Normalized defining polynomial
\( x^{21} + x^{19} - 5 x^{18} + 8 x^{17} - 5 x^{16} + 11 x^{15} - 40 x^{14} + 33 x^{13} + 2 x^{12} + 62 x^{11} - 87 x^{10} - 12 x^{9} - 43 x^{8} + 76 x^{7} + 27 x^{6} - 15 x^{5} - 7 x^{4} - 10 x^{3} + 2 x^{2} + x + 1 \)
Invariants
Degree: | $21$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 10]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(23714597990105054274863104\)\(\medspace = 2^{14}\cdot 11^{8}\cdot 41^{3}\cdot 461^{3}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $16.16$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 11, 41, 461$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{11} a^{19} - \frac{4}{11} a^{18} + \frac{2}{11} a^{17} + \frac{3}{11} a^{16} - \frac{1}{11} a^{15} - \frac{2}{11} a^{14} + \frac{1}{11} a^{13} - \frac{3}{11} a^{12} - \frac{3}{11} a^{11} + \frac{4}{11} a^{10} + \frac{3}{11} a^{9} - \frac{5}{11} a^{8} - \frac{4}{11} a^{7} + \frac{4}{11} a^{6} - \frac{1}{11} a^{5} + \frac{4}{11} a^{4} - \frac{5}{11} a^{3} - \frac{3}{11} a^{2} + \frac{3}{11}$, $\frac{1}{1328791069714559} a^{20} + \frac{12286583537248}{1328791069714559} a^{19} + \frac{191668500441346}{1328791069714559} a^{18} - \frac{345610731565114}{1328791069714559} a^{17} + \frac{422414217258764}{1328791069714559} a^{16} + \frac{488917770915768}{1328791069714559} a^{15} - \frac{581584913027979}{1328791069714559} a^{14} - \frac{351668375273832}{1328791069714559} a^{13} + \frac{161636401398155}{1328791069714559} a^{12} + \frac{172805438621979}{1328791069714559} a^{11} + \frac{235695191095}{120799188155869} a^{10} - \frac{411605789161335}{1328791069714559} a^{9} + \frac{82949821253362}{1328791069714559} a^{8} + \frac{300167517426487}{1328791069714559} a^{7} + \frac{94700910671880}{1328791069714559} a^{6} - \frac{260498236608982}{1328791069714559} a^{5} - \frac{89433799389327}{1328791069714559} a^{4} - \frac{545203816347170}{1328791069714559} a^{3} - \frac{199115360932769}{1328791069714559} a^{2} + \frac{65972783522363}{1328791069714559} a + \frac{156756481586128}{1328791069714559}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $10$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 11721.4726991 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 30240 |
The 45 conjugacy class representatives for t21n74 |
Character table for t21n74 is not computed |
Intermediate fields
3.1.44.1, 7.1.207911.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 42 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $21$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
$11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
11.10.5.2 | $x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
41 | Data not computed | ||||||
461 | Data not computed |