Normalized defining polynomial
\( x^{21} - 2 x^{19} - 7 x^{18} - 5 x^{17} + 11 x^{16} + 17 x^{15} + 34 x^{14} - 32 x^{13} - 19 x^{12} - 120 x^{11} - 65 x^{10} - 276 x^{9} + 43 x^{8} + 539 x^{7} + 983 x^{6} + 606 x^{5} + 280 x^{4} + 121 x^{3} + 40 x^{2} - 13 x - 5 \)
Invariants
Degree: | $21$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[5, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(27984468103350046268523020288\)\(\medspace = 2^{27}\cdot 181^{9}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $22.63$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 181$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{16} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{17} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{41763884954038300545706964} a^{20} - \frac{4384520612991629367960817}{41763884954038300545706964} a^{19} + \frac{4919205512487759043065141}{41763884954038300545706964} a^{18} - \frac{8192924729290694549770089}{41763884954038300545706964} a^{17} - \frac{1837940363600787241765291}{20881942477019150272853482} a^{16} - \frac{1966412728332095824280412}{10440971238509575136426741} a^{15} + \frac{8631661602338128650069315}{41763884954038300545706964} a^{14} + \frac{2499023731154116546066495}{41763884954038300545706964} a^{13} - \frac{3733286767353775395163441}{41763884954038300545706964} a^{12} - \frac{18512464666113843262853227}{41763884954038300545706964} a^{11} - \frac{3768356408772525744283547}{41763884954038300545706964} a^{10} + \frac{11090519300950814557410773}{41763884954038300545706964} a^{9} + \frac{13876935540853754607682151}{41763884954038300545706964} a^{8} + \frac{4393567017349300449088311}{41763884954038300545706964} a^{7} - \frac{5057277625950989943556127}{10440971238509575136426741} a^{6} + \frac{135206788839969911531608}{10440971238509575136426741} a^{5} + \frac{171999369495583932187267}{10440971238509575136426741} a^{4} + \frac{2108802572647516743353177}{10440971238509575136426741} a^{3} + \frac{3736557581458921507577913}{41763884954038300545706964} a^{2} + \frac{7357465744758727505651809}{41763884954038300545706964} a + \frac{4998362784246496082720258}{10440971238509575136426741}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $12$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 2296254.50823 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 336 |
The 9 conjugacy class representatives for $SO(3,7)$ |
Character table for $SO(3,7)$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 8 sibling: | data not computed |
Degree 14 sibling: | data not computed |
Degree 16 sibling: | data not computed |
Degree 24 sibling: | data not computed |
Degree 28 siblings: | data not computed |
Degree 42 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
181 | Data not computed |