}-\frac{1}{2}$, $\frac{1}{2}a^{15}-\frac{1}{2}a$, $\frac{1}{2}a^{16}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{18}-\frac{1}{4}a^{16}-\frac{1}{4}a^{12}-\frac{1}{4}a^{10}-\frac{1}{2}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}+\frac{1}{4}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{4}a^{19}-\frac{1}{4}a^{17}-\frac{1}{4}a^{13}-\frac{1}{4}a^{11}-\frac{1}{2}a^{10}-\frac{1}{4}a^{9}-\frac{1}{2}a^{8}+\frac{1}{4}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}+\frac{1}{4}a$, $\frac{1}{41\!\cdots\!64}a^{20}-\frac{43\!\cdots\!17}{41\!\cdots\!64}a^{19}+\frac{49\!\cdots\!41}{41\!\cdots\!64}a^{18}-\frac{81\!\cdots\!89}{41\!\cdots\!64}a^{17}-\frac{18\!\cdots\!91}{20\!\cdots\!82}a^{16}-\frac{19\!\cdots\!12}{10\!\cdots\!41}a^{15}+\frac{86\!\cdots\!15}{41\!\cdots\!64}a^{14}+\frac{24\!\cdots\!95}{41\!\cdots\!64}a^{13}-\frac{37\!\cdots\!41}{41\!\cdots\!64}a^{12}-\frac{18\!\cdots\!27}{41\!\cdots\!64}a^{11}-\frac{37\!\cdots\!47}{41\!\cdots\!64}a^{10}+\frac{11\!\cdots\!73}{41\!\cdots\!64}a^{9}+\frac{13\!\cdots\!51}{41\!\cdots\!64}a^{8}+\frac{43\!\cdots\!11}{41\!\cdots\!64}a^{7}-\frac{50\!\cdots\!27}{10\!\cdots\!41}a^{6}+\frac{13\!\cdots\!08}{10\!\cdots\!41}a^{5}+\frac{17\!\cdots\!67}{10\!\cdots\!41}a^{4}+\frac{21\!\cdots\!77}{10\!\cdots\!41}a^{3}+\frac{37\!\cdots\!13}{41\!\cdots\!64}a^{2}+\frac{73\!\cdots\!09}{41\!\cdots\!64}a+\frac{49\!\cdots\!58}{10\!\cdots\!41}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{15\!\cdots\!79}{20\!\cdots\!82}a^{20}-\frac{34\!\cdots\!79}{20\!\cdots\!82}a^{19}-\frac{61\!\cdots\!13}{41\!\cdots\!64}a^{18}-\frac{10\!\cdots\!43}{20\!\cdots\!82}a^{17}-\frac{11\!\cdots\!05}{41\!\cdots\!64}a^{16}+\frac{92\!\cdots\!37}{10\!\cdots\!41}a^{15}+\frac{22\!\cdots\!57}{20\!\cdots\!82}a^{14}+\frac{48\!\cdots\!29}{20\!\cdots\!82}a^{13}-\frac{12\!\cdots\!07}{41\!\cdots\!64}a^{12}-\frac{16\!\cdots\!23}{20\!\cdots\!82}a^{11}-\frac{37\!\cdots\!27}{41\!\cdots\!64}a^{10}-\frac{30\!\cdots\!28}{10\!\cdots\!41}a^{9}-\frac{83\!\cdots\!19}{41\!\cdots\!64}a^{8}+\frac{82\!\cdots\!22}{10\!\cdots\!41}a^{7}+\frac{16\!\cdots\!29}{41\!\cdots\!64}a^{6}+\frac{13\!\cdots\!27}{20\!\cdots\!82}a^{5}+\frac{64\!\cdots\!63}{20\!\cdots\!82}a^{4}+\frac{15\!\cdots\!03}{10\!\cdots\!41}a^{3}+\frac{42\!\cdots\!23}{10\!\cdots\!41}a^{2}-\frac{28\!\cdots\!26}{10\!\cdots\!41}a-\frac{87\!\cdots\!23}{41\!