Properties

Label 21.1.341...000.1
Degree $21$
Signature $[1, 10]$
Discriminant $3.415\times 10^{28}$
Root discriminant \(22.84\)
Ramified primes $2,3,5$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_3\times F_7$ (as 21T15)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 10*x^18 + 36*x^15 - 76*x^12 - 224*x^9 - 144*x^6 - 32*x^3 - 16)
 
gp: K = bnfinit(y^21 - 10*y^18 + 36*y^15 - 76*y^12 - 224*y^9 - 144*y^6 - 32*y^3 - 16, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 10*x^18 + 36*x^15 - 76*x^12 - 224*x^9 - 144*x^6 - 32*x^3 - 16);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 10*x^18 + 36*x^15 - 76*x^12 - 224*x^9 - 144*x^6 - 32*x^3 - 16)
 

\( x^{21} - 10x^{18} + 36x^{15} - 76x^{12} - 224x^{9} - 144x^{6} - 32x^{3} - 16 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $21$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 10]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(34154868120917133312000000000\) \(\medspace = 2^{20}\cdot 3^{34}\cdot 5^{9}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(22.84\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{20/21}3^{31/18}5^{1/2}\approx 28.700473627493697$
Ramified primes:   \(2\), \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{6}a^{9}+\frac{1}{6}a^{6}+\frac{1}{3}a^{3}+\frac{1}{3}$, $\frac{1}{18}a^{10}+\frac{1}{18}a^{9}-\frac{1}{6}a^{8}+\frac{1}{18}a^{7}+\frac{2}{9}a^{6}+\frac{1}{9}a^{4}+\frac{1}{9}a^{3}-\frac{1}{3}a^{2}+\frac{4}{9}a-\frac{2}{9}$, $\frac{1}{36}a^{11}+\frac{1}{18}a^{9}+\frac{1}{9}a^{8}-\frac{1}{6}a^{7}+\frac{1}{18}a^{6}-\frac{4}{9}a^{5}+\frac{1}{9}a^{3}-\frac{1}{9}a^{2}-\frac{1}{3}a+\frac{4}{9}$, $\frac{1}{36}a^{12}+\frac{1}{18}a^{9}-\frac{1}{6}a^{6}-\frac{2}{9}a^{3}+\frac{2}{9}$, $\frac{1}{36}a^{13}-\frac{1}{18}a^{9}+\frac{1}{6}a^{8}-\frac{2}{9}a^{7}-\frac{2}{9}a^{6}-\frac{1}{3}a^{4}-\frac{1}{9}a^{3}+\frac{1}{3}a^{2}-\frac{2}{9}a+\frac{2}{9}$, $\frac{1}{36}a^{14}+\frac{1}{18}a^{9}+\frac{1}{9}a^{8}-\frac{1}{6}a^{7}+\frac{1}{18}a^{6}-\frac{1}{3}a^{5}+\frac{1}{9}a^{3}+\frac{4}{9}a^{2}-\frac{1}{3}a+\frac{4}{9}$, $\frac{1}{108}a^{15}-\frac{1}{27}a^{9}-\frac{2}{27}a^{6}-\frac{1}{3}a^{3}+\frac{8}{27}$, $\frac{1}{648}a^{16}-\frac{1}{324}a^{15}-\frac{1}{108}a^{14}+\frac{1}{108}a^{12}+\frac{1}{108}a^{11}-\frac{1}{162}a^{10}-\frac{13}{162}a^{9}+\frac{1}{6}a^{8}-\frac{29}{162}a^{7}+\frac{2}{81}a^{6}-\frac{10}{27}a^{5}+\frac{4}{9}a^{4}-\frac{5}{27}a^{3}+\frac{13}{27}a^{2}-\frac{23}{81}a-\frac{20}{81}$, $\frac{1}{648}a^{17}+\frac{1}{324}a^{15}+\frac{1}{108}a^{14}+\frac{1}{108}a^{13}+\frac{1}{81}a^{11}+\frac{1}{54}a^{10}+\frac{7}{162}a^{9}-\frac