Normalized defining polynomial
\( x^{21} - x^{20} - 6 x^{19} + 8 x^{18} + 15 x^{17} - 28 x^{16} - 39 x^{15} + 74 x^{14} + 112 x^{13} - 127 x^{12} - 227 x^{11} + 89 x^{10} + 306 x^{9} + x^{8} - 244 x^{7} - 55 x^{6} + 122 x^{5} + 40 x^{4} - 41 x^{3} - 6 x^{2} + 8 x - 1 \)
Invariants
Degree: | $21$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[5, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(16253945603436050603615041\)\(\medspace = 13^{8}\cdot 109^{8}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $15.87$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $13, 109$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{13} a^{17} + \frac{3}{13} a^{16} - \frac{1}{13} a^{15} + \frac{2}{13} a^{14} - \frac{3}{13} a^{13} - \frac{5}{13} a^{12} - \frac{1}{13} a^{11} - \frac{2}{13} a^{10} + \frac{6}{13} a^{8} + \frac{5}{13} a^{7} - \frac{5}{13} a^{5} + \frac{4}{13} a^{4} - \frac{6}{13} a^{3} + \frac{6}{13} a^{2} - \frac{1}{13} a + \frac{1}{13}$, $\frac{1}{13} a^{18} + \frac{3}{13} a^{16} + \frac{5}{13} a^{15} + \frac{4}{13} a^{14} + \frac{4}{13} a^{13} + \frac{1}{13} a^{12} + \frac{1}{13} a^{11} + \frac{6}{13} a^{10} + \frac{6}{13} a^{9} - \frac{2}{13} a^{7} - \frac{5}{13} a^{6} + \frac{6}{13} a^{5} - \frac{5}{13} a^{4} - \frac{2}{13} a^{3} - \frac{6}{13} a^{2} + \frac{4}{13} a - \frac{3}{13}$, $\frac{1}{13} a^{19} - \frac{4}{13} a^{16} - \frac{6}{13} a^{15} - \frac{2}{13} a^{14} - \frac{3}{13} a^{13} + \frac{3}{13} a^{12} - \frac{4}{13} a^{11} - \frac{1}{13} a^{10} + \frac{6}{13} a^{8} + \frac{6}{13} a^{7} + \frac{6}{13} a^{6} - \frac{3}{13} a^{5} - \frac{1}{13} a^{4} - \frac{1}{13} a^{3} - \frac{1}{13} a^{2} - \frac{3}{13}$, $\frac{1}{54746195699} a^{20} - \frac{1527135170}{54746195699} a^{19} - \frac{1923090249}{54746195699} a^{18} + \frac{600428357}{54746195699} a^{17} + \frac{3509160196}{54746195699} a^{16} - \frac{1994377962}{4211245823} a^{15} + \frac{1969036218}{54746195699} a^{14} - \frac{16609214244}{54746195699} a^{13} - \frac{4648215350}{54746195699} a^{12} + \frac{20830433798}{54746195699} a^{11} - \frac{26314124665}{54746195699} a^{10} - \frac{23928899390}{54746195699} a^{9} + \frac{21131991303}{54746195699} a^{8} - \frac{20467156920}{54746195699} a^{7} - \frac{26186883091}{54746195699} a^{6} + \frac{4504342602}{54746195699} a^{5} - \frac{1048801418}{54746195699} a^{4} - \frac{1285799224}{54746195699} a^{3} + \frac{19159610627}{54746195699} a^{2} - \frac{9682737660}{54746195699} a + \frac{7063160961}{54746195699}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $12$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 17240.5464964 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$\PSL(2,7)$ (as 21T14):
A non-solvable group of order 168 |
The 6 conjugacy class representatives for $\PSL(2,7)$ |
Character table for $\PSL(2,7)$ |
Intermediate fields
7.3.2007889.1, 7.3.2007889.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 7 siblings: | 7.3.2007889.1, 7.3.2007889.2 |
Degree 8 sibling: | 8.0.4031618236321.1 |
Degree 14 siblings: | Deg 14, Deg 14 |
Degree 24 sibling: | data not computed |
Degree 28 sibling: | data not computed |
Degree 42 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
109 | Data not computed |