Normalized defining polynomial
\( x^{21} - 5 x^{20} + 11 x^{19} - 16 x^{18} + 25 x^{17} - 38 x^{16} + 36 x^{15} - 25 x^{14} + 18 x^{13} - 4 x^{12} - 3 x^{11} - 17 x^{10} - 23 x^{9} - 12 x^{8} + 55 x^{7} + 18 x^{6} - 46 x^{5} - 17 x^{4} + 19 x^{3} + 9 x^{2} - 2 x - 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26730926988131422081122304=2^{18}\cdot 317^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 317$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{1653148843589513} a^{20} + \frac{115197759085443}{1653148843589513} a^{19} - \frac{517727222659417}{1653148843589513} a^{18} + \frac{631439641891247}{1653148843589513} a^{17} - \frac{737187128448617}{1653148843589513} a^{16} - \frac{24010063922944}{1653148843589513} a^{15} - \frac{492799661287232}{1653148843589513} a^{14} - \frac{371685123185847}{1653148843589513} a^{13} - \frac{143095731596732}{1653148843589513} a^{12} + \frac{647207877155596}{1653148843589513} a^{11} - \frac{225915711041451}{1653148843589513} a^{10} - \frac{395040835575834}{1653148843589513} a^{9} - \frac{396273240181446}{1653148843589513} a^{8} - \frac{538888576067169}{1653148843589513} a^{7} + \frac{817593970203936}{1653148843589513} a^{6} + \frac{748350138872427}{1653148843589513} a^{5} - \frac{199976960190025}{1653148843589513} a^{4} - \frac{297442835221498}{1653148843589513} a^{3} - \frac{204628594825477}{1653148843589513} a^{2} + \frac{371059352421681}{1653148843589513} a + \frac{100790731293265}{1653148843589513}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25357.2549184 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\PSL(2,7)$ (as 21T14):
| A non-solvable group of order 168 |
| The 6 conjugacy class representatives for $\PSL(2,7)$ |
| Character table for $\PSL(2,7)$ |
Intermediate fields
| 7.3.6431296.2, 7.3.6431296.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 siblings: | 7.3.6431296.2, 7.3.6431296.1 |
| Degree 8 sibling: | 8.0.646274503744.1 |
| Degree 14 siblings: | 14.2.4156382630830772224.1, 14.2.4156382630830772224.2 |
| Degree 24 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 317 | Data not computed | ||||||