\cdots\!64}$, $\frac{19\!\cdots\!79}{20\!\cdots\!82}a^{20}-\frac{20\!\cdots\!45}{41\!\cdots\!64}a^{19}-\frac{17\!\cdots\!85}{10\!\cdots\!41}a^{18}-\frac{23\!\cdots\!99}{41\!\cdots\!64}a^{17}-\frac{22\!\cdots\!49}{10\!\cdots\!41}a^{16}+\frac{11\!\cdots\!26}{10\!\cdots\!41}a^{15}+\frac{10\!\cdots\!42}{10\!\cdots\!41}a^{14}+\frac{11\!\cdots\!25}{41\!\cdots\!64}a^{13}-\frac{85\!\cdots\!69}{20\!\cdots\!82}a^{12}+\frac{11\!\cdots\!45}{41\!\cdots\!64}a^{11}-\frac{11\!\cdots\!58}{10\!\cdots\!41}a^{10}-\frac{69\!\cdots\!79}{41\!\cdots\!64}a^{9}-\frac{26\!\cdots\!83}{10\!\cdots\!41}a^{8}+\frac{65\!\cdots\!67}{41\!\cdots\!64}a^{7}+\frac{91\!\cdots\!57}{20\!\cdots\!82}a^{6}+\frac{14\!\cdots\!87}{20\!\cdots\!82}a^{5}+\frac{57\!\cdots\!55}{20\!\cdots\!82}a^{4}+\frac{57\!\cdots\!39}{20\!\cdots\!82}a^{3}-\frac{13\!\cdots\!33}{10\!\cdots\!41}a^{2}-\frac{13\!\cdots\!77}{41\!\cdots\!64}a-\frac{75\!\cdots\!67}{20\!\cdots\!82}$, $\frac{64\!\cdots\!84}{10\!\cdots\!41}a^{20}-\frac{38\!\cdots\!66}{10\!\cdots\!41}a^{19}-\frac{44\!\cdots\!39}{41\!\cdots\!64}a^{18}-\frac{37\!\cdots\!73}{10\!\cdots\!41}a^{17}-\frac{36\!\cdots\!97}{41\!\cdots\!64}a^{16}+\frac{79\!\cdots\!25}{10\!\cdots\!41}a^{15}+\frac{12\!\cdots\!33}{20\!\cdots\!82}a^{14}+\frac{17\!\cdots\!39}{10\!\cdots\!41}a^{13}-\frac{12\!\cdots\!17}{41\!\cdots\!64}a^{12}+\frac{52\!\cdots\!63}{10\!\cdots\!41}a^{11}-\frac{31\!\cdots\!77}{41\!\cdots\!64}a^{10}+\frac{41\!\cdots\!03}{20\!\cdots\!82}a^{9}-\frac{68\!\cdots\!45}{41\!\cdots\!64}a^{8}+\frac{25\!\cdots\!83}{20\!\cdots\!82}a^{7}+\frac{11\!\cdots\!49}{41\!\cdots\!64}a^{6}+\frac{89\!\cdots\!23}{20\!\cdots\!82}a^{5}+\frac{23\!\cdots\!51}{20\!\cdots\!82}a^{4}+\frac{85\!\cdots\!92}{10\!\cdots\!41}a^{3}+\frac{46\!\cdots\!55}{20\!\cdots\!82}a^{2}-\frac{13\!\cdots\!59}{20\!\cdots\!82}a-\frac{53\!\cdots\!01}{41\!\cdots\!64}$, $\frac{34\!\cdots\!67}{41\!\cdots\!64}a^{20}+\frac{70\!\cdots\!71}{41\!\cdots\!64}a^{19}-\frac{23\!\cdots\!73}{20\!\cdots\!82}a^{18}-\frac{37\!\cdots\!69}{41\!\cdots\!64}a^{17}-\frac{71\!\cdots\!61}{41\!\cdots\!64}a^{16}-\frac{54\!\cdots\!83}{20\!\cdots\!82}a^{15}+\frac{12\!\cdots\!23}{41\!\cdots\!64}a^{14}+\frac{26\!\cdots\!27}{41\!\cdots\!64}a^{13}+\frac{82\!\cdots\!17}{20\!\cdots\!82}a^{12}-\frac{23\!\cdots\!99}{41\!\cdots\!64}a^{11}-\frac{15\!\cdots\!95}{10\!\cdots\!41}a^{10}-\frac{11\!\cdots\!37}{41\!