{11}{162}a^{8}+\frac{1}{9}a^{7}+\frac{16}{81}a^{6}+\frac{10}{27}a^{5}-\frac{2}{27}a^{4}+\frac{37}{81}a^{2}-\frac{7}{27}a-\frac{10}{81}$, $\frac{1}{648}a^{18}-\frac{1}{324}a^{15}-\frac{1}{162}a^{12}+\frac{1}{18}a^{9}-\frac{1}{6}a^{8}+\frac{1}{6}a^{7}+\frac{31}{162}a^{6}+\frac{22}{81}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a-\frac{26}{81}$, $\frac{1}{648}a^{19}+\frac{1}{324}a^{15}+\frac{1}{108}a^{14}-\frac{1}{162}a^{13}-\frac{1}{108}a^{12}-\frac{1}{108}a^{11}-\frac{1}{81}a^{10}+\frac{2}{81}a^{9}+\frac{1}{6}a^{8}-\frac{2}{9}a^{7}-\frac{13}{162}a^{6}+\frac{10}{27}a^{5}+\frac{4}{81}a^{4}+\frac{2}{27}a^{3}+\frac{5}{27}a^{2}-\frac{1}{3}a-\frac{16}{81}$, $\frac{1}{648}a^{20}-\frac{1}{324}a^{15}+\frac{1}{81}a^{14}-\frac{1}{108}a^{13}-\frac{1}{324}a^{11}-\frac{1}{54}a^{10}-\frac{7}{162}a^{9}+\frac{2}{9}a^{8}+\frac{1}{18}a^{7}+\frac{11}{81}a^{6}+\frac{28}{81}a^{5}+\frac{2}{27}a^{4}-\frac{2}{27}a^{2}-\frac{11}{27}a-\frac{17}{81}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $10$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{19}{648}a^{20}-\frac{1}{324}a^{19}-\frac{1}{216}a^{18}-\frac{49}{162}a^{17}+\frac{5}{216}a^{16}+\frac{7}{162}a^{15}+\frac{373}{324}a^{14}-\frac{11}{324}a^{13}-\frac{7}{54}a^{12}-\frac{421}{162}a^{11}-\frac{4}{81}a^{10}+\frac{29}{162}a^{9}-\frac{461}{81}a^{8}+\frac{71}{54}a^{7}+\frac{241}{162}a^{6}-\frac{206}{81}a^{5}+\frac{175}{81}a^{4}+\frac{19}{27}a^{3}-\frac{34}{81}a^{2}+\frac{43}{27}a+\frac{7}{81}$, $\frac{41}{648}a^{20}+\frac{5}{648}a^{19}-\frac{1}{81}a^{18}-\frac{101}{162}a^{17}-\frac{29}{324}a^{16}+\frac{43}{324}a^{15}+\frac{707}{324}a^{14}+\frac{131}{324}a^{13}-\frac{173}{324}a^{12}-\frac{1441}{324}a^{11}-\frac{19}{18}a^{10}+\frac{100}{81}a^{9}-\frac{2423}{162}a^{8}-\frac{59}{81}a^{7}+\frac{359}{162}a^{6}-\frac{901}{81}a^{5}+\frac{125}{81}a^{4}-\frac{68}{81}a^{3}-\frac{182}{81}a^{2}+\frac{68}{81}a-\frac{61}{81}$, $\frac{2}{81}a^{20}+\frac{1}{324}a^{19}-\frac{11}{648}a^{18}-\frac{41}{162}a^{17}-\frac{1}{36}a^{16}+\frac{55}{324}a^{15}+\frac{307}{324}a^{14}+\frac{23}{324}a^{13}-\frac{50}{81}a^{12}-\frac{223}{108}a^{11}-\frac{2}{81}a^{10}+\frac{221}{162}a^{9}-\frac{421}{81}a^{8}-\frac{4}{3}a^{7}+\frac{563}{162}a^{6}-\frac{155}{81}a^{5}-\frac{10}{81}a^{4}+\frac{274}{81}a^{3}+\frac{40}{81}a^{2}+\frac{2}{9}a+\frac{95}{81}$, $\frac{4}{81}a^{20}-\frac{23}{324}a^{19}-\frac{23}{648}a^{18}-\frac{155}{324}a^{17}+\frac{461}{648}a^{16}+\frac{113}{324}a^{15}+\frac{265}{162}a^{14}-\frac{413}{162}a^{13}-\frac{395}{324}a^{12}-\frac{361}{108}a^{11}+\frac{47}{9}a^{10}+\frac{5}{2}a^{9}-\frac{1873}{162}a^{8}+\frac{2705}