Properties

Label 5850.2
Level 5850
Weight 2
Dimension 218021
Nonzero newspaces 100
Sturm bound 3628800

Downloads

Learn more

Defining parameters

Level: N N = 5850=2325213 5850 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 13
Weight: k k = 2 2
Nonzero newspaces: 100 100
Sturm bound: 36288003628800

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(5850))M_{2}(\Gamma_1(5850)).

Total New Old
Modular forms 917952 218021 699931
Cusp forms 896449 218021 678428
Eisenstein series 21503 0 21503

Decomposition of S2new(Γ1(5850))S_{2}^{\mathrm{new}}(\Gamma_1(5850))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
5850.2.a χ5850(1,)\chi_{5850}(1, \cdot) 5850.2.a.a 1 1
5850.2.a.b 1
5850.2.a.c 1
5850.2.a.d 1
5850.2.a.e 1
5850.2.a.f 1
5850.2.a.g 1
5850.2.a.h 1
5850.2.a.i 1
5850.2.a.j 1
5850.2.a.k 1
5850.2.a.l 1
5850.2.a.m 1
5850.2.a.n 1
5850.2.a.o 1
5850.2.a.p 1
5850.2.a.q 1
5850.2.a.r 1
5850.2.a.s 1
5850.2.a.t 1
5850.2.a.u 1
5850.2.a.v 1
5850.2.a.w 1
5850.2.a.x 1
5850.2.a.y 1
5850.2.a.z 1
5850.2.a.ba 1
5850.2.a.bb 1
5850.2.a.bc 1
5850.2.a.bd 1
5850.2.a.be 1
5850.2.a.bf 1
5850.2.a.bg 1
5850.2.a.bh 1
5850.2.a.bi 1
5850.2.a.bj 1
5850.2.a.bk 1
5850.2.a.bl 1
5850.2.a.bm 1
5850.2.a.bn 1
5850.2.a.bo 1
5850.2.a.bp 1
5850.2.a.bq 1
5850.2.a.br 1
5850.2.a.bs 1
5850.2.a.bt 1
5850.2.a.bu 1
5850.2.a.bv 1
5850.2.a.bw 1
5850.2.a.bx 1
5850.2.a.by 1
5850.2.a.bz 1
5850.2.a.ca 1
5850.2.a.cb 1
5850.2.a.cc 1
5850.2.a.cd 2
5850.2.a.ce 2
5850.2.a.cf 2
5850.2.a.cg 2
5850.2.a.ch 2
5850.2.a.ci 2
5850.2.a.cj 2
5850.2.a.ck 2
5850.2.a.cl 2
5850.2.a.cm 2
5850.2.a.cn 2
5850.2.a.co 3
5850.2.a.cp 3
5850.2.a.cq 3
5850.2.a.cr 3
5850.2.a.cs 3
5850.2.a.ct 3
5850.2.b χ5850(1351,)\chi_{5850}(1351, \cdot) n/a 110 1
5850.2.e χ5850(5149,)\chi_{5850}(5149, \cdot) 5850.2.e.a 2 1
5850.2.e.b 2
5850.2.e.c 2
5850.2.e.d 2
5850.2.e.e 2
5850.2.e.f 2
5850.2.e.g 2
5850.2.e.h 2
5850.2.e.i 2
5850.2.e.j 2
5850.2.e.k 2
5850.2.e.l 2
5850.2.e.m 2
5850.2.e.n 2
5850.2.e.o 2
5850.2.e.p 2
5850.2.e.q 2
5850.2.e.r 2
5850.2.e.s 2
5850.2.e.t 2
5850.2.e.u 2
5850.2.e.v 2
5850.2.e.w 2
5850.2.e.x 2
5850.2.e.y 2
5850.2.e.z 2
5850.2.e.ba 2
5850.2.e.bb 2
5850.2.e.bc 2
5850.2.e.bd 2
5850.2.e.be 2
5850.2.e.bf 2
5850.2.e.bg 2
5850.2.e.bh 4
5850.2.e.bi 4
5850.2.e.bj 4
5850.2.e.bk 4
5850.2.e.bl 4
5850.2.e.bm 4
5850.2.f χ5850(649,)\chi_{5850}(649, \cdot) n/a 104 1
5850.2.i χ5850(451,)\chi_{5850}(451, \cdot) n/a 222 2
5850.2.j χ5850(1951,)\chi_{5850}(1951, \cdot) n/a 456 2
5850.2.k χ5850(601,)\chi_{5850}(601, \cdot) n/a 532 2
5850.2.l χ5850(2401,)\chi_{5850}(2401, \cdot) n/a 532 2
5850.2.m χ5850(1243,)\chi_{5850}(1243, \cdot) n/a 210 2