\cdots\!64}a^{9}-\frac{77\!\cdots\!57}{20\!\cdots\!82}a^{8}-\frac{19\!\cdots\!03}{41\!\cdots\!64}a^{7}+\frac{17\!\cdots\!67}{41\!\cdots\!64}a^{6}+\frac{35\!\cdots\!23}{20\!\cdots\!82}a^{5}+\frac{51\!\cdots\!59}{20\!\cdots\!82}a^{4}+\frac{17\!\cdots\!29}{10\!\cdots\!41}a^{3}+\frac{33\!\cdots\!17}{41\!\cdots\!64}a^{2}+\frac{10\!\cdots\!93}{41\!\cdots\!64}a+\frac{62\!\cdots\!13}{41\!\cdots\!64}$, $\frac{24\!\cdots\!14}{10\!\cdots\!41}a^{20}-\frac{25\!\cdots\!63}{10\!\cdots\!41}a^{19}-\frac{10\!\cdots\!33}{20\!\cdots\!82}a^{18}-\frac{11\!\cdots\!19}{10\!\cdots\!41}a^{17}+\frac{61\!\cdots\!45}{10\!\cdots\!41}a^{16}+\frac{40\!\cdots\!12}{10\!\cdots\!41}a^{15}+\frac{13\!\cdots\!29}{10\!\cdots\!41}a^{14}+\frac{37\!\cdots\!20}{10\!\cdots\!41}a^{13}-\frac{16\!\cdots\!10}{10\!\cdots\!41}a^{12}+\frac{31\!\cdots\!58}{10\!\cdots\!41}a^{11}-\frac{23\!\cdots\!93}{10\!\cdots\!41}a^{10}+\frac{14\!\cdots\!21}{10\!\cdots\!41}a^{9}-\frac{49\!\cdots\!33}{10\!\cdots\!41}a^{8}+\frac{81\!\cdots\!78}{10\!\cdots\!41}a^{7}+\frac{12\!\cdots\!12}{10\!\cdots\!41}a^{6}+\frac{97\!\cdots\!36}{10\!\cdots\!41}a^{5}-\frac{22\!\cdots\!03}{20\!\cdots\!82}a^{4}-\frac{94\!\cdots\!02}{10\!\cdots\!41}a^{3}-\frac{38\!\cdots\!79}{10\!\cdots\!41}a^{2}-\frac{22\!\cdots\!36}{10\!\cdots\!41}a-\frac{15\!\cdots\!63}{10\!\cdots\!41}$, $\frac{56\!\cdots\!77}{41\!\cdots\!64}a^{20}-\frac{23\!\cdots\!94}{10\!\cdots\!41}a^{19}-\frac{11\!\cdots\!31}{41\!\cdots\!64}a^{18}-\frac{18\!\cdots\!91}{20\!\cdots\!82}a^{17}-\frac{11\!\cdots\!15}{20\!\cdots\!82}a^{16}+\frac{33\!\cdots\!87}{20\!\cdots\!82}a^{15}+\frac{85\!\cdots\!71}{41\!\cdots\!64}a^{14}+\frac{89\!\cdots\!73}{20\!\cdots\!82}a^{13}-\frac{21\!\cdots\!83}{41\!\cdots\!64}a^{12}-\frac{18\!\cdots\!83}{10\!\cdots\!41}a^{11}-\frac{66\!\cdots\!47}{41\!\cdots\!64}a^{10}-\frac{64\!\cdots\!98}{10\!\cdots\!41}a^{9}-\frac{15\!\cdots\!77}{41\!\cdots\!64}a^{8}+\frac{12\!\cdots\!09}{10\!\cdots\!41}a^{7}+\frac{74\!\cdots\!41}{10\!\cdots\!41}a^{6}+\frac{25\!\cdots\!55}{20\!\cdots\!82}a^{5}+\frac{13\!\cdots\!45}{20\!\cdots\!82}a^{4}+\frac{55\!\cdots\!47}{20\!\cdots\!82}a^{3}+\frac{45\!\cdots\!85}{41\!\cdots\!64}a^{2}+\frac{28\!\cdots\!87}{10\!\cdots\!41}a-\frac{43\!\cdots\!31}{20\!\cdots\!82}$, $\frac{74\!\cdots\!01}{41\!\cdots\!64}a^{20}+\frac{41\!\cdots\!67}{20\!\cdots\!82}a^{19}-\frac{23\!\cdots\!49}{41\!