Normalized defining polynomial
\( x^{21} - 10 x^{18} + 36 x^{15} - 76 x^{12} - 224 x^{9} - 144 x^{6} - 32 x^{3} - 16 \)
Invariants
Degree: | $21$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 10]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(34154868120917133312000000000\)\(\medspace = 2^{20}\cdot 3^{34}\cdot 5^{9}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $22.84$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 5$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{6} a^{9} + \frac{1}{6} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{18} a^{10} + \frac{1}{18} a^{9} - \frac{1}{6} a^{8} + \frac{1}{18} a^{7} + \frac{2}{9} a^{6} + \frac{1}{9} a^{4} + \frac{1}{9} a^{3} - \frac{1}{3} a^{2} + \frac{4}{9} a - \frac{2}{9}$, $\frac{1}{36} a^{11} + \frac{1}{18} a^{9} + \frac{1}{9} a^{8} - \frac{1}{6} a^{7} + \frac{1}{18} a^{6} - \frac{4}{9} a^{5} + \frac{1}{9} a^{3} - \frac{1}{9} a^{2} - \frac{1}{3} a + \frac{4}{9}$, $\frac{1}{36} a^{12} + \frac{1}{18} a^{9} - \frac{1}{6} a^{6} - \frac{2}{9} a^{3} + \frac{2}{9}$, $\frac{1}{36} a^{13} - \frac{1}{18} a^{9} + \frac{1}{6} a^{8} - \frac{2}{9} a^{7} - \frac{2}{9} a^{6} - \frac{1}{3} a^{4} - \frac{1}{9} a^{3} + \frac{1}{3} a^{2} - \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{36} a^{14} + \frac{1}{18} a^{9} + \frac{1}{9} a^{8} - \frac{1}{6} a^{7} + \frac{1}{18} a^{6} - \frac{1}{3} a^{5} + \frac{1}{9} a^{3} + \frac{4}{9} a^{2} - \frac{1}{3} a + \frac{4}{9}$, $\frac{1}{108} a^{15} - \frac{1}{27} a^{9} - \frac{2}{27} a^{6} - \frac{1}{3} a^{3} + \frac{8}{27}$, $\frac{1}{648} a^{16} - \frac{1}{324} a^{15} - \frac{1}{108} a^{14} + \frac{1}{108} a^{12} + \frac{1}{108} a^{11} - \frac{1}{162} a^{10} - \frac{13}{162} a^{9} + \frac{1}{6} a^{8} - \frac{29}{162} a^{7} + \frac{2}{81} a^{6} - \frac{10}{27} a^{5} + \frac{4}{9} a^{4} - \frac{5}{27} a^{3} + \frac{13}{27} a^{2} - \frac{23}{81} a - \frac{20}{81}$, $\frac{1}{648} a^{17} + \frac{1}{324} a^{15} + \frac{1}{108} a^{14} + \frac{1}{108} a^{13} + \frac{1}{81} a^{11} + \frac{1}{54} a^{10} + \frac{7}{162} a^{9} - \frac{11}{162} a^{8} + \frac{1}{9} a^{7} + \frac{16}{81} a^{6} + \frac{10}{27} a^{5} - \frac{2}{27} a^{4} + \frac{37}{81} a^{2} - \frac{7}{27} a - \frac{10}{81}$, $\frac{1}{648} a^{18} - \frac{1}{324} a^{15} - \frac{1}{162} a^{12} + \frac{1}{18} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} + \frac{31}{162} a^{6} + \frac{22}{81} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{26}{81}$, $\frac{1}{648} a^{19} + \frac{1}{324} a^{15} + \frac{1}{108} a^{14} - \frac{1}{162} a^{13} - \frac{1}{108} a^{12} - \frac{1}{108} a^{11} - \frac{1}{81} a^{10} + \frac{2}{81} a^{9} + \frac{1}{6} a^{8} - \frac{2}{9} a^{7} - \frac{13}{162} a^{6} + \frac{10}{27} a^{5} + \frac{4}{81} a^{4} + \frac{2}{27} a^{3} + \frac{5}{27} a^{2} - \frac{1}{3} a - \frac{16}{81}$, $\frac{1}{648} a^{20} - \frac{1}{324} a^{15} + \frac{1}{81} a^{14} - \frac{1}{108} a^{13} - \frac{1}{324} a^{11} - \frac{1}{54} a^{10} - \frac{7}{162} a^{9} + \frac{2}{9} a^{8} + \frac{1}{18} a^{7} + \frac{11}{81} a^{6} + \frac{28}{81} a^{5} + \frac{2}{27} a^{4} - \frac{2}{27} a^{2} - \frac{11}{27} a - \frac{17}{81}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $10$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 2085380.41806 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$S_3\times F_7$ (as 21T15):
A solvable group of order 252 |
The 21 conjugacy class representatives for $S_3\times F_7$ |
Character table for $S_3\times F_7$ is not computed |
Intermediate fields
3.1.108.1, 7.1.157464000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 42 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
3 | Data not computed | ||||||
$5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |