Properties

Label 75.2
Level 75
Weight 2
Dimension 119
Nonzero newspaces 6
Newform subspaces 12
Sturm bound 800
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 12 \)
Sturm bound: \(800\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(75))\).

Total New Old
Modular forms 256 159 97
Cusp forms 145 119 26
Eisenstein series 111 40 71

Trace form

\( 119 q - q^{2} - 9 q^{3} - 25 q^{4} - 6 q^{5} - 23 q^{6} - 28 q^{7} - 21 q^{8} - 13 q^{9} - 34 q^{10} - 4 q^{11} - 19 q^{12} - 30 q^{13} - 24 q^{14} - 14 q^{15} - 33 q^{16} - 2 q^{17} - q^{18} - 8 q^{19}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(75))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
75.2.a \(\chi_{75}(1, \cdot)\) 75.2.a.a 1 1
75.2.a.b 1
75.2.a.c 1
75.2.b \(\chi_{75}(49, \cdot)\) 75.2.b.a 2 1
75.2.b.b 2
75.2.e \(\chi_{75}(32, \cdot)\) 75.2.e.a 4 2
75.2.e.b 4
75.2.g \(\chi_{75}(16, \cdot)\) 75.2.g.a 4 4
75.2.g.b 8
75.2.g.c 12
75.2.i \(\chi_{75}(4, \cdot)\) 75.2.i.a 16 4
75.2.l \(\chi_{75}(2, \cdot)\) 75.2.l.a 64 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(75))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(75)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)