\cdots\!64}a^{18}-\frac{31\!\cdots\!41}{20\!\cdots\!82}a^{17}-\frac{39\!\cdots\!03}{20\!\cdots\!82}a^{16}+\frac{43\!\cdots\!13}{20\!\cdots\!82}a^{15}+\frac{22\!\cdots\!27}{41\!\cdots\!64}a^{14}+\frac{70\!\cdots\!96}{10\!\cdots\!41}a^{13}-\frac{31\!\cdots\!61}{41\!\cdots\!64}a^{12}-\frac{30\!\cdots\!73}{20\!\cdots\!82}a^{11}-\frac{61\!\cdots\!97}{41\!\cdots\!64}a^{10}-\frac{76\!\cdots\!39}{20\!\cdots\!82}a^{9}-\frac{16\!\cdots\!35}{41\!\cdots\!64}a^{8}-\frac{10\!\cdots\!85}{20\!\cdots\!82}a^{7}+\frac{31\!\cdots\!63}{20\!\cdots\!82}a^{6}+\frac{50\!\cdots\!81}{20\!\cdots\!82}a^{5}+\frac{43\!\cdots\!31}{20\!\cdots\!82}a^{4}+\frac{51\!\cdots\!86}{10\!\cdots\!41}a^{3}+\frac{28\!\cdots\!63}{41\!\cdots\!64}a^{2}+\frac{87\!\cdots\!81}{20\!\cdots\!82}a+\frac{34\!\cdots\!77}{10\!\cdots\!41}$, $\frac{47\!\cdots\!59}{41\!\cdots\!64}a^{20}-\frac{88\!\cdots\!27}{20\!\cdots\!82}a^{19}-\frac{45\!\cdots\!29}{20\!\cdots\!82}a^{18}-\frac{73\!\cdots\!53}{10\!\cdots\!41}a^{17}-\frac{11\!\cdots\!45}{41\!\cdots\!64}a^{16}+\frac{14\!\cdots\!61}{10\!\cdots\!41}a^{15}+\frac{59\!\cdots\!93}{41\!\cdots\!64}a^{14}+\frac{33\!\cdots\!73}{10\!\cdots\!41}a^{13}-\frac{10\!\cdots\!03}{20\!\cdots\!82}a^{12}-\frac{12\!\cdots\!51}{20\!\cdots\!82}a^{11}-\frac{27\!\cdots\!55}{20\!\cdots\!82}a^{10}-\frac{26\!\cdots\!22}{10\!\cdots\!41}a^{9}-\frac{30\!\cdots\!22}{10\!\cdots\!41}a^{8}+\frac{16\!\cdots\!64}{10\!\cdots\!41}a^{7}+\frac{24\!\cdots\!37}{41\!\cdots\!64}a^{6}+\frac{92\!\cdots\!94}{10\!\cdots\!41}a^{5}+\frac{65\!\cdots\!75}{20\!\cdots\!82}a^{4}+\frac{25\!\cdots\!15}{20\!\cdots\!82}a^{3}+\frac{19\!\cdots\!15}{41\!\cdots\!64}a^{2}+\frac{10\!\cdots\!59}{20\!\cdots\!82}a-\frac{11\!\cdots\!61}{41\!\cdots\!64}$, $\frac{76\!\cdots\!73}{41\!\cdots\!64}a^{20}-\frac{11\!\cdots\!21}{20\!\cdots\!82}a^{19}-\frac{36\!\cdots\!21}{10\!\cdots\!41}a^{18}-\frac{72\!\cdots\!32}{10\!\cdots\!41}a^{17}+\frac{11\!\cdots\!17}{41\!\cdots\!64}a^{16}+\frac{42\!\cdots\!23}{10\!\cdots\!41}a^{15}-\frac{17\!\cdots\!27}{41\!\cdots\!64}a^{14}-\frac{32\!\cdots\!27}{10\!\cdots\!41}a^{13}-\frac{21\!\cdots\!08}{10\!\cdots\!41}a^{12}+\frac{35\!\cdots\!27}{20\!\cdots\!82}a^{11}-\frac{66\!\cdots\!71}{10\!\cdots\!41}a^{10}+\frac{43\!\cdots\!93}{10\!\cdots\!41}a^{9}-\frac{44\!\cdots\!73}{20\!\cdots\!82}a^{8}+\frac{13\!\cdots\!53}{10\!\cdots\!41}a^{7}+\frac{26\!\cdots\!61}{41\!