Normalized defining polynomial
\( x^{21} - x^{20} - 6 x^{19} + 11 x^{18} + 47 x^{17} - 45 x^{16} - 170 x^{15} + 162 x^{14} + 400 x^{13} - 307 x^{12} - 750 x^{11} + 395 x^{10} + 733 x^{9} - 371 x^{8} - 425 x^{7} + 197 x^{6} + 204 x^{5} - 78 x^{4} - 36 x^{3} + 17 x^{2} - 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-105070765003019731854543276767=-\,17^{3}\cdot 23^{8}\cdot 64879^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 23, 64879$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{23} a^{17} + \frac{3}{23} a^{16} - \frac{5}{23} a^{15} - \frac{5}{23} a^{14} - \frac{9}{23} a^{13} + \frac{11}{23} a^{12} - \frac{7}{23} a^{11} + \frac{11}{23} a^{9} - \frac{7}{23} a^{8} + \frac{9}{23} a^{7} - \frac{5}{23} a^{6} - \frac{4}{23} a^{5} - \frac{11}{23} a^{4} + \frac{10}{23} a^{3} + \frac{1}{23} a^{2} - \frac{7}{23} a - \frac{9}{23}$, $\frac{1}{23} a^{18} + \frac{9}{23} a^{16} + \frac{10}{23} a^{15} + \frac{6}{23} a^{14} - \frac{8}{23} a^{13} + \frac{6}{23} a^{12} - \frac{2}{23} a^{11} + \frac{11}{23} a^{10} + \frac{6}{23} a^{9} + \frac{7}{23} a^{8} - \frac{9}{23} a^{7} + \frac{11}{23} a^{6} + \frac{1}{23} a^{5} - \frac{3}{23} a^{4} - \frac{6}{23} a^{3} - \frac{10}{23} a^{2} - \frac{11}{23} a + \frac{4}{23}$, $\frac{1}{23} a^{19} + \frac{6}{23} a^{16} + \frac{5}{23} a^{15} - \frac{9}{23} a^{14} - \frac{5}{23} a^{13} - \frac{9}{23} a^{12} + \frac{5}{23} a^{11} + \frac{6}{23} a^{10} + \frac{8}{23} a^{8} - \frac{1}{23} a^{7} + \frac{10}{23} a^{5} + \frac{1}{23} a^{4} - \frac{8}{23} a^{3} + \frac{3}{23} a^{2} - \frac{2}{23} a - \frac{11}{23}$, $\frac{1}{2902322098104866537963} a^{20} - \frac{48183387586271631288}{2902322098104866537963} a^{19} + \frac{12888253147197190224}{2902322098104866537963} a^{18} + \frac{50192698655542644521}{2902322098104866537963} a^{17} - \frac{17690500702077965049}{170724829300286266939} a^{16} + \frac{709496778106634377441}{2902322098104866537963} a^{15} + \frac{1032730163114003983286}{2902322098104866537963} a^{14} - \frac{1420819141778105408867}{2902322098104866537963} a^{13} - \frac{527813389732618645589}{2902322098104866537963} a^{12} + \frac{1414801604033776337102}{2902322098104866537963} a^{11} + \frac{5297350609619376466}{126187917308907240781} a^{10} - \frac{698063089953724176494}{2902322098104866537963} a^{9} + \frac{1235217639016628065536}{2902322098104866537963} a^{8} + \frac{650495939074008145181}{2902322098104866537963} a^{7} - \frac{838935380959425975257}{2902322098104866537963} a^{6} - \frac{689819862510447246556}{2902322098104866537963} a^{5} + \frac{1224880719308395289516}{2902322098104866537963} a^{4} - \frac{285728711554321547065}{2902322098104866537963} a^{3} + \frac{29601326438528008946}{2902322098104866537963} a^{2} + \frac{1195031146410863069076}{2902322098104866537963} a + \frac{1216188126431299986782}{2902322098104866537963}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2726200.25314 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30240 |
| The 45 conjugacy class representatives for t21n74 |
| Character table for t21n74 is not computed |
Intermediate fields
| 3.1.23.1, 7.7.25367689.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | $15{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 64879 | Data not computed | ||||||