{162}a^{7}+\frac{674}{81}a^{6}-\frac{1006}{81}a^{5}+\frac{617}{81}a^{4}+\frac{556}{81}a^{3}-\frac{367}{81}a^{2}-\frac{100}{81}a+\frac{211}{81}$, $\frac{17}{324}a^{20}-\frac{1}{324}a^{19}+\frac{7}{216}a^{18}-\frac{335}{648}a^{17}+\frac{1}{36}a^{16}-\frac{107}{324}a^{15}+\frac{583}{324}a^{14}-\frac{23}{324}a^{13}+\frac{11}{9}a^{12}-\frac{43}{12}a^{11}+\frac{2}{81}a^{10}-\frac{425}{162}a^{9}-\frac{2075}{162}a^{8}+\frac{4}{3}a^{7}-\frac{569}{81}a^{6}-\frac{671}{81}a^{5}+\frac{10}{81}a^{4}-\frac{8}{3}a^{3}-\frac{11}{81}a^{2}-\frac{11}{9}a+\frac{65}{81}$, $\frac{11}{648}a^{20}+\frac{7}{162}a^{19}-\frac{53}{324}a^{17}-\frac{287}{648}a^{16}+\frac{44}{81}a^{14}+\frac{269}{162}a^{13}-\frac{109}{108}a^{11}-\frac{98}{27}a^{10}-\frac{362}{81}a^{8}-\frac{1469}{162}a^{7}-\frac{280}{81}a^{5}-\frac{266}{81}a^{4}+\frac{53}{81}a^{2}+\frac{4}{81}a+1$, $\frac{5}{162}a^{20}+\frac{1}{72}a^{19}-\frac{1}{54}a^{18}-\frac{221}{648}a^{17}-\frac{4}{27}a^{16}+\frac{31}{162}a^{15}+\frac{235}{162}a^{14}+\frac{65}{108}a^{13}-\frac{79}{108}a^{12}-\frac{298}{81}a^{11}-\frac{40}{27}a^{10}+\frac{269}{162}a^{9}-\frac{611}{162}a^{8}-\frac{55}{27}a^{7}+\frac{571}{162}a^{6}+\frac{104}{81}a^{5}-\frac{28}{27}a^{4}+\frac{47}{27}a^{3}+\frac{64}{81}a^{2}-\frac{1}{27}a+\frac{91}{81}$, $\frac{19}{648}a^{20}+\frac{7}{648}a^{19}-\frac{1}{216}a^{18}-\frac{49}{162}a^{17}-\frac{23}{216}a^{16}+\frac{7}{162}a^{15}+\frac{373}{324}a^{14}+\frac{31}{81}a^{13}-\frac{7}{54}a^{12}-\frac{421}{162}a^{11}-\frac{70}{81}a^{10}+\frac{29}{162}a^{9}-\frac{461}{81}a^{8}-\frac{58}{27}a^{7}+\frac{241}{162}a^{6}-\frac{206}{81}a^{5}-\frac{230}{81}a^{4}+\frac{19}{27}a^{3}-\frac{34}{81}a^{2}-\frac{10}{9}a+\frac{7}{81}$, $\frac{1}{81}a^{20}+\frac{5}{324}a^{19}-\frac{1}{81}a^{18}-\frac{95}{648}a^{17}-\frac{19}{108}a^{16}+\frac{47}{324}a^{15}+\frac{227}{324}a^{14}+\frac{64}{81}a^{13}-\frac{221}{324}a^{12}-\frac{661}{324}a^{11}-\frac{175}{81}a^{10}+\frac{35}{18}a^{9}+\frac{19}{162}a^{8}-\frac{47}{54}a^{7}+\frac{37}{162}a^{6}+\frac{50}{81}a^{5}+\frac{10}{81}a^{4}-\frac{80}{81}a^{3}-\frac{47}{81}a^{2}+\frac{26}{27}a+\frac{73}{81}$, $\frac{7}{216}a^{20}+\frac{1}{27}a^{19}-\frac{5}{162}a^{18}-\frac{215}{648}a^{17}-\frac{127}{324}a^{16}+\frac{107}{324}a^{15}+\frac{34}{27}a^{14}+\frac{14}{9}a^{13}-\frac{217}{162}a^{12}-\frac{941}{324}a^{11}-\frac{296}{81}a^{10}+\frac{59}{18}a^{9}-\frac{487}{81}a^{8}-\frac{520}{81}a^{7}+\frac{733}{162}a^{6}-\frac{125}{27}a^{5}-a^{4}+\frac{112}{81}a^{3}-\frac{149}{81}a^{2}+\frac{34}{81}a-\frac{47}{81}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2085380.41806 