\cdots\!64}a^{6}-\frac{16\!\cdots\!60}{10\!\cdots\!41}a^{5}-\frac{76\!\cdots\!87}{20\!\cdots\!82}a^{4}-\frac{27\!\cdots\!39}{20\!\cdots\!82}a^{3}+\frac{26\!\cdots\!95}{41\!\cdots\!64}a^{2}+\frac{32\!\cdots\!47}{20\!\cdots\!82}a-\frac{42\!\cdots\!51}{41\!\cdots\!64}$, $\frac{10\!\cdots\!49}{20\!\cdots\!82}a^{20}-\frac{20\!\cdots\!49}{10\!\cdots\!41}a^{19}-\frac{10\!\cdots\!86}{10\!\cdots\!41}a^{18}-\frac{35\!\cdots\!90}{10\!\cdots\!41}a^{17}-\frac{23\!\cdots\!43}{10\!\cdots\!41}a^{16}+\frac{58\!\cdots\!66}{10\!\cdots\!41}a^{15}+\frac{17\!\cdots\!03}{20\!\cdots\!82}a^{14}+\frac{16\!\cdots\!64}{10\!\cdots\!41}a^{13}-\frac{17\!\cdots\!37}{10\!\cdots\!41}a^{12}-\frac{90\!\cdots\!90}{10\!\cdots\!41}a^{11}-\frac{61\!\cdots\!73}{10\!\cdots\!41}a^{10}-\frac{29\!\cdots\!45}{10\!\cdots\!41}a^{9}-\frac{14\!\cdots\!03}{10\!\cdots\!41}a^{8}+\frac{32\!\cdots\!77}{10\!\cdots\!41}a^{7}+\frac{55\!\cdots\!53}{20\!\cdots\!82}a^{6}+\frac{50\!\cdots\!06}{10\!\cdots\!41}a^{5}+\frac{26\!\cdots\!83}{10\!\cdots\!41}a^{4}+\frac{13\!\cdots\!34}{10\!\cdots\!41}a^{3}+\frac{69\!\cdots\!02}{10\!\cdots\!41}a^{2}+\frac{15\!\cdots\!57}{10\!\cdots\!41}a-\frac{26\!\cdots\!43}{20\!\cdots\!82}$, $\frac{64\!\cdots\!64}{10\!\cdots\!41}a^{20}-\frac{36\!\cdots\!07}{20\!\cdots\!82}a^{19}-\frac{57\!\cdots\!79}{41\!\cdots\!64}a^{18}-\frac{81\!\cdots\!33}{20\!\cdots\!82}a^{17}-\frac{65\!\cdots\!03}{41\!\cdots\!64}a^{16}+\frac{17\!\cdots\!31}{20\!\cdots\!82}a^{15}+\frac{93\!\cdots\!37}{10\!\cdots\!41}a^{14}+\frac{33\!\cdots\!21}{20\!\cdots\!82}a^{13}-\frac{11\!\cdots\!97}{41\!\cdots\!64}a^{12}-\frac{21\!\cdots\!09}{20\!\cdots\!82}a^{11}-\frac{26\!\cdots\!21}{41\!\cdots\!64}a^{10}-\frac{18\!\cdots\!18}{10\!\cdots\!41}a^{9}-\frac{59\!\cdots\!25}{41\!\cdots\!64}a^{8}+\frac{80\!\cdots\!69}{10\!\cdots\!41}a^{7}+\frac{14\!\cdots\!33}{41\!\cdots\!64}a^{6}+\frac{10\!\cdots\!23}{20\!\cdots\!82}a^{5}+\frac{26\!\cdots\!17}{20\!\cdots\!82}a^{4}-\frac{45\!\cdots\!91}{10\!\cdots\!41}a^{3}-\frac{87\!\cdots\!66}{10\!\cdots\!41}a^{2}+\frac{16\!\cdots\!69}{20\!\cdots\!82}a-\frac{35\!\cdots\!19}{41\!\cdots\!64}$, $\frac{16\!\cdots\!25}{41\!\cdots\!64}a^{20}-\frac{11\!\cdots\!31}{41\!\cdots\!64}a^{19}-\frac{23\!\cdots\!41}{41\!\cdots\!64}a^{18}-\frac{94\!\cdots\!31}{41\!\cdots\!64}a^{17}-\frac{44\!\cdots\!37}{10\!\cdots\!41}a^{16}+\frac{90\!\cdots\!27}{20\!