5850.2.o χ5850(1457,)\chi_{5850}(1457, \cdot) n/a 144 2
5850.2.q χ5850(1799,)\chi_{5850}(1799, \cdot) n/a 168 2
5850.2.s χ5850(2501,)\chi_{5850}(2501, \cdot) n/a 172 2
5850.2.v χ5850(2807,)\chi_{5850}(2807, \cdot) n/a 168 2
5850.2.w χ5850(307,)\chi_{5850}(307, \cdot) n/a 210 2
5850.2.y χ5850(1171,)\chi_{5850}(1171, \cdot) n/a 600 4
5850.2.z χ5850(1699,)\chi_{5850}(1699, \cdot) n/a 504 2
5850.2.bc χ5850(751,)\chi_{5850}(751, \cdot) n/a 532 2
5850.2.be χ5850(3949,)\chi_{5850}(3949, \cdot) n/a 504 2
5850.2.bh χ5850(2599,)\chi_{5850}(2599, \cdot) n/a 504 2
5850.2.bk χ5850(199,)\chi_{5850}(199, \cdot) n/a 208 2
5850.2.bn χ5850(4651,)\chi_{5850}(4651, \cdot) n/a 532 2
5850.2.bp χ5850(1249,)\chi_{5850}(1249, \cdot) n/a 432 2
5850.2.bq χ5850(3799,)\chi_{5850}(3799, \cdot) n/a 212 2
5850.2.bt χ5850(901,)\chi_{5850}(901, \cdot) n/a 224 2
5850.2.bu χ5850(3301,)\chi_{5850}(3301, \cdot) n/a 532 2
5850.2.bw χ5850(3649,)\chi_{5850}(3649, \cdot) n/a 504 2
5850.2.ca χ5850(49,)\chi_{5850}(49, \cdot) n/a 504 2
5850.2.cb χ5850(469,)\chi_{5850}(469, \cdot) n/a 600 4
5850.2.ce χ5850(181,)\chi_{5850}(181, \cdot) n/a 696 4
5850.2.ch χ5850(1819,)\chi_{5850}(1819, \cdot) n/a 704 4
5850.2.cj χ5850(193,)\chi_{5850}(193, \cdot) n/a 1008 4
5850.2.ck χ5850(643,)\chi_{5850}(643, \cdot) n/a 1008 4
5850.2.cn χ5850(1207,)\chi_{5850}(1207, \cdot) n/a 420 4
5850.2.co χ5850(2257,)\chi_{5850}(2257, \cdot) n/a 1008 4
5850.2.cr χ5850(3857,)\chi_{5850}(3857, \cdot) n/a 1008 4
5850.2.ct χ5850(2357,)\chi_{5850}(2357, \cdot) n/a 336 4
5850.2.cu χ5850(257,)\chi_{5850}(257, \cdot) n/a 1008 4
5850.2.cx χ5850(857,)\chi_{5850}(857, \cdot) n/a 1008 4
5850.2.cz χ5850(749,)\chi_{5850}(749, \cdot) n/a 1008 4
5850.2.da χ5850(851,)\chi_{5850}(851, \cdot) n/a 1064 4
5850.2.dc χ5850(1151,)\chi_{5850}(1151, \cdot) n/a 360 4
5850.2.df χ5850(401,)\chi_{5850}(401, \cdot) n/a 1064 4
5850.2.dh χ5850(2099,)\chi_{5850}(2099, \cdot) n/a 1008 4
5850.2.di χ5850(149,)\chi_{5850}(149, \cdot) n/a 1008 4
5850.2.dk χ5850(449,)\chi_{5850}(449, \cdot) n/a 336 4
5850.2.dn χ5850(551,)\chi_{5850}(551, \cdot) n/a 1064 4
5850.2.do χ5850(443,)\chi_{5850}(443, \cdot) n/a 864 4
5850.2.dr χ5850(893,)\chi_{5850}(893, \cdot) n/a 1008 4
5850.2.ds χ5850(107,)\chi_{5850}(107, \cdot) n/a 336 4
5850.2.du χ5850(2207,)\chi_{5850}(2207, \cdot) n/a 1008 4
5850.2.dw χ5850(457,)\chi_{5850}(457, \cdot) n/a 1008 4
5850.2.dz χ5850(1357,)\chi_{5850}(1357, \cdot) n/a 1008 4
5850.2.ea χ5850(1657,)\chi_{5850}(1657, \cdot) n/a 420 4
5850.2.ed χ5850(7,)\chi_{5850}(7, \cdot) n/a 1008 4
5850.2.ee χ5850(841,)\chi_{5850}(841, \cdot) n/a 3360 8
