Normalized defining polynomial
\(x^{21} - 4 x^{20} + 12 x^{19} - 22 x^{18} + 41 x^{17} - 54 x^{16} + 79 x^{15} - 60 x^{14} + 57 x^{13} + 46 x^{12} - 70 x^{11} + 222 x^{10} - 182 x^{9} + 306 x^{8} - 168 x^{7} + 207 x^{6} - 48 x^{5} + 42 x^{4} + 5 x^{3} - 17 x^{2} - 15 x - 1\)
Invariants
Degree: | $21$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[3, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-65701728236743660173798567\)\(\medspace = -\,3^{24}\cdot 7^{17}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $16.96$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 7$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $3$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{1686610631532830039} a^{20} - \frac{730242971566856973}{1686610631532830039} a^{19} + \frac{499446466947492140}{1686610631532830039} a^{18} - \frac{252011235784020128}{1686610631532830039} a^{17} - \frac{503703143872236947}{1686610631532830039} a^{16} + \frac{188778701101086612}{1686610631532830039} a^{15} - \frac{190892104258966557}{1686610631532830039} a^{14} - \frac{527435338438069102}{1686610631532830039} a^{13} + \frac{518756764211831411}{1686610631532830039} a^{12} - \frac{730520582785067509}{1686610631532830039} a^{11} + \frac{8457731965588080}{1686610631532830039} a^{10} + \frac{75589658619120481}{1686610631532830039} a^{9} + \frac{379089844465653040}{1686610631532830039} a^{8} - \frac{488939847116194629}{1686610631532830039} a^{7} + \frac{824109991569998720}{1686610631532830039} a^{6} + \frac{665436353342875679}{1686610631532830039} a^{5} + \frac{311077520254505894}{1686610631532830039} a^{4} + \frac{468521303771123227}{1686610631532830039} a^{3} - \frac{128422295764890835}{1686610631532830039} a^{2} - \frac{762090133636416309}{1686610631532830039} a - \frac{644116577167021825}{1686610631532830039}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 31647.6272279 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_3\times F_7$ (as 21T9):
A solvable group of order 126 |
The 21 conjugacy class representatives for $C_3\times F_7$ |
Character table for $C_3\times F_7$ is not computed |
Intermediate fields
\(\Q(\zeta_{7})^+\), 7.1.110270727.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $21$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
3 | Data not computed | ||||||
7 | Data not computed |