\cdots\!82}a^{15}+\frac{12\!\cdots\!57}{41\!\cdots\!64}a^{14}+\frac{46\!\cdots\!03}{41\!\cdots\!64}a^{13}-\frac{80\!\cdots\!41}{41\!\cdots\!64}a^{12}+\frac{33\!\cdots\!89}{41\!\cdots\!64}a^{11}-\frac{21\!\cdots\!55}{41\!\cdots\!64}a^{10}+\frac{24\!\cdots\!89}{41\!\cdots\!64}a^{9}-\frac{48\!\cdots\!73}{41\!\cdots\!64}a^{8}+\frac{36\!\cdots\!19}{41\!\cdots\!64}a^{7}+\frac{15\!\cdots\!08}{10\!\cdots\!41}a^{6}+\frac{55\!\cdots\!01}{20\!\cdots\!82}a^{5}+\frac{15\!\cdots\!81}{20\!\cdots\!82}a^{4}+\frac{25\!\cdots\!13}{20\!\cdots\!82}a^{3}+\frac{25\!\cdots\!39}{41\!\cdots\!64}a^{2}+\frac{99\!\cdots\!39}{41\!\cdots\!64}a-\frac{70\!\cdots\!71}{20\!\cdots\!82}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2296254.50823 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{5}\cdot(2\pi)^{8}\cdot 2296254.50823 \cdot 1}{2\cdot\sqrt{27984468103350046268523020288}}\cr\approx \mathstrut & 0.533482801470 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^21 - 2*x^19 - 7*x^18 - 5*x^17 + 11*x^16 + 17*x^15 + 34*x^14 - 32*x^13 - 19*x^12 - 120*x^11 - 65*x^10 - 276*x^9 + 43*x^8 + 539*x^7 + 983*x^6 + 606*x^5 + 280*x^4 + 121*x^3 + 40*x^2 - 13*x - 5)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^21 - 2*x^19 - 7*x^18 - 5*x^17 + 11*x^16 + 17*x^15 + 34*x^14 - 32*x^13 - 19*x^12 - 120*x^11 - 65*x^10 - 276*x^9 + 43*x^8 + 539*x^7 + 983*x^6 + 606*x^5 + 280*x^4 + 121*x^3 + 40*x^2 - 13*x - 5, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^21 - 2*x^19 - 7*x^18 - 5*x^17 + 11*x^16 + 17*x^15 + 34*x^14 - 32*x^13 - 19*x^12 - 120*x^11 - 65*x^10 - 276*x^9 + 43*x^8 + 539*x^7 + 983*x^6 + 606*x^5 + 280*x^4 + 121*x^3 + 40*x^2 - 13*x - 5);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 2*x^19 - 7*x^18 - 5*x^17 + 11*x^16 + 17*x^15 + 34*x^14 - 32*x^13 - 19*x^12 - 120*x^11 - 65*x^10 - 276*x^9 + 43*x^8 + 539*x^7 + 983*x^6 + 606*x^5 + 280*x^4 + 121*x^3 + 40*x^2 - 13*x - 5);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\PGL(2,7)$ (as 21T20):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 336
The 9 conjugacy class representatives for $\PGL(2,7)$
Character table for $\PGL(2,7)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 8 sibling: 8.0.3036027392.1
Degree 14 sibling: data not computed
Degree 16 sibling: data not computed
Degree 24 sibling: data not computed
Degree 28 siblings: data not computed
Degree 42 siblings: data not computed