5850.2.ef χ5850(391,)\chi_{5850}(391, \cdot) n/a 2880 8
5850.2.eg χ5850(991,)\chi_{5850}(991, \cdot) n/a 1408 8
5850.2.eh χ5850(61,)\chi_{5850}(61, \cdot) n/a 3360 8
5850.2.ej χ5850(73,)\chi_{5850}(73, \cdot) n/a 1400 8
5850.2.ek χ5850(233,)\chi_{5850}(233, \cdot) n/a 1120 8
5850.2.en χ5850(161,)\chi_{5850}(161, \cdot) n/a 1120 8
5850.2.ep χ5850(359,)\chi_{5850}(359, \cdot) n/a 1120 8
5850.2.er χ5850(53,)\chi_{5850}(53, \cdot) n/a 960 8
5850.2.et χ5850(1477,)\chi_{5850}(1477, \cdot) n/a 1400 8
5850.2.eu χ5850(511,)\chi_{5850}(511, \cdot) n/a 3360 8
5850.2.ex χ5850(529,)\chi_{5850}(529, \cdot) n/a 3360 8
5850.2.ez χ5850(829,)\chi_{5850}(829, \cdot) n/a 1408 8
5850.2.fc χ5850(259,)\chi_{5850}(259, \cdot) n/a 3360 8
5850.2.ff χ5850(439,)\chi_{5850}(439, \cdot) n/a 3360 8
5850.2.fi χ5850(139,)\chi_{5850}(139, \cdot) n/a 3360 8
5850.2.fk χ5850(571,)\chi_{5850}(571, \cdot) n/a 3360 8
5850.2.fl χ5850(361,)\chi_{5850}(361, \cdot) n/a 1392 8
5850.2.fo χ5850(289,)\chi_{5850}(289, \cdot) n/a 1392 8
5850.2.fp χ5850(79,)\chi_{5850}(79, \cdot) n/a 2880 8
5850.2.fr χ5850(121,)\chi_{5850}(121, \cdot) n/a 3360 8
5850.2.ft χ5850(979,)\chi_{5850}(979, \cdot) n/a 3360 8
5850.2.fw χ5850(67,)\chi_{5850}(67, \cdot) n/a 6720 16
5850.2.fz χ5850(697,)\chi_{5850}(697, \cdot) n/a 6720 16
5850.2.ga χ5850(37,)\chi_{5850}(37, \cdot) n/a 2800 16
5850.2.gd χ5850(223,)\chi_{5850}(223, \cdot) n/a 6720 16
5850.2.gf χ5850(563,)\chi_{5850}(563, \cdot) n/a 6720 16
5850.2.gh χ5850(503,)\chi_{5850}(503, \cdot) n/a 2240 16
5850.2.gi χ5850(653,)\chi_{5850}(653, \cdot) n/a 6720 16
5850.2.gl χ5850(677,)\chi_{5850}(677, \cdot) n/a 5760 16
5850.2.gm χ5850(281,)\chi_{5850}(281, \cdot) n/a 6720 16
5850.2.gp χ5850(89,)\chi_{5850}(89, \cdot) n/a 2240 16
5850.2.gr χ5850(59,)\chi_{5850}(59, \cdot) n/a 6720 16
5850.2.gs χ5850(509,)\chi_{5850}(509, \cdot) n/a 6720 16
5850.2.gu χ5850(41,)\chi_{5850}(41, \cdot) n/a 6720 16
5850.2.gx χ5850(71,)\chi_{5850}(71, \cdot) n/a 2240 16
5850.2.gz χ5850(11,)\chi_{5850}(11, \cdot) n/a 6720 16
5850.2.ha χ5850(239,)\chi_{5850}(239, \cdot) n/a 6720 16
5850.2.hc χ5850(77,)\chi_{5850}(77, \cdot) n/a 6720 16
5850.2.hf χ5850(23,)\chi_{5850}(23, \cdot) n/a 6720 16
5850.2.hg χ5850(17,)\chi_{5850}(17, \cdot) n/a 2240 16
5850.2.hi χ5850(113,)\chi_{5850}(113, \cdot) n/a 6720 16
5850.2.hl χ5850(163,)\chi_{5850}(163, \cdot) n/a 2800 16
5850.2.hm χ5850(187,)\chi_{5850}(187, \cdot) n/a 6720 16
5850.2.hp χ5850(553,)\chi_{5850}(553, \cdot) n/a 6720 16
5850.2.hq χ5850(427,)\chi_{5850}(427, \cdot) n/a 6720 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(5850))S_{2}^{\mathrm{old}}(\Gamma_1(5850)) into lower level spaces