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{10}\cdot 2085380.41806 \cdot 1}{2\cdot\sqrt{34154868120917133312000000000}}\cr\approx \mathstrut & 1.08207576000 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^21 - 10*x^18 + 36*x^15 - 76*x^12 - 224*x^9 - 144*x^6 - 32*x^3 - 16)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^21 - 10*x^18 + 36*x^15 - 76*x^12 - 224*x^9 - 144*x^6 - 32*x^3 - 16, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^21 - 10*x^18 + 36*x^15 - 76*x^12 - 224*x^9 - 144*x^6 - 32*x^3 - 16);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 10*x^18 + 36*x^15 - 76*x^12 - 224*x^9 - 144*x^6 - 32*x^3 - 16);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3\times F_7$ (as 21T15):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 252
The 21 conjugacy class representatives for $S_3\times F_7$
Character table for $S_3\times F_7$ is not computed

Intermediate fields

3.1.108.1, 7.1.157464000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 42 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.6.0.1}{6} }^{3}{,}\,{\href{/padicField/7.3.0.1}{3} }$ ${\href{/padicField/11.6.0.1}{6} }^{3}{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.6.0.1}{6} }^{3}{,}\,{\href{/padicField/13.3.0.1}{3} }$ ${\href{/padicField/17.14.0.1}{14} }{,}\,{\href{/padicField/17.7.0.1}{7} }$ $21$ ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.6.0.1}{6} }^{3}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.3.0.1}{3} }^{6}{,}\,{\href{/padicField/31.1.0.1}{1} }^{3}$ ${\href{/padicField/37.6.0.1}{6} }^{3}{,}\,{\href{/padicField/37.3.0.1}{3} }$ ${\href{/padicField/41.6.0.1}{6} }^{3}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.6.0.1}{6} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }^{3}$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.14.0.1}{14} }{,}\,{\href{/padicField/53.7.0.1}{7} }$ ${\href{/padicField/59.6.0.1}{6} }^{3}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.21.20.1$x^{21} + 2$$21$$1$$20$21T11$[\ ]_{21}^{6}$
\(3\) Copy content Toggle raw display 3.3.3.2$x^{3} + 3 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
Deg $18$$18$$1$$31$
\(5\) Copy content Toggle raw display $\Q_{5}$$x + 3$$1$$1$$0$Trivial$[\ ]$
5.2.0.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.6.3.2$x^{6} + 75 x^{2} - 375$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.12.6.1$x^{12} + 120 x^{11} + 6032 x^{10} + 163208 x^{9} + 2529528 x^{8} + 21853448 x^{7} + 92223962 x^{6} + 138649448 x^{5} + 223472880 x^{4} + 401794296 x^{3} + 295909124 x^{2} + 118616440 x + 126881009$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$