Minimal sibling: 8.0.3036027392.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.8.0.1}{8} }^{2}{,}\,{\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ ${\href{/padicField/5.8.0.1}{8} }^{2}{,}\,{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.6.0.1}{6} }^{3}{,}\,{\href{/padicField/7.3.0.1}{3} }$ ${\href{/padicField/11.8.0.1}{8} }^{2}{,}\,{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.6.0.1}{6} }^{3}{,}\,{\href{/padicField/13.3.0.1}{3} }$ ${\href{/padicField/17.8.0.1}{8} }^{2}{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.4.0.1}{4} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.8.0.1}{8} }^{2}{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.8.0.1}{8} }^{2}{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.6.0.1}{6} }^{3}{,}\,{\href{/padicField/31.3.0.1}{3} }$ ${\href{/padicField/37.8.0.1}{8} }^{2}{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.6.0.1}{6} }^{3}{,}\,{\href{/padicField/41.3.0.1}{3} }$ ${\href{/padicField/43.6.0.1}{6} }^{3}{,}\,{\href{/padicField/43.3.0.1}{3} }$ ${\href{/padicField/47.8.0.1}{8} }^{2}{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.7.0.1}{7} }^{3}$ ${\href{/padicField/59.6.0.1}{6} }^{3}{,}\,{\href{/padicField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.3.0.1$x^{3} + x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.6.9.3$x^{6} + 12 x^{5} + 86 x^{4} + 352 x^{3} + 892 x^{2} + 1552 x + 1384$$2$$3$$9$$C_6$$[3]^{3}$
2.6.9.3$x^{6} + 12 x^{5} + 86 x^{4} + 352 x^{3} + 892 x^{2} + 1552 x + 1384$$2$$3$$9$$C_6$$[3]^{3}$
2.6.9.3$x^{6} + 12 x^{5} + 86 x^{4} + 352 x^{3} + 892 x^{2} + 1552 x + 1384$$2$$3$$9$$C_6$$[3]^{3}$
\(181\) Copy content Toggle raw display $\Q_{181}$$x + 179$$1$$1$$0$Trivial$[\ ]$
181.2.1.1$x^{2} + 181$$2$$1$$1$$C_2$$[\ ]_{2}$
181.2.0.1$x^{2} + 177 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.1.2$x^{2} + 362$$2$$1$$1$$C_2$$[\ ]_{2}$
181.2.1.2$x^{2} + 362$$2$$1$$1$$C_2$$[\ ]_{2}$
181.4.2.1$x^{4} + 52120 x^{3} + 683705257 x^{2} + 119397981420 x + 2183938221$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
181.4.2.1$x^{4} + 52120 x^{3} + 683705257 x^{2} + 119397981420 x + 2183938221$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
181.4.2.1$x^{4} + 52120 x^{3} + 683705257 x^{2} + 119397981420 x + 2183938221$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$