Normalized defining polynomial
\( x^{21} - 2 x^{20} - x^{19} - 3 x^{18} + 10 x^{17} + 13 x^{16} + x^{15} - 27 x^{14} - 16 x^{13} - 20 x^{12} + 55 x^{11} - 4 x^{10} + 8 x^{9} - 32 x^{8} - x^{7} + 70 x^{6} - 52 x^{5} - 4 x^{4} + 6 x^{3} + 2 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6826740523487474380439552=-\,2^{21}\cdot 71^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{1123} a^{19} + \frac{549}{1123} a^{18} - \frac{486}{1123} a^{17} + \frac{29}{1123} a^{16} + \frac{485}{1123} a^{15} - \frac{210}{1123} a^{14} - \frac{484}{1123} a^{13} + \frac{269}{1123} a^{12} - \frac{486}{1123} a^{11} - \frac{380}{1123} a^{10} - \frac{229}{1123} a^{9} + \frac{184}{1123} a^{8} + \frac{226}{1123} a^{7} - \frac{126}{1123} a^{6} - \frac{383}{1123} a^{5} - \frac{240}{1123} a^{4} + \frac{135}{1123} a^{3} - \frac{73}{1123} a^{2} + \frac{400}{1123} a - \frac{482}{1123}$, $\frac{1}{5759846840051113} a^{20} - \frac{1831290216085}{5759846840051113} a^{19} + \frac{1578844555870078}{5759846840051113} a^{18} - \frac{2737252450552301}{5759846840051113} a^{17} + \frac{427915791087797}{5759846840051113} a^{16} + \frac{2790640140238848}{5759846840051113} a^{15} + \frac{1535080883554518}{5759846840051113} a^{14} + \frac{1760669225346069}{5759846840051113} a^{13} - \frac{445066428164865}{5759846840051113} a^{12} + \frac{1330609776501890}{5759846840051113} a^{11} + \frac{962987638183864}{5759846840051113} a^{10} - \frac{690862674853154}{5759846840051113} a^{9} + \frac{1345081312925895}{5759846840051113} a^{8} + \frac{513812502314985}{5759846840051113} a^{7} - \frac{2445770844664860}{5759846840051113} a^{6} + \frac{1969042718365795}{5759846840051113} a^{5} + \frac{1833979453799909}{5759846840051113} a^{4} - \frac{2097781925797724}{5759846840051113} a^{3} + \frac{2561737255419719}{5759846840051113} a^{2} - \frac{1218171558187049}{5759846840051113} a - \frac{2486611624028086}{5759846840051113}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7666.61577427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times D_7$ (as 21T8):
| A solvable group of order 84 |
| The 15 conjugacy class representatives for $S_3\times D_7$ |
| Character table for $S_3\times D_7$ |
Intermediate fields
| 3.3.568.1, 7.1.357911.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.21.6 | $x^{14} + 4 x^{11} - 3 x^{10} + 4 x^{9} + 2 x^{8} + 2 x^{7} - 3 x^{6} + 2 x^{5} - 2 x^{4} - 2 x^{3} - x^{2} - 2 x + 1$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ | |
| 71 | Data not computed | ||||||