S2old(Γ1(5850)) S_{2}^{\mathrm{old}}(\Gamma_1(5850)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))36^{\oplus 36}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))18^{\oplus 18}\oplusS2new(Γ1(3))S_{2}^{\mathrm{new}}(\Gamma_1(3))24^{\oplus 24}\oplusS2new(Γ1(5))S_{2}^{\mathrm{new}}(\Gamma_1(5))24^{\oplus 24}\oplusS2new(Γ1(6))S_{2}^{\mathrm{new}}(\Gamma_1(6))12^{\oplus 12}\oplusS2new(Γ1(9))S_{2}^{\mathrm{new}}(\Gamma_1(9))12^{\oplus 12}\oplusS2new(Γ1(10))S_{2}^{\mathrm{new}}(\Gamma_1(10))12^{\oplus 12}\oplusS2new(Γ1(13))S_{2}^{\mathrm{new}}(\Gamma_1(13))18^{\oplus 18}\oplusS2new(Γ1(15))S_{2}^{\mathrm{new}}(\Gamma_1(15))16^{\oplus 16}\oplusS2new(Γ1(18))S_{2}^{\mathrm{new}}(\Gamma_1(18))6^{\oplus 6}\oplusS2new(Γ1(25))S_{2}^{\mathrm{new}}(\Gamma_1(25))12^{\oplus 12}\oplusS2new(Γ1(26))S_{2}^{\mathrm{new}}(\Gamma_1(26))9^{\oplus 9}\oplusS2new(Γ1(30))S_{2}^{\mathrm{new}}(\Gamma_1(30))8^{\oplus 8}\oplusS2new(Γ1(39))S_{2}^{\mathrm{new}}(\Gamma_1(39))12^{\oplus 12}\oplusS2new(Γ1(45))S_{2}^{\mathrm{new}}(\Gamma_1(45))8^{\oplus 8}\oplusS2new(Γ1(50))S_{2}^{\mathrm{new}}(\Gamma_1(50))6^{\oplus 6}\oplusS2new(Γ1(65))S_{2}^{\mathrm{new}}(\Gamma_1(65))12^{\oplus 12}\oplusS2new(Γ1(75))S_{2}^{\mathrm{new}}(\Gamma_1(75))8^{\oplus 8}\oplusS2new(Γ1(78))S_{2}^{\mathrm{new}}(\Gamma_1(78))6^{\oplus 6}\oplusS2new(Γ1(90))S_{2}^{\mathrm{new}}(\Gamma_1(90))4^{\oplus 4}\oplusS2new(Γ1(117))S_{2}^{\mathrm{new}}(\Gamma_1(117))6^{\oplus 6}\oplusS2new(Γ1(130))S_{2}^{\mathrm{new}}(\Gamma_1(130))6^{\oplus 6}\oplusS2new(Γ1(150))S_{2}^{\mathrm{new}}(\Gamma_1(150))4^{\oplus 4}\oplusS2new(Γ1(195))S_{2}^{\mathrm{new}}(\Gamma_1(195))8^{\oplus 8}\oplusS2new(Γ1(225))S_{2}^{\mathrm{new}}(\Gamma_1(225))4^{\oplus 4}\oplusS2new(Γ1(234))S_{2}^{\mathrm{new}}(\Gamma_1(234))3^{\oplus 3}\oplusS2new(Γ1(325))S_{2}^{\mathrm{new}}(\Gamma_1(325))6^{\oplus 6}\oplusS2new(Γ1(390))S_{2}^{\mathrm{new}}(\Gamma_1(390))4^{\oplus 4}\oplusS2new(Γ1(450))S_{2}^{\mathrm{new}}(\Gamma_1(450))2^{\oplus 2}\oplusS2new(Γ1(585))S_{2}^{\mathrm{new}}(\Gamma_1(585))4^{\oplus 4}\oplusS2new(Γ1(650))S_{2}^{\mathrm{new}}(\Gamma_1(650))3^{\oplus 3}\oplusS2new(Γ1(975))S_{2}^{\mathrm{new}}(\Gamma_1(975))4^{\oplus 4}\oplusS2new(Γ1(1170))S_{2}^{\mathrm{new}}(\Gamma_1(1170))2^{\oplus 2}\oplusS2new(Γ1(1950))S_{2}^{\mathrm{new}}(\Gamma_1(1950))2^{\oplus 2}\oplusS2new(Γ1(2925))S_{2}^{\mathrm{new}}(\Gamma_1(2925))2